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Abstract—It is well known that feedback does not increase the
capacity of the AWGN channel. Schalkwijk and Kailath presented
a feedback scheme that dramatically improves the error probabil-
ity for finite block lengths. Unfortunately, the Schalkwijk-Kailath
scheme requires perfect feedback, which is often not feasible. We
study the performance of linear transmission schemes for AWGN
channels with separate quantization of the feedback signal and
the receiver input signal. The quantizers are designed in a
rate-information-optimal manner using the Gaussian information
bottleneck. We provide expressions for achievable rates and error
probabilities in terms of the so-called information-rate function.
It turns out the exploiting knowledge of the quantized feedback
signal at the receiver is crucial for achieving strictly positive
rates.

Index Terms—Channel capacity, feedback, quantization, linear
coding, iterative refinement, information bottleneck

I. INTRODUCTION

It is well known that channel output feedback does not
increase the capacity of memoryless point-to-point channels
[1]. However, feedback can dramatically improve the reliabil-
ity and reduce the coding complexity of capacity-achieving
transmission schemes. For the Gaussian channel, Schalkwijk
and Kailath presented a remarkably simple scheme which
achieves a probability of error that decays doubly exponen-
tially in the block length for all rates below capacity [2], [3].
The Schalkwijk-Kailath scheme has later been extended to
make the error probability decay with an exponential order
that increases linearly in the block length [4]–[6]. Furthermore,
Schalkwijk-Kailath coding was shown to achieve the feedback
capacity of Gaussian channels with arbitrary autoregressive
moving-average noise processes [7].

The key ingredient of the Schalkwijk-Kailath scheme is
a stochastic approximation method also known as iterative
refinement which allows the transmitter to iteratively improve
the receiver’s estimate of the intended message. A critical
requirement for this approach to work is perfect feedback;
in case of noisy feedback, the Schalkwijk-Kailath scheme
breaks down. In fact, with noisy feedback no linear scheme
can achieve positive rates [8]. Noiseless feedback of the
analog channel output is unrealistic since in practice the
feedback channel would at least have a rate constraint. The
rate constraint can be accounted for by quantizing the channel
output signal prior to transmitting the feedback. In this context,
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[9] discusses a quantized feedback scheme for channels with a
peak power constraint and [10] augments the linear feedback
scheme of [11] with a quantizer.

In this paper, we propose a scheme which is based on [11]
but uses separate quantizers for the feedback loop and for the
receiver processing. These two quantizers are optimized using
the information bottleneck (IB) principle [12]. In contrast to
[10], we do not assume that the transmitter has access to the
quantized channel noise. We show that the proposed scheme
achieves positive rates even if the feedback signal is quantized
more coarsely than the receiver input signal.

The remainder of this paper is organized as follows. Sec-
tion II provides the necessary background and definitions. The
system model for the proposed quantized feedback scheme is
discussed in Section III. In Section IV, we assess the perfor-
mance of the considered linear feedback scheme in the regime
of large block length both for perfect and noisy feedback.
Section V proposes a modified linear feedback scheme that
always achieves positive rates. Section VI shows numerical
results for the finite block length regime that corroborate our
findings. Finally, conclusions are provided in Section VII.

Notation: We use boldface letters for column vectors and
upright sans-serif letters for random variables. The identity
matrix is denoted by I and the superscript T denotes transpo-
sition. The 2-norm and Frobenius norm are denoted by ‖ · ‖
and ‖·‖F, respectively. Probability and expectation are denoted
by P{·} and E{·}, respectively. A Gaussian distribution with
mean µ and variance σ2 is denoted by N (µ, σ2), and Q(·) is
the Gaussian Q-function. We use the notation of [13] for the
mutual information I(·; ·). All logarithms are to base 2.

II. BACKGROUND AND DEFINITIONS

A. Gaussian Information Bottleneck

The IB method [12] to date has received limited attention
outside the machine learning community. We therefore give a
brief overview of the IB principle and discuss its solution in the
Gaussian case. This allows us to characterize rate-information-
optimal quantization.

Let x− y− z be a Markov chain, where z is a compressed
representation of y and the joint distribution of x and y is
known. The IB considers the following variational problem:

min
p(z|y)

I(y; z)− λI(x; z). (1)



In the context of the IB, x is called the relevance variable and
the mutual information I(x; z) is called relevant information.
The trade-off between compression rate I(y; z) and relevant
information is determined by the Lagrange parameter λ. We
next formalize the trade-off between compression rate and
relevant information.

Definition 1. Let x−y−z be a Markov chain. The information-
rate function I : R+ → [0, I(x; y)] is defined by

I(R) , max
p(z|y)

I(x; z) subject to I(y; z) ≤ R. (2)

It has been shown in [14] that (2) can equivalently be
restated as a rate-distortion problem [15] in the Gaussian case.
The rate-distortion theorem thus gives operational meaning to
(2), i.e., there exists a code which achieves I(R). Hence, the
function I(R) allows us to quantify the maximum achievable
information rate when the compression rate is R.

If x and y are jointly Gaussian, (1) is referred to as
Gaussian information bottleneck (GIB) [16]. In this case,
explicit expressions for the information-rate function can be
found [17], [18]. Specifically, for an AWGN channel with
signal-to-noise ratio (SNR) ρ , P/σ2 and channel output
compression we have [17, Theorem 2]

I(R) = C(ρ)− C(2−2Rρ) ≤ min{C(ρ), R}. (3)

Here,
C(ρ) ,

1

2
log(1 + ρ) (4)

is the capacity of the uncompressed channel. The compressed
channel is again Gaussian and hence I(R) = C(ρ̂) with the
equivalent SNR

ρ̂ = ρ
1− 2−2R

1 + 2−2Rρ
≤ ρ. (5)

Equivalently, GIB-optimal channel output compression
amounts to additional additive Gaussian noise of variance

σ2 1 + ρ

22R − 1
. (6)

The relationship between rate-information-optimal compres-
sion and rate-distortion-optimal compression in the Gaussian
case is studied in [14].

B. The Linear Feedback Scheme of [11]

We consider an AWGN channel with noisy channel output
feedback. The channel output at time k is given by

y[k] = x[k] + u[k], (7)

where u[k] ∼ N (0, σ2
u) is independent, identically distributed

Gaussian noise. The received signal y[k] is then fed back
and in the next time instant the transmitter obtains the noisy
version

ỹ[k] = y[k−1] + v[k] = x[k−1] + w[k], (8)

where w[k] , u[k−1]+v[k]. Here, v[k] ∼ N (0, σ2
v ) is indepen-

dent, identically distributed Gaussian feedback noise. Thus, at

time k the transmitter has noisy side information {ỹ[k′]}k′<k

about all previous channel outputs. Since x[k] is available at
the transmitter, knowing ỹ[k] is equivalent to knowing the
aggregate (channel and feedback) noise {w[k′]}k′<k (cf. (8)).
The message θ is transmitted using n channel uses and, since
this scheme performs iterative refinement, the block length n
is equal to the number of iterations.

Using matrix-vector notation, the linear processing at the
receiver and the transmitter can be written as follows (all
vectors in (9) and (10) are of length n):

x = gθ + Fw, (9)

θ̂ = qTy, (10)

where F ∈ Rn×n is a strictly lower triangular matrix (to
ensure causality) and g, q ∈ Rn are unit-norm vectors. The
transmit signal x consists of the message part gθ and the
noise cancellation part Fw (cf. (9)). Since all quantities in
(9) and (10) are Gaussian and the processing is linear, the
overall scheme amounts to a Gaussian “superchannel” with
capacity

CS =
1

n
C(snr), (11)

where the corresponding SNR follows from (10) and reads

snr =
E{θ2}|qTg|2

σ2
u ‖qT(I + F )‖2 + σ2

v ‖qTF ‖2
. (12)

The factor 1/n in (11) is due to the fact that n iterations are
used to transmit the message θ. The linear feedback scheme
is optimized by designing F , g, and q such that the SNR in
(12) (and hence the capacity CS) is maximized.

Let the transmit signal satisfy the average power constraint

E{‖x‖2} = E{θ2}+ (σ2
u + σ2

v )‖F ‖2F ≤ nP. (13)

Using a power allocation factor γ ∈ [0, 1], a fraction of 1− γ
of the total transmit power is allocated to the message part,
i.e., we have

E{θ2} = (1− γ)nP, (14)

(σ2
u + σ2

v )‖F ‖2F ≤ γnP. (15)

For fixed γ, [11, Lemma 5] states that the optimal F =
(fij)1≤i,j≤n, g, and q are given by

fij = − 1− β2
0

σ2
u + σ2

v

σ2
uβ

i−j−2
0 for i > j, (16)

g = q =

√
1− β2

0

1− β2n
0

[
1 β0 β

2
0 . . . βn−1

0

]T
, (17)

where β0 ∈ (0, 1) is the smallest positive root of

β2nσ4
u − β2n(σ4

u + (σ2
u + σ2

v )γP ) + (n−1)σ4
u . (18)

Using (16)–(18) in (12) yields

snr =
(σ2

u + σ2
v )(1− γ)nP

σ2
uσ

2
v + σ4

uβ
2(n−1)
0

(19)

for the SNR. The power allocation factor γ can then be
optimized numerically (see [11] for details).



θ
TX

u[k]

y[k]
Q1 RX

θ̂

Q2

x[k] ŷ[k]
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Figure 1: Feedback system with separate quantization of
channel output and feedback.

III. SYSTEM MODEL

In what follows we apply the linear feedback scheme
described above to a scenario with two quantizers Q1 and
Q2 as depicted in Fig. 1. This setup models the practically
relevant case where the receiver observes a quantized version
of the channel output and the feedback link is rate-constrained
(but otherwise noise-free). We denote the quantized signals by
ŷ[k] = Q1(y[k]) and ỹ[k] = Q2(y[k−1]). The compression
rates of the two quantizers are denoted by RQ1

and RQ2
. We

focus on the case RQ2
≤ RQ1

. The case RQ2
> RQ1

is briefly
discussed at the end of Section IV.

We assume that rate-information-optimal quantizers Q1 and
Q2 are used that have been designed using the IB principle
(cf. Section II-A). Thus, Q1 and Q2 amount to additive
Gaussian quantization noise,

ŷ[k] = y[k] + z1[k], ỹ[k] = y[k−1] + z2[k]. (20)

The variance of the quantization noise is obtained from (6)
with σ2 = σ2

u and ρ = P/σ2
u , i.e., z1[k] ∼ N (0, σ2

z1) and
z2[k] ∼ N (0, σ2

z2) with σ2
zi = σ2

u(1 + ρ)/(22RQi − 1). Our
assumption on the compression rates allows us to equivalently
rewrite ỹ[k] in (20) as

ỹ[k] = Q′2
(
Q1(y[k − 1])

)
= Q′2(ŷ[k−1]) = ŷ[k−1] + z′2[k],

(21)
where the Gaussian quantization noise z′2[k] has variance
∆σ2

z , σ
2
z2 −σ

2
z1 ≥ 0 and the noise realizations are related as

z2[k] = z1[k] + z′2[k]. Therefore, ỹ[k] is a physically degraded
version of ŷ[k−1]. The additional quantization of ŷ[k−1] with
quantizer Q′2 in (21) is performed with rate

R′Q2
=

1

2
log

22RQ1 − 1

22(RQ1
−RQ2

) − 1
. (22)

The compression rate in (22) is such that the quantization noise
z′2[k] has variance ∆σ2

z . Writing the quantized feedback as in
(21) allows us to model the system in Fig. 1 by an equivalent
AWGN channel with noisy feedback as shown in Fig. 2.

IV. PERFORMANCE ANALYSIS

A. Preliminaries

We next analyze the performance of the quantized feedback
scheme in terms of the error probability P{θ̂ 6= θ}. To this end,
we use the following upper bound on the error probability of
transmitting equidistant symbols over an AWGN channel:

P (n)
e ≤ 2Q

(
c0
√

snr
2nR

)
. (23)
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θ̂x[k] ŷ[k]

ŷ[k − 1]ỹ[k]

z′2[k] ∼ N (0,∆σ2
z )

Figure 2: Equivalent system model.

Here, c0 is a constant that depends on the symbol constellation
and R is the data rate in bits per channel use. We use the
standard definition for achievable rates.

Definition 2. A data rate R is said to be achievable, if the
error probability P (n)

e vanishes as n tends to infinity, i.e., if

lim
n→∞

P (n)
e = 0. (24)

B. Identical Quantization Rates (RQ1
= RQ2

)

We first consider the case RQ , RQ1
= RQ2

which yields
ỹ[k] = ŷ[k]. Here, the feedback is noiseless with respect to
the output of quantizer Q1 and the capacity of the quantized
channel is given by

I(RQ) = C

(
P

σ2
u + σ2

z1

)
. (25)

Along the lines of Section II-B, the SNR reads

snr =
E{θ2}|qTg|2

(σ2
u + σ2

z1) ‖qT(I + F )‖2
=

(1− γ)nP

(σ2
u + σ2

z1)β
2(n−1)
0

,

(26)
where β0 ∈ (0, 1) is the smallest positive root of

β2n(σ2
u +σ2

z1)−β2n(σ2
u +σ2

z1 +γP )+(σ2
u +σ2

z1)(n−1), (27)

and the power constraint is

E{‖x‖2} = E{θ2}+ (σ2
u + σ2

z1)‖F ‖2F ≤ nP. (28)

Next, we analyze the asymptotic behavior of the SNR as
n→∞. To this end, we note that for large n (27) yields

β2
0 =

σ2
u + σ2

z1

σ2
u + σ2

z1 + γP
. (29)

Furthermore, we let

lim
n→∞

(1− γ)nP

σ2
u + σ2

z1 + γP
= 1 =⇒ lim

n→∞
γ = 1. (30)

Using (29) and (30) in (26) allows us to express the SNR for
large n as follows:

snr =

(
1 +

P

σ2
u + σ2

z1

)n

. (31)

Due to (31) the capacity of the superchannel is (cf. (11))

CS = C

(
P

σ2
u + σ2

z1

)
= I(RQ), (32)

which is equal to the channel capacity (25).



Proposition 3. For large block length n and quantization rate
RQ = RQ1 = RQ2 , the error probability of the proposed
scheme decreases doubly exponentially and is upper bounded
as

P (n)
e ≤ 2Q

(
2n(I(RQ)−R)

)
, (33)

for all data rates R < I(RQ).

Proof: Use (32) to express snr in terms of I(RQ) and insert
the result into (23). �

Proposition 3 confirms that the proposed scheme performs
asymptotically like the Schalkwijk-Kailath scheme if the com-
pression rates of the two quantizers are equal.

C. Different Quantization Rates (RQ1 6= RQ2 )

We next consider the case RQ2
< RQ1

, i.e., the feedback
is a degraded version of the output of quantizer Q1. The SNR
is then given by

snr =
(σ2

u + σ2
z2)(1− γ)nP

(σ2
u + σ2

z1)∆σ2
z + (σ2

u + σ2
z1)2β

2(n−1)
0

, (34)

where β0 ∈ (0, 1) is the smallest positive root of

β2n(σ2
u + σ2

z1)2 − β2n
(
(σ2

u + σ2
z1)2 + (σ2

u + σ2
z2)γP

)
+ (σ2

u + σ2
z1)2(n− 1). (35)

For large n, (35) yields

β2
0 =

(σ2
u + σ2

z1)2

(σ2
u + σ2

z1)2 + (σ2
u + σ2

z2)γP
. (36)

By inserting (36) into (34) and appropriately letting γ → 0 as
n→∞, we obtain

snr =
nP

σ2
u + σ2

z1

(37)

for the asymptotic behavior of the SNR. Since the SNR in
(37) does not grow exponentially in n, the capacity of the
superchannel vanishes as n→∞. This result agrees with the
findings in [8].

In the case RQ1
< RQ2

, the receiver input ŷ[k] is degraded
with respect to the feedback ỹ[k]. Similarly to (21) we can
write ŷ[k− 1] = ỹ[k] + z′1[k], where z′1[k] ∼ N (0, σ2

z1 − σ
2
z2).

From the transmitter’s perspective, the feedback signal ỹ[k] =
ŷ[k − 1] − z′1[k] is a “noisy” version of what the receiver
observes. Therefore, also in this case no positive rate can be
achieved.

V. MODIFIED FEEDBACK SCHEME

We next assume that the receiver knows both ŷ[k] and ỹ[k].
This is reasonable since typically both quantizers are part of
the receiver. With this assumption, a simple modification of
the receiver processing allows us to achieve positive rates. We
first consider the case RQ1

> RQ2
in what follows.

The transmit signal is given by

x = gθ + F (u + z2) (38)

and the modified receiver processing is

θ̂ = qT
(
ŷ − F (ỹ − ŷ)

)
= θ + qT(I + F )(u + z1). (39)

Subtracting F (ỹ− ŷ) cancels the extra feedback quantization
noise z2− z1 (whose variance is ∆σ2

z ). We note that (39) has
the same structure as in the case RQ1

= RQ2
. However, the

noise cancellation at the receiver does not impact the transmit
signal (38) which still contains the additional feedback quan-
tization noise. Therefore, designing the modified scheme for
the case RQ = RQ1

would violate the power constraint.
To meet the power constraint, we have to downscale the

transmit power by the factor

σ2
u + σ2

z1

σ2
u + σ2

z1 + ∆σ2
z

=
σ2
u + σ2

z1

σ2
u + σ2

z2

. (40)

Designing F , g, and q for the case RQ = RQ1 and taking
∆σ2

z > 0 into account by scaling P with (40) yields the
asymptotic SNR (cf. (31))

snr =

(
1 +

P

σ2
u + σ2

z1

σ2
u + σ2

z1

σ2
u + σ2

z2

)n

. (41)

Hence, the capacity of the superchannel is given by

CS = C

(
P

σ2
u + σ2

z2

)
= I(RQ2

). (42)

The modified receiver processing (39) thus allows us to
achieve positive rates, in contrast to the original scheme
discussed in Section IV-C.

Proposition 4. For large block length n and quantization rates
RQ1

≥ RQ2
, the error probability of the modified feedback

scheme decreases doubly exponentially and is upper bounded
as

P (n)
e ≤ 2Q

(
2n(I(RQ2

)−R)
)
, (43)

for all data rates R < I(RQ2).

Proof: The proof is analogous to that of Proposition 3. �

By a similar argument for RQ2
≥ RQ1

it can be
shown that the modified scheme achieves any rate R <
I
(

min{RQ1 , RQ2}
)

for arbitrary RQ1 and RQ2 .

VI. NUMERICAL RESULTS

The previous discussion provided asymptotic statements
about achievable rates and error probabilities. Especially for
small block lengths these results do not give us a complete
picture of the performance of the proposed quantized feedback
scheme. We thus numerically optimized the power allocation
factor γ and evaluated (23). Furthermore, for finite block
length the asymptotic expressions (32) and (42) for the capac-
ity of the superchannel are not exact. For Gaussian messages,
we have CS = 1

nI(θ̂; θ).
Fig. 3 shows the results for a data rate of R = 1 bit in

an AWGN channel with capacity C = 1.25 bit. With high-
rate quantizers RQ1 = RQ2 = RQ = 10 bits (green lines, ?
markers), we have RQ � C and thus 1

nI(θ̂; θ) ≈ C. Note
that RQ1 = RQ2 implies R′Q2

= ∞ (cf. (22)). The mutual
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Figure 3: Numerical performance evaluation for finite block
lengths: mutual information 1

nI(θ̂; θ) (top); optimal power
allocation factor γ (middle); error probability P (n)

e (bottom).

information for the modified feedback scheme (red lines,
triangle markers) approaches I(RQ2). In case the quantized
feedback signal is not exploited at the receiver (blue lines,
cross markers), the mutual information is almost constant
up to a certain block length beyond which the performance
breaks down rapidly. For RQ1

≥ RQ2
, the performance in

the asymptotic regime is independent of the actual value of
RQ1 . However, this is not true for finite block lengths. We
compare the error probabilities for RQ1

= RQ2
= RQ = 2 bits

(green lines, ∗ markers) and for the modified scheme with
RQ1

= 10 bits and RQ2
= 2, 3, or 4 bits (red lines,

triangle markers). We observe that increasing RQ1
provides a

substantial performance improvement for the considered block
lengths, although the asymptotic performance is the same for
both cases.

VII. CONCLUSIONS

We have studied the capacity of an optimal linear feed-
back scheme for AWGN channels with quantization of the
feedback signal and of the receive signal. We have used
the GIB, which was recently specialized to optimal output
compression of AWGN channels, to design the quantizers

in a rate-information-optimal manner. It turned out that the
GIB information-rate function is of central importance for
the performance of such systems in that it characterizes
the achievable data rates as functions of the compression
rates. We have shown that the scheme from [11] achieves
the same doubly exponential error probability decay as the
Schalkwijk-Kailath coding scheme if the same quantizer is
used for feedback and receiver processing. Since the scheme
from [11] cannot achieve positive rates for different feedback
and receiver quantization rates, we have proposed a modified
scheme that exploits knowledge of the quantized feedback
signal at the receiver. We demonstrated that in this novel
linear transceiver processing scheme in combination with
GIB quantization results in an equivalent AWGN channel of
capacity I(min{RQ1

, RQ2
}), in contrast to the results in [8],

[11].
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