ANALYSIS OF BINDER AGEING BY MICROMECHANICAL & MULTISCALE MODELING

Bernhard Hofko
Lukas Eberhardsteiner, Josef Füssl, Ronald Blab
Lisa Aigner, Hinrich Grothe, Florian Handle, Markus Hospodka, Roman Lackner
Institute of Transportation, Vienna University of Tech.

Institute of Transportation

Research Center of Road and Airfield Engineering

Research Center of Transport Planning and Traffic Engineering

Research Center of Railway Engineering, Traffic Economics and Ropeways

Staff Unit Secretariat & IT

Material Science and Experimental Methods
Head: Dr. Hofko
- Material characterization
- Innovative construction materials
- Damage assessment

Structural Science and Numerical Methods
Head: Prof. Blab
- Road design and construction
- Construction methods
- Numerical methods

Design, Operation and Maintenance Management
Head: Dr. Hoffmann
- Traffic & Road Planning
- Road Operation
- Maintenance Management
Outline

- Multiscale Model for Asphalt Mixes
- Bitumen Composition and Microstructure
- Micromechanical Modeling of Binder (Ageing)
- Conclusions and Outlook
Outline

- Multiscale Model for Asphalt Mixes
- Bitumen Composition and Microstructure
- Micromechanical Modeling of Binder (Ageing)
- Conclusions and Outlook
Motivation for Multiscale Modeling

- **macroscopic material models**
 identified material parameters applicable to *one* specific mixture consisting of *one* specific bitumen (e.g., B50/70), *one* specific filler (e.g., limestone dust) and *one* specific aggregate

- **(bottom-up) multiscale models**
 material parameters as functions of composition (mix design), morphology, and the properties of the material phases (e.g., bitumen, filler, ...)

 ➔ applicable to several asphalt mixes
 ➔ consideration of changes in material behavior at respective scale of observation
Multiscale Model for Asphalt

Five Scales of observation:

- **Volumetric** composition
- Identification of **mechanical properties** and **morphology**
- Phase **interaction** (Mori Tanaka)
- **Homogenization** and **Upscaling** (Viscoelasticity – Transformation to Laplace Carson Space)
Outline

- Multiscale Model for Asphalt Mixes
- Bitumen Composition and Microstructure
- Micromechanical Modeling of Binder (Ageing)
- Conclusions and Outlook
Bitumen Composition - SARA

- Common concept to identify constituents of bitumen = **SARA**
- **Asphaltenes** → n-heptane non soluble
- **Maltenes** → n-heptane soluble
- Further separation of Maltenes by chromatographic separation → Saturates, Aromatics, Resins
Bitumen Microstructure

- Imaging Methods to detect microstructure
 - Environmental Scanning Electron Microscopy (ESEM)
 - Atomic Force Microscopy (AFM)
 - Confocal Laser Scanning Microscopy (CLSM)
 - …

- Micelle structures embedded within a matrix – different thesis

Source: Sayeda Nahar, TU Delft
Microstructural model of bitumen

- Matrix (Maltenes)
- Micelles (Asphaltene core + shell of highly polar resins)
 - strongly contributing to stiffness
 - shell to balance polarity gap between maltene phase and asphaltene - homogeneous dispersion
Bitumen Microstructure

- Micelle
- Matrix
- Saturates
- Resins & Aromatics

Asphaltenes
Shell

Polarity with asphaltenes
Distance from micelle center

Polar density
Outline

- Multiscale Model for Asphalt Mixes
- Bitumen Composition and Microstructure
- Micromechanical Modeling of Binder (Ageing)
- Conclusions and Outlook
Micromechanical Modelling of Binder Ageing

- **Set-up** of micromechanical model
- **Identification** of mechanical behavior of material phases
 - Maltenes
 - Asphaltenes + Shell
- **Validation** of model for un-aged binder
- Mechanical behavior of **lab-aged binder** (RTFOT+PAV)
- **Validation** of model for lab-aged binders
Micromechanical Model

Microstructural Model

Interaction between Resin shells
Asphaltenes
Resins and Aromatics
Saturates

Resin shells
Asphaltenes
Resins and Aromatics
Saturates

\[J(t) = J_0 + J_a \left(\frac{t}{\tau} \right)^k \]
Identification experiments

- Binder: 70/100 pen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>70/100 pen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration [1/10 mm]</td>
<td>90.9</td>
</tr>
<tr>
<td>Softening Point Ring & Ball [°C]</td>
<td>46.7</td>
</tr>
<tr>
<td>SHRP PG [°C]</td>
<td>58-22</td>
</tr>
</tbody>
</table>

- Artificial bitumens with varying asphaltene contents

- Creep-Recovery tests at different temperatures
Experimental Layout

Identification Maltenes
- Effect of Temperature (Arrhenius)

Identification Asphaltenes

Identification Interaction Shell

Validation

<table>
<thead>
<tr>
<th>Asphaltene content</th>
<th>0 vol-%</th>
<th>4.18 vol-%</th>
<th>7.77 vol-%</th>
<th>12.32 vol-%</th>
<th>17.36 vol-%</th>
<th>26.71 vol-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 wt. %</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>5 wt. %</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>10 wt. %</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>15 wt. %</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>20 wt. %</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>30 wt. %</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Identification Maltenes

![Graph showing the relationship between stress intensity (J) and time (t) with a linear fit and R^2 = 0.99.]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>-5 °C</th>
<th>+5 °C</th>
<th>+15 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{0,malt} [1/MPa]</td>
<td>0.0980</td>
<td>0.2652</td>
<td>2.433</td>
</tr>
<tr>
<td>J_{a,malt} [1/MPa]</td>
<td>0.0076</td>
<td>0.0766</td>
<td>1.205</td>
</tr>
<tr>
<td>k_{malt} [-]</td>
<td>0.8124</td>
<td>0.9386</td>
<td>1.027</td>
</tr>
<tr>
<td>R^2</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Identification Asphaltenes + Shell

- 0% Asphaltenes
- 4.18% Asphaltenes
- 7.77% Asphaltenes
- 12.32% Asphaltenes
- 17.36% Asphaltenes
- 26.71% Asphaltenes

Graph showing stiffness gain with increasing asphaltenes content.

Abrupt stiffness gain
Identification Asphaltenes + Shell

\[y = 0.4037 \exp(0.2559x) \]
Model Validation

![Graph showing model validation results.](image)
Mechanical Behavior of Lab-aged Binders

<table>
<thead>
<tr>
<th>Asphaltene content</th>
<th>Test temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5 °C</td>
</tr>
<tr>
<td>0 %</td>
<td>○/○</td>
</tr>
<tr>
<td>4.18 %</td>
<td>○/○</td>
</tr>
<tr>
<td>7.77 %</td>
<td>●/○</td>
</tr>
<tr>
<td>12.32 %</td>
<td></td>
</tr>
<tr>
<td>17.36 %</td>
<td>○/○</td>
</tr>
<tr>
<td>26.71 %</td>
<td></td>
</tr>
</tbody>
</table>

tumen, ○ ... tests on aged bitumen
Conclusion

- **Power-law model** describes viscoelastic behavior of bitumen constituents well.
- **Identification** of mechanical behavior of maltenes, asphaltenes and interaction of micelle shells **successfully**.
- Abrupt gain in stiffness with addition of asphaltenes to maltene phase → **Micelle-Matrix Model including interacting shells**.
- **Correlation** between interaction of micelle shells (needles) and asphaltene content.

- No difference between un-aged and lab-aged binder:
 - in maltene/asphaltene behavior
 - in interaction of micelle shells
- **Change in asphaltene content sufficient** to explain change in mechanical behavior due to **ageing**.
Outlook

- Verification for at least two other unmodified binders

- Direct identification of mechanical behavior of aromatics and resins

- Expansion for SBS-modified binders

More info:

- Eberhardsteiner L. et al. (2014): Influence of asphaltene content on bitumen behavior – Experimental investigation and micromechanical modeling

- Eberhardsteiner L. et al. (2014): Towards a microstructural model of bitumen ageing behavior
Thank you very much for your attention!