Extension of a Smart Grid Test Facility with Building Energy Agent Technology

Alexander Wendt, wendt@ict.tuwien.ac.at
Mike Pichler, mike.pichler@siemens.com
Mario Faschang, faschang@ict.tuwien.ac.at
Thomas Leber, leber@ict.tuwien.ac.at
Tobias Deutsch, tobias.deutsch@siemens.com

Background and Motivation

- **Background**: Existing Smart Grid lab infrastructure (two switchable 3-phase branches: emulated secondary substation with OLTC, emulated households and PV generation) is extended by a building automation agent.
- **Motivation**: Develop and test functionality of a “Building Energy Agent”
- **Problem**: Risky and expensive to test concepts in real grids
 - Hard to get a realistic test environment with simulator
- **Solution**: Extension of test facility “Intelligent Low Voltage Grid”
 - Emulate LV power grid (two 3-phase branches with ring option)
 - Emulate single hardware components like PV and EV
 - Extension by “Building Energy Agent” (BEA) rack representing a household and BEA functionality to be tested
- **New Use cases**:
 - Island mode – No external power supply
 - V2G/G2V – Integration of EVs into grid
 - Load shifting – Demand Side Management
 - Load reduction – Reduce grid load on critical external events

Infrastructure

- **Layer 1: Hardware**
 - Transformers STT800 for PV and local MV/LV transformers
 - Current sinks IS100 as variable loads for EVs and households
 - Smart Meters at critical measurement points in the grid
- **Layer 2: Software**
 - Central server for managing data exchange via “datapoints”
 - Clients as gateways, user interfaces, algorithms, profile generators
- **Layer 3: Model**
 - 3-phase LV power grid
 - Topology: (1) two branches, (2) one long branch or (3) closed ring
 - MV/LV grid transformer
 - two households with PV, two households without PV
 - Emulation of 24 h within 2 min by real hardware components

Integration of BEA in the Infrastructure

- **BEA functionalities**:
 - Maximize self-consumption of produced energy inside the building (e.g. from photovoltaic plants)
 - Generate accurate load and generation forecasts for grid operation and energy procurement optimization
 - Offer flexibilities (e.g. load shifting) for energy retailers, Virtual Power Plants (VPP) and grid operators
- **Connected devices and services**:
 - Smart Meter, E-Car charging station, photovoltaic inverter, building automation systems, external weather forecast provider
- **Information exchanged with infrastructure**:
 - The BEA receives P(U) and Q(U) characteristics in order to reduce consumption or generation in case of voltage band violations
 - Control signals from the building automation system are connected to the simulation system (see next section)