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An almost Pontryagin space A is an inner product space which 
admits a direct and orthogonal decomposition of the form A =
A>[+̇]A≤ with a Hilbert space A> and a finite-dimensional 
negative semidefinite space A≤. A reproducing kernel almost 
Pontryagin space is an almost Pontryagin space of functions 
(defined on some nonempty set and taking values in some 
Krein space), with the property that all point evaluation 
functionals are continuous. We address two problems.
1◦ In the presence of degeneracy, it is not possible to reproduce 
function values as inner products with a kernel function in 
the usual way. We obtain a natural substitute for a kernel 
function, and study the relation between spaces and kernel 
functions in detail.
2◦ Given an inner product space L of functions, does 
there exist a reproducing kernel almost Pontryagin space 
A which contains L isometrically? We characterise those 
spaces for which the answer is “yes”. We show that, in case 
of existence, there is a unique such space A which contains 
L isometrically and densely. Its geometry, in particular its 
degree of degeneracy, is an important invariant of L. It plays a 
role in connection with Krein’s formula describing generalised 
resolvents and, thus, in several concrete problems related with 
the extension theory of symmetric operators.
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1. Introduction

A reproducing kernel Hilbert space is a Hilbert space whose elements are functions, 
and which has the property that all point evaluation functionals are continuous. This 
type of spaces appears in many branches of mathematics, e.g., in functional analysis, 
complex analysis, statistics, etc., and plays an important role. As prominent examples, 
let us mention the Hardy space on the upper half-plane H2(C+) and its shift-coinvariant 
subspaces (model subspaces, in particular de Branges spaces), cf. [24,33,12], the Dirichlet 
space D on the unit disk, cf. [36,5], or the Bergman space, cf. [16]. A (small) selection 
of literature about theory and application of reproducing kernel Hilbert spaces, ranging 
from classical papers to recent work, is [6,42,17,34,13,21].

Within the theory of indefinite inner product spaces, reproducing kernel Pontryagin 
spaces play a similarly important role. Examples are de Branges Pontryagin spaces (which 
appear in the study of canonical systems with inner singularities or Schrödinger equations 
with strongly singular potentials), cf. [27,26,18,32], or generalised Dirichlet spaces (which 
appear in the theory of univalent functions), cf. [37, §7.5–6]. Again, there is a vast 
literature; a (again small) selection of literature being [39,15,3,14,4,10,20,1,19].

In some contexts subspaces of reproducing kernel spaces appear naturally (promi-
nently, in the theory of de Branges spaces). It is obvious that continuity of point 
evaluations is inherited by subspaces. However, a subspace of a Pontryagin space need 
not be a Pontryagin space. Provided it is closed, the obstacle is possible presence of 
degeneracy, i.e., existence of nonzero elements of the subspace which are orthogonal to 
the whole subspace. Each Pontryagin space which is not a Hilbert space has nontrivial 
closed and degenerated subspaces. Even more, in many situations degenerated subspaces 
contain crucial information about the structure of the space (as illustrated, e.g., by the 
constructions in [26, §2.b]).

In the present paper we axiomatically consider the kind of spaces described above: 
possibly degenerated closed subspaces of reproducing kernel Pontryagin spaces. We call 
this type of spaces reproducing kernel almost Pontryagin spaces. Thereby we allow the 
elements of the space to be Krein space valued functions. Our aim is to settle two ques-
tions which appear in this context. The first is existence of kernel functions, and the 
second existence of reproducing kernel space completions. Let us explain these problems 
in some more detail. Thereby we use some general vocabulary from the theory of repro-
ducing kernel spaces and indefinite inner product spaces. The reader who is not familiar 
with this language will find the relevant definitions in Section 2 below.

Problem I. Kernel functions. At the very basis of the theory of reproducing kernel 
spaces lies the fact that a reproducing kernel Hilbert- or Pontryagin space A can be fully 
described by a single function of two variables, its reproducing kernel. Namely (e.g., let 
A be a reproducing kernel Hilbert space of complex-valued functions defined on some 
set M), there exists a unique function K : M × M → C such that function values of 
elements of A are reproduced by means of the formula
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K(η, ·) ∈ A, η ∈ M,

f(η) =
[
f,K(η, ·)

]
A, f ∈ A, η ∈ M. (1.1)

Here we denote by K(η, ·) the function ζ �→ K(η, ζ), ζ ∈ M , and by [·,·]A the inner 
product of the space A.

When degeneracy is permitted there appears an obvious problem:

If A is degenerated, then there cannot exist a kernel K with (1.1). For if f ∈ A with 
[f, g]A = 0, g ∈ A, then from (1.1) it follows that f = 0.

We show that this problem can be resolved in a certain sense. Given a reproducing 
kernel almost Pontryagin space A (of functions defined on some nonempty set and taking 
values in some Krein space), there exist functions K (we call them almost reproducing 
kernels), such that reproduction of function values is established by a formula very 
close to (1.1). This formula is a finite-dimensional perturbation of (1.1), cf. (3.1). The 
existence result we show, cf. Theorem 3.2, is a generalisation and refinement of [29, 
Proposition 5.3] (and its proof runs along the same lines). Each almost reproducing kernel 
of A is a hermitian kernel with finite negative index. The Pontryagin space generated 
by it coincides with A as a linear space and topologically, and its inner product is a 
finite-dimensional perturbation of the inner product of A.

Conversely, we show that each hermitian kernel with finite negative index generates 
an infinite family of reproducing kernel almost Pontryagin spaces, cf. Definition 3.7
and Proposition 3.8. The proof of this fact is geometric and uses knowledge from the 
Pontryagin space situation.

Contrasting the nondegenerated situation, almost reproducing kernel Pontryagin 
spaces on the one hand and almost reproducing kernels on the other are not anymore in a 
one-to-one correspondence. The results mentioned above are accompanied by a detailed 
description of the relation between kernel functions on the one hand and reproducing 
kernel spaces on the other. For a comprehensively formulated summary see p. 292.

✎ The results concerning reproduction of function values are presented in Section 3 of 
this paper.

Problem II. Reproducing kernel space completions. In the investigation of various topics 
the following question appears. Given a positive semidefinite inner product space whose 
elements are functions, is its Hilbert space completion a reproducing kernel Hilbert space? 
Depending whether the answer to this question is “yes” or “no”, the objects under inves-
tigation enjoy very different properties. Interestingly, also if the Hilbert space completion 
is not a reproducing kernel space, there may exist reproducing kernel almost Pontryagin 
spaces which isometrically contain the given inner product space as a dense subspace. 
The reason for this phenomenon is that requiring continuity of point evaluations may 
force presence of degeneracy. The fact whether or not such reproducing kernel almost 
Pontryagin spaces exist again has consequences on the problem.



274 H. Woracek / Linear Algebra and its Applications 461 (2014) 271–317
A typical example of a concrete topic where existence of reproducing kernel comple-
tions plays a key role is the Hamburger moment problem. Given a positive measure, one 
can build a certain positive semidefinite inner product space. Depending whether or not 
its Hilbert space completion is a reproducing kernel space, the measure is indeterminate 
or determinate. Existence of a reproducing kernel almost Pontryagin space containing 
this inner product space isometrically is related to finiteness of index of determinacy 
(a notion which was studied in [9] and following papers). A thorough discussion of this 
topic is elaborate and beyond the scope of this paper; it will be presented in the forth-
coming manuscript [31].

The question under consideration at present is the abstract one:

Given a (not necessarily positive definite) inner product space L of functions, does there 
exist a reproducing kernel almost Pontryagin space which contains L isometrically as a 
dense subspace (we speak of a reproducing kernel space completion)?

We answer this question in Theorem 4.1. The proof of this theorem relies on the 
theory of almost Pontryagin space completions as developed in [40]. Besides the obvious 
condition of finiteness of negative index of L, there appear two other relevant conditions, 
see Theorem 4.1, (B) and (C). Though looking similar on first sight, their roles are 
clearly distinguished: (C) is responsible for well-definedness and (B) for continuity of 
point evaluations.

An important feature is that, in case of existence, the reproducing kernel space com-
pletion is unique. The dimension of its isotropic part is an intrinsic quantity associated 
with the given inner product space. In applications, its value reflects in properties of the 
concrete problem.

The main characterisation Theorem 4.1 is accompanied by Proposition 4.8 and Propo-
sition 4.9 where we provide an (often generic) example, and show that one may restrict 
to subspaces which possess a certain density property.

✎ The results concerning reproducing kernel space completions are presented in Sec-
tion 4 of this paper.

The present paper is a continuation of our investigation of the geometry of almost 
Pontryagin spaces undertaken in [29] and [40]. In the same time it is a preparation for 
future work. It lays the foundations for our forthcoming manuscripts [41] (where we deal 
with the operator theoretic concept of directing functionals and discuss the special case 
of de Branges space completions), and, building further upon this, [31] (where we present 
a new – and more general – approach to the index of determinacy of a measure).

Almost Pontryagin spaces can be viewed as a “mildly degenerated” version of Pon-
tryagin spaces. Recently, a similar mildly degenerated version of Krein spaces (termed 
almost Krein spaces) occurred and was studied in the context of basicity properties of 
selfadjoint operators, cf. [7]. We do not attempt at present to investigate “reproduc-
ing kernel almost Krein spaces”. The reason being that reproducing kernel Krein spaces 
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were thoroughly studied (see, e.g., [19]), and it turned out that the situation is much 
more complex than in the Pontryagin space case. Also, up to the best of our knowledge, 
a systematic treatment of the geometry of almost Krein spaces is not yet available. Al-
together, at present, there seems little hope to obtain complete and satisfactory results 
about reproducing kernels in this general situation; of course, this is a potential direction 
of future research.

Besides the already mentioned Sections 3 and 4, which form the core of the paper, the 
manuscript contains a short preliminary section (Section 2) and Appendix A. In Section 2
we recall the definition of almost Pontryagin spaces and define the central notion of re-
producing kernel almost Pontryagin space of Krein space valued functions on a nonempty 
set, cf. Definition 2.4. Moreover, we recall some known facts from the nondegenerated 
(Pontryagin space) situation. In Appendix A we prove some statements concerning the 
basic theory of almost Pontryagin spaces. These are general facts which are needed in 
the present paper, but are not yet available in the literature. Some are straightforward 
generalisations of well-known results from Pontryagin space theory. More noticeable is 
the perturbation result, Proposition A.9, which is a most practical tool. This result has 
already appeared (and was extensively used) in a special situation, cf. [27, Theorem 3.3]. 
Here we provide a general version and give a geometric proof of it. This is based on 
Lemma A.10 which contains a topological property and is interesting in its own right. 
Appendix A closes with some supplements to the theory of almost Pontryagin space 
completions.

2. Continuity of point evaluations

Standard literature on indefinite inner product spaces is [11,22,2]. We use without 
further notice the notion of a Pontryagin space and basic results about Pontryagin spaces 
as found in [22, Chapter 1] (notice that in this book the roles of positive and negative 
subspaces are switched compared to what is common nowadays).

Notation from linear algebra 2.1. An inner product space is a pair 〈L, [·,·]L〉 consisting of 
a linear space L over the scalar field C and an inner product [·,·]L on L. If no confusion 
can occur, we drop explicit notation of the inner product, and speak of an inner product 
space L. Inner products are denoted by rounded or square brackets and have attached a 
subscript specifying on which space they are defined or how they are built, e.g., (·,·)K is 
an inner product on a space K.

Let L be an inner product space. A subspace N of L is called negative, if [x, x] < 0, 
x ∈ N \ {0}. The negative index of L is the (possibly infinite) number

ind− L := sup{dimN : N negative subspace of L} ∈ N0 ∪ {∞}.

Note that we do not distinguish between different cardinalities of infinity. This notice 
applies always, in particular whenever we speak of the dimension of a subspace.
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We denote by L◦ the isotropic part of L, that is the linear subspace

L◦ := L ∩ L⊥ =
{
x ∈ L : [x, y]L = 0, y ∈ L

}
.

The dimension ind0 L := dimL◦ ∈ N0 ∪ {∞} is called the degree of degeneracy of L. 
We call L nondegenerated if ind0 L = 0 and degenerated if ind0 L > 0. ♦

Let us now recall the definition of an almost Pontryagin space. The below given ax-
iomatic way of defining this type of spaces was introduced in [29] where we also started 
a systematic investigation of the properties of such spaces. The type of spaces itself of 
course appeared much earlier, one may say ever since Pontryagin spaces were studied. 
However, with a few exception, they did not receive much attention until recently. To say 
some historical words, existence of discontinuous isometric and bijective linear operators 
was observed at an early stage in the 1960’s (an accessible reference being [22, Exam-
ple 6.1]), and basicity properties of selfadjoint operators were studied in [8]. More recent 
literature is [30] were degenerated spaces appear in the study of operator pencils, [28]
were a version of Krein’s resolvent formula is proved, and [35] were selfadjoint operators 
were studied and used to investigate the Klein–Gordon equation.

Definition 2.2. We call a triple 〈A, [·,·]A, O〉 an almost Pontryagin space, if A is a linear 
space, [·,·]A is an inner product on A, and O is a topology on A, such that the following 
axioms hold.

(aPs1) The topology O is a Hilbert space topology on A (i.e., it is induced by some 
inner product which turns A into a Hilbert space).

(aPs2) The inner product [·,·]A is O-continuous (i.e., it is continuous as a map of A ×A
into C where A × A carries the product topology O × O and C the Euclidean
topology).

(aPs3) There exists an O-closed linear subspace M of A with finite codimension in A, 
such that 〈M, [·,·]A|M×M〉 is a Hilbert space.

Let 〈A, [·,·]A, O〉 and 〈B, [·,·]B, T 〉 be two almost Pontryagin spaces, then we call a map 
ψ : A → B an isomorphism if ψ is a linear bijection of A onto B, is isometric w.r.t. [·,·]A
and [·,·]A, and homeomorphic w.r.t. O and T . ♦

Unless necessary we do not notate the inner product [·,·]A and the topology O explic-
itly, and speak of an almost Pontryagin space A. When speaking of topological properties 
like convergence or Cauchy-sequences in an almost Pontryagin space, we also say w.r.t. 
the norm of A, meaning w.r.t. some norm inducing the topology of A. Of course, there 
are many such norms, but each two are equivalent. Finally, note that for each almost 
Pontryagin space A it holds that ind− A < ∞ and ind0 A < ∞.
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To have a more concrete picture of almost Pontryagin space, recall the following 
facts. Thereby, the equivalence of (i) and (ii) is shown in [29, Proposition 2.5], and the 
equivalence of (i) and (iii) is contained in [29, Propositions 3.1, 3.2].

Theorem 2.3. (See [29].) Let A be a linear space, let [·,·]A be an inner product on A, and 
let O be a Hilbert space topology on A. Then the following statements are equivalent.

(i) 〈A, [·,·]A, O〉 is an almost Pontryagin space.
(ii) We have ind0 A < ∞. The space A can be decomposed as the direct and orthogonal 

sum

A = A+[+̇]A−[+̇]A◦,

with a finite dimensional negative subspace A− and an O-closed subspace A+ such 
that 〈A+, [·,·]A|A+×A+〉 is a Hilbert space.

(iii) There exists a Pontryagin space which contains A as a closed subspace and has the 
property that [·,·]A and O coincide with the Pontryagin space inner product and 
topology restricted to A.

As a corollary we see that an inner product space is a Pontryagin space, if and only 
if it is nondegenerated and there exists a topology O which turns A into an almost 
Pontryagin space, cf. [29, Corollary 2.7]. Moreover, if 〈A, [·,·]A, O〉 is a positive definite 
almost Pontryagin space, then 〈A, [·,·]A〉 is a Hilbert space and the topology induced on 
A by [·,·]A equals O.

In this context, let us point out that a nondegenerated inner product space A may 
carry at most one topology O so that it becomes an almost Pontryagin space. In the 
presence of degeneracy this uniqueness property is lost, see, e.g., [22, Example 6.1] or [29, 
Lemma 2.8].

The objects of our study in this paper are almost Pontryagin spaces of functions where 
point evaluations are continuous. To fix notation: Let M be a nonempty set and let K
be a Krein space. For each η ∈ M , we denote

χη :
{

KM → K
f �→ f(η)

and speak of the point evaluation functional at η. Moreover, for each a ∈ K and η ∈ M

we set

χη,a :
{

KM → C

f �→ (f(η), a)K
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Definition 2.4. Let M be a nonempty set and let K be a Krein space. We call an almost 
Pontryagin space 〈A, [·,·]A, O〉 a reproducing kernel almost Pontryagin space of K-valued 
functions on M , if

(RKS1) The elements of A are K-valued functions on M , and the linear operations of 
A are given by pointwise addition and scalar multiplication.

(RKS2) For each η ∈ M the point evaluation functional χη|A : A → K is continuous 
w.r.t. the topology O on A and the Krein space topology on K.

We denote the set of all reproducing kernel almost Pontryagin spaces of K-valued func-
tions on M as RKS(K, M). ♦

At this place the usage of the term “reproducing kernel almost Pontryagin space” 
it is not justified by anything but analogy to the nondegenerated case. We will see in 
Section 3 that there is indeed a good reason to use this terminology, namely existence of 
a substitute for the reproducing kernel in the nondegenerated situation (namely, almost 
reproducing kernels).

Remark 2.5. We specified in (RKS2) that continuity is understood w.r.t. the Krein space 
topology of K. This may be replaced by the (a priori weaker) requirement that χη is 
continuous w.r.t. the weak topology of K: An almost Pontryagin space 〈A, [·,·], O〉 is a 
reproducing kernel almost Pontryagin space of K-valued functions on M if and only if it 
satisfies (RKS1) and

(RKS2′) For each a ∈ K and η ∈ M we have χη,a ∈ A′.

To see this, follow the argument in the first paragraph of the proof of [3, Theo-
rem 1.1.2]: Denote by T the norm topology and by Tw the weak topology of K. Clearly, 
O-to-Tw-continuity of χη implies that the graph of χη is, as a subset of A × K closed 
w.r.t. O×Tw. Since Tw is coarser than the norm topology, it follows that it is also closed 
w.r.t. O×T . Now the Closed Graph Theorem implies that χη is O-to-T -continuous. ♦

Remark 2.6. The topology of a reproducing kernel almost Pontryagin space is uniquely 
determined by its inner product. This is an immediate consequence of [29, Proposi-
tion 2.9] applied with the point separating family {χη,a : a ∈ K, η ∈ M}.

Hence, the property of being a reproducing kernel almost Pontryagin space is a prop-
erty of the inner product space alone. We thus may say without ambiguity that an inner 
product space is (or is not) a reproducing kernel almost Pontryagin space. ♦
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The Pontryagin space case

Let us very briefly revisit the well-known nondegenerated case, and recall some notions 
and facts needed in the sequel.

First, the notion of a hermitian kernel.

Definition 2.7. Let M be a nonempty set and let K be a Krein space. A function K :
M ×M → KK is called a K-valued hermitian kernel on M , if

K(η, ζ) ∈ B(K), K(η, ζ)∗ = K(ζ, η), η, ζ ∈ M.

Here B(K) denotes the set of all continuous linear operators on K, and ∗ denotes the Krein 
space adjoint. We denote the set of all K-valued hermitian kernels on M by K(K, M).

If K is a K-valued hermitian kernel on M , we denote by ind− K ∈ N0 ∪ {∞} the 
supremum of the numbers of negative squares of quadratic forms

Q(ξ1, . . . , ξm) :=
m∑

i,j=1

(
K(ηi, ηj)ai, aj

)
Kξiξj , m ∈ N0, ai ∈ K, ηi ∈ M,

and refer to ind− K as the negative index of K. ♦

The fact that the topological dual space of a Pontryagin space is exhausted by the 
functionals [·, y]A, y ∈ A, leads to the following result, cf. [3, Theorem 1.1.2].

Theorem 2.8. (See, e.g., [3].) Let M be a nonempty set, let K be a Krein space, and let A
be a reproducing kernel Pontryagin space of K-valued functions on M . Then there exists 
a unique function K : M ×M → KK, such that

K(η, ·)a ∈ A, a ∈ K, η ∈ M,(
f(η), a

)
K =

[
f,K(η, ·)a

]
A, f ∈ A, a ∈ K, η ∈ M. (2.1)

This function is a K-valued hermitian kernel on M , and ind− K = ind− A.

The unique function K whose existence is ensured by the above theorem is called the 
reproducing kernel of A.

Also a converse result holds, cf. [3, Theorem 1.1.3]. The proof is established by taking 
the Pontryagin space completion of a certain inner product space generated from the 
given kernel.

Theorem 2.9. (See, e.g., [3].) Let M be a nonempty set, let K be a Krein space, and let 
K be a K-valued hermitian kernel on M with ind− K < ∞. Then there exists a unique 
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reproducing kernel Pontryagin space A of K-valued functions on M , such that K is the 
reproducing kernel of A.

Another way of dealing with of reproducing kernel Pontryagin (or Krein-) spaces is 
via Kolmogoroff decompositions. See, e.g., the decomposition of K in [3, Theorem 1.1.2], 
or [14] for the Krein space case. In degenerated spaces, this approach seems problematic; 
at least there are serious obstacles originating in the fact that adjoint operators cannot 
be well-defined as soon as degeneracy is present.

3. Reproduction of function values

As we already explained in the introduction, the traditional formula (2.1) cannot hold 
if A is degenerated. Hence, we need to define in which sense we wish to understand repro-
duction of function values in a reproducing kernel almost Pontryagin space. Of course, 
the formula to be invented should reduce to the classical one if the space is nondegen-
erated. Experience gives the hint to use particular finite rank perturbations. Compare, 
e.g., with the method used in [27, Theorem 3.3] or, specifically, with the treatment of 
the scalar-valued case in [29, Proposition 5.3].

Definition 3.1. Let M be a nonempty set, let K be a Krein space, and let A be a 
reproducing kernel almost Pontryagin space of K-valued functions on M . We call a 
function K : M×M → KK an almost reproducing kernel of A, if it satisfies the following 
axioms.

(aRK1) K is a K-valued hermitian kernel on M .
(aRK2) For each a ∈ K and η ∈ M the function K(η, ·)a belongs to A.
(aRK3) There exists data δ = ((ai)ni=1; (ηi)ni=1; (γi)ni=1) ∈ Kn × Mn × Rn where n :=

ind0 A, such that

(
f(η), a

)
K =

[
f,K(η, ·)a

]
A +

n∑
i=1

γi · χηi,ai
(f)χηi,ai

(
K(η, ·)a

)
,

f ∈ A, a ∈ K, η ∈ M. ♦ (3.1)

Note that (aRK3) is only meaningful in presence of (aRK2). Hence, whenever we refer 
to (aRK3) or to (3.1), we tacitly assume that (aRK2) holds.

The requirement that n = ind0 A in (aRK3) is made to ensure that the perturbation 
is not unnecessarily large. A formula of the form (3.1) may hold also for larger values 
of n (with all γi being nonzero), however, one must allow at least ind0 A summands 
additional to [f, K(η, ·)a]A so that (3.1) can possibly hold, cf. Lemma 3.4(i).

➪ In the following we investigate in detail the relation between reproducing kernel 
almost Pontryagin spaces on the one hand and almost reproducing kernels on the 
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other. In abstract terms, we consider a relation Ξ between the set of “hermitian 
kernels plus data δ” on the one hand and the set of “reproducing kernel almost 
Pontryagin spaces” on the other. At the end of this section (see p. 292) we return 
to this – abstract, but comprehensive and clean – viewpoint, and indicate what 
the proven statements mean in terms of Ξ. We recommend the reader to visit this 
summary already during the presentation.
Denote by Ξ the relation between the sets K(K, M) ×

⋃
n∈N0

(Kn ×Mn × Rn) and 
RKS(K, M) defined as

Ξ :=
{(

(K; δ);A
)

: K is almost reproducing kernel of A with data δ in (3.1)
}
.

Our first result about almost reproducing kernels is that each reproducing kernel almost 
Pontryagin space possesses many almost reproducing kernels. The scalar-valued case 
was studied previously in [29, Proposition 5.3], where we showed existence of one almost 
reproducing kernel. There the essence of the proof was to reduce to the Hilbert space 
case by a cleverly chosen perturbation of the inner product. The proof of the below 
theorem further exploits this idea. Additional arguments are necessary, since we allow 
Krein space valued functions as elements of the space and include some refinements to 
control the variety of choices of almost reproducing kernels.

Theorem 3.2. Let M be a nonempty set, let K be a Krein space, and let A be a reproducing 
kernel almost Pontryagin space of K-valued functions on M . Moreover, let n ∈ N0, 
(ai)ni=1 ∈ Kn and (ηi)ni=1 ∈ Mn, and assume that

A◦ ∩
n⋂

i=1
kerχηi,ai

= {0}. (3.2)

Then there exists a closed and nowhere dense subset Ω of Rn with the following property: 
For each tuple (γi)ni=1 ∈ Rn \Ω there exists a K-valued hermitian kernel on M such that 
the formula (3.1) holds with the data δ = ((ai)ni=1; (ηi)ni=1; (γi)ni=1).

For the value n := ind0 A a choice of (ai)ni=1 and (ηi)ni=1 can be made such that (3.2)
holds. For each such choice, we obtain a family of almost reproducing kernels of A.

Proof. If n = 0 we necessarily have A◦ = {0}, and may refer to Theorem 2.8. Note here 
that for n = 0 the index set in both, the sum in (3.1) and the intersection in (3.2) are
empty. Hence, assume throughout the proof that n > 0.

Step 1. Appropriate choice of inner product: Choose a Hilbert space inner product (·,·)A
which induces the topology of A, and let G be the Gram operator of [·,·]A w.r.t. (·,·)A. 
Since 0 is an isolated point of the spectrum of G (or belongs to its resolvent set), we may 
choose δ ∈ (0, 1] with σ(G) ∩ (−δ, 0) = σ(G) ∩ (0, δ) = ∅.
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We pass to an equivalent Hilbert space inner product which is more suitable for our 
needs. To this end, set (E denotes the spectral measure of G)

P+ := E
(
[δ,∞)

)
, P0 := E

(
{0}

)
, P− := E

(
(−∞,−δ]

)
.

Due to our choice of δ, we have P+ +P0 +P− = I. Consider the bounded and selfadjoint 
operator

Q := GP+ + P0 −GP−.

It holds that (remember that δ ≤ 1)

(Qx, x)A = (GP+x, P+x)A + (P0x, P0x)A − (GP−x, P−x)A

≥ δ(P+x, P+x)A + δ(P0x, P0x)A + δ(P−x, P−x)A = δ(x, x)A, x ∈ A,

i.e., Q is strictly positive. Hence, the inner product

(x, y) := (Qx, y)A, x, y ∈ A,

is equivalent to (·,·)A.
The Gram operator H of [·,·]A w.r.t. (·,·) is given as

H = Q−1G = Q−1(GP+ + GP−)

= Q−1(Q + (2GP− − P0)
)

= I + Q−1(2GP− − P0)︸ ︷︷ ︸
=:R

.

Observe that dim(ranR) < ∞.

Step 2. Admissible values of γ: Assume that (ai)ni=1 ∈ Kn and (ηi)ni=1 ∈ Mn are given 
and satisfy (3.2).

Let L : M ×M → B(K) be the reproducing kernel of the reproducing kernel Hilbert 
space 〈A, (·,·)〉, cf. Theorem 2.8. For γ = (γi)ni=1 ∈ Cn we denote by Aγ the finite rank 
operator defined as

Aγx :=
n∑

i=1
γi · χηi,ai

(x)L(ηi, ·)ai =
n∑

i=1
γi ·

(
x, L(ηi, ·)ai

)
· L(ηi, ·)ai, x ∈ A,

and set

Bγ := H + Aγ = I + (R + Aγ), γ = (γi)ni=1 ∈ Cn.
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The operator H is (·,·)-selfadjoint. Moreover, we have (here ∗ denotes the (·,·)-adjoint)

Aγ = (Aγ)∗, Bγ = (Bγ)∗ where γ = (γi)ni=1. (3.3)

We are aiming to show existence of values γ ∈ Rn for which Bγ is boundedly invertible.
Set B := kerR ∩

⋂n
i=1 kerχηi,ai

, and consider the orthogonal decomposition

A = B (+̇)B(⊥)

of A. For x ∈ B we have Bγx = x, in particular, Bγ(B) ⊆ B, γ ∈ Cn. Using (3.3), 
it follows that also Bγ(B(⊥)) ⊆ B(⊥), γ ∈ Cn. We conclude that the operator Bγ can be 
written as the block operator matrix

Bγ =
(
I|B 0
0 Bγ |B(⊥)

)
:

B
(+̇)
B(⊥)

−→
B

(+̇)
B(⊥)

This shows that 0 ∈ ρ(Bγ) if and only if 0 ∈ ρ(Bγ |B(⊥)).
Since R is a finite rank operator, the space B(⊥) is finite dimensional. Thus 0 ∈

ρ(Bγ |B(⊥)) if and only if Bγ |B(⊥) is injective. Consider a point γ ∈ (C+)n (here C+

denotes the open upper half-plane). If x ∈ kerBγ |B(⊥) , then

(Hx, x) + (Aγx, x) = (Bγx, x) = 0.

The number (Hx, x) is real, hence it follows that Im(Aγx, x) = 0. However,

Im(Aγx, x) =
n∑

i=1
Im γi ·

∣∣χηi,ai
(x)

∣∣2,
and it follows that x ∈

⋂n
i=1 kerχηi,ai

. In particular, Aγx = 0, and hence Hx = Bγx −
Aγx = 0. This says that x ∈ A◦, and now our hypothesis (3.2) implies that x = 0. The 
analogous argument applies if γ ∈ (C−)n (where C− denotes the open lower half-plane). 
We conclude that

0 ∈ ρ(Bγ |B(⊥)), γ ∈
(
C+)n ∪

(
C−)n.

Consider the determinant

p(γ1, . . . , γn) := det(Bγ |B(⊥)), γ ∈ Cn.

Then p is a polynomial in the complex variables γ1, . . . , γn, in particular, p is analytic 
on all of Cn. Since p does not vanish identically, the zero set of p cannot contain any 
relatively open subset of Rn, see, e.g., [38]. Clearly, the set
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Ω :=
{

γ ∈ Rn : p(γ1, . . . , γn) = 0
}

is closed. Thus, Ω is nowhere dense.

Step 3. Construction of kernel functions: Let γ ∈ Rn \Ω, then 0 ∈ ρ(Bγ). We set

k(η, a) := B−1
γ

(
L(η, ·)a

)
∈ A, a ∈ K, η ∈ M,

and define K : M ×M → KK as

K(η, ζ)a := k(η, a)(ζ), a ∈ K, ζ, η ∈ M.

Obviously, it holds that K(η, ·)a = k(η, a) ∈ A, a ∈ K, η ∈ M .
We have (here norms are understood w.r.t. (·,·))

∥∥K(η, ζ)a
∥∥ ≤ ‖χζ‖ ·

∥∥k(η, a)
∥∥ ≤ ‖χζ‖ ·

∥∥B−1
γ

∥∥ ·
∥∥L(η, ·)a

∥∥︸ ︷︷ ︸
=‖χη,a‖

≤ ‖χζ‖ ·
∥∥B−1

γ
∥∥ · ‖χη‖ · ‖a‖, a ∈ K, η, ζ ∈ M.

This shows that K maps M ×M into B(K). Since B−1
γ is selfadjoint, we have

(
K(η, ζ)∗a, b

)
K =

(
a,K(η, ζ)b

)
K =

(
L(ζ, ·)a, k(η, b)

)
=

(
L(ζ, ·)a,B−1

γ L(η, ·)b
)

=
(
B−1

γ L(ζ, ·)a, L(η, ·)b
)

=
(
k(ζ, a), L(η, ·)b

)
=

(
K(ζ, η)a, b

)
K, a, b ∈ K, η, ζ ∈ M.

This shows that K(η, ζ)∗ = K(ζ, η), η, ζ ∈ M , and we see that K is a hermitian kernel.
Validity of (3.1) follows by computation using the definitions and the fact that Bγ is 

selfadjoint. Namely, for each f ∈ A and a ∈ K, η ∈ M we have

[
f,K(η, ·)a

]
A =

(
Hf,K(η, ·)a

)
=

(
f,BγK(η, ·)a︸ ︷︷ ︸

=L(η,·)a

)
−

(
Aγf,K(η, ·)a

)

=
(
f(η), a

)
K −

n∑
i=1

γi · χηi,ai
(f)

(
L(ηi, ·)ai,K(η, ·)a

)
K︸ ︷︷ ︸

=χηi,ai
(K(η,·)a)

.

Consider now the case that n = ind0 A. Then, since the family {χη,a : a ∈ K, η ∈ M} is 
point separating, we can inductively construct elements a1, . . . , an ∈ K and η1, . . . , ηn ∈
M which satisfy (3.2). Namely: As a first step choose f ∈ A◦ \ {0} and η1 ∈ M, a1 ∈ K
with χη1,a1(f) �= 0. Then dim(A ∩ kerχη1,a1) = dimA◦ − 1. For the inductive step 
assume that m < n and that η1, . . . , ηm ∈ M and a1, . . . , am ∈ K are given with 
dim(A◦ ∩

⋂m
i=1 kerχηi,ai

) = dimA◦ − m. Choose f ∈ (A◦ ∩
⋂m

i=1 kerχηi,ai
) \ {0} and 
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ηm+1 ∈ M, am+1 ∈ K with χηm+1,am+1(f) �= 0. Then dim(A◦ ∩
⋂m+1

i=1 kerχηi,ai
) =

dimA◦ − (m + 1). �
Remark 3.3. Let us comment on the variety of possible choices of δ. Firstly, as we see from 
the inductive argument in the last part of the proof, often “most” choices of (ai)ni=1 ∈ Kn, 
(ηi)ni=1 ∈ Mn will have the required property (3.2); think for instance of the case when 
the elements of A are analytic functions. Of course, this is just a vague statement.

Secondly, and more precisely, we can obtain knowledge about the exceptional set Ω. 
Namely, whenever γ : C → Cn is a polynomial curve which intersects (C+)n ∪ (C−)n, 
then γ(C) ∩ Ω is finite and (here deg γ denotes that degree of the polynomial curve γ, 
meaning the maximum degree of its component functions)

#
(
γ(C) ∩Ω

)
≤ deg γ · (ind− A + ind0 A + n).

To see this, notice that q : ξ �→ det(Bγ(ξ)|B(⊥)) is a polynomial whose degree does not 
exceed deg γ · dimB(⊥). However, we can estimate dimB(⊥) as

dimB(⊥) = codimB ≤ codim(kerR) + codim
(

n⋂
i=1

kerχηi,ai

)

= dim(ranR) + n ≤ ind− A + ind0 A + n.

Since q does not vanish identically, the number of its zeros is finite and bounded by its 
degree.

Observe that, if the polynomial γ has real coefficients, then with finitely many excep-
tions γ(R) consists of admissible values for (γi)ni=1. ♦

It is easy to see that validity of (3.1) implies (3.2). Moreover, it can be characterised 
geometrically whether or not the perturbation term in (3.1) has minimal number of 
summands (i.e., whether or not we speak of an almost reproducing kernel).

Lemma 3.4. Let A be a reproducing kernel almost Pontryagin space of K-valued functions 
on M , and let K be a K-valued hermitian kernel on M . Let n ∈ N0 and δ ∈ Kn×Mn×Rn, 
and assume that the formula (3.1) holds. Then the following statements hold.

(i) We have

A◦ ∩
n⋂

i=1
γi �=0

kerχηi,ai
= {0}, (3.4)

in particular, n ≥ ind0 A.
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(ii) Set L := span{K(η, ·)a : a ∈ K, η ∈ M}, then

A◦ ⊆ L⊥ ⊆ span
{
K(ηi, ·)ai : γi �= 0

}
.

(iii) The following conditions are equivalent.
(a) It holds that n = ind0 A.
(b) The set {K(ηi, ·)ai : i = 1, . . . , n} is a basis of A◦.
(c) We have (here δij denotes the Kronecker-Delta)

γi �= 0, i = 1, . . . , n and
(
K(ηj , ηi)aj , ai

)
K = δij

1
γi
, i, j = 1, . . . , n.

(3.5)

Proof. To show (3.4), assume that f ∈ A◦ ∩
⋂n

i=1{kerχηi,ai
: γi �= 0}. Then, by (3.1), 

it holds that (f(η), a)K = 0, a ∈ K, η ∈ M , and hence f = 0. From (3.4) we obtain

dimA◦ ≤ dim
(
A/

n⋂
i=1
γi �=0

kerχηi,ai

)
≤ n.

Also item (ii) is rather straightforward from (3.1). First, notice that

χηi,ai

(
K(η, ·)a

)
=

(
K(η, ηi)a, ai

)
K =

(
a,K(ηi, η)ai

)
K.

Now (3.1) yields that, for each f ∈ L⊥,

(
f(η), a

)
K =

n∑
i=1

γi · χηi,ai
(f)

(
K(ηi, η)ai, a

)
K, a ∈ K, η ∈ M.

From this we have

f =
n∑

i=1
γi · χηi,ai

(f)K(ηi, ·)ai =
n∑

i=1
γi �=0

γi · χηi,ai
(f)K(ηi, ·)ai, f ∈ L⊥. (3.6)

We come to the proof of item (iii). Assume that (a) holds. Then, from the already proved 
item (ii), we must have

A◦ = span
{
K(ηi, ·)ai : i = 1, . . . , n, γi �= 0

}
.

This implies that the set written on the right side must contain n linearly independent el-
ements. Thus γi �= 0, i = 1, . . . , n, and {K(ηi, ·)ai : i = 1, . . . , n} is linearly independent. 
We see that (b) holds. The converse implication “(b)⇒ (a)” is of course trivial.
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Assume next that (b) holds. Then (3.6) yields the representation

K(ηj , ·)aj =
n∑

i=1
γi · χηi,ai

(
K(ηj , ·)aj

)
·K(ηi, ·)ai.

By linear independence, thus,

γi · χηi,ai

(
K(ηj , ·)aj

)
= δij , i, j = 1, . . . , n.

This implies (3.5).
Finally, assume that (3.5) holds. Substituting in (3.1) gives

[
f,K(ηj , ·)aj

]
A =

(
f(ηj), aj

)
K︸ ︷︷ ︸

=χηj,aj
(f)

−
n∑

i=1
γi · χηi,ai

(f)χηi,ai

(
K(ηj , ·)aj

)︸ ︷︷ ︸
=δij

1
γ i

= 0, f ∈ A,

i.e., K(ηj , ·)aj ∈ A◦, j = 1, . . . , n. Consider the map

Λ :
{

KM → Cn

f �→ (χηi,ai
(f))ni=1

(3.7)

Then

Λ
(
span

{
K(ηi, ·)ai : i = 1, . . . , n

})
= Cn,

and hence {K(ηi, ·)ai : i = 1, . . . , n} must be linearly independent. Since dimA◦ cannot 
exceed n by (i), we see that (b) holds. �

Next, we determine those hermitian kernels which may appear as almost reproducing 
kernels of some reproducing kernel almost Pontryagin space. It is not a surprise that 
finiteness of negative index is the decisive factor. The crucial construction for the proof 
is to mimick the formula (3.1) on an abstract level.

Definition 3.5. Let M be a nonempty set, let K be a Krein space, and let K be a K-valued 
hermitian kernel on M . Moreover, let data n ∈ N0 and δ = ((ai)ni=1; (ηi)ni=1; (γi)ni=1) ∈
Kn ×Mn × Rn be given.

We denote by F(K, M) the space of all K-valued functions on M with finite support, 
i.e.,

F(K,M) :=
{
f : M → K :

{
ζ ∈ M : f(ζ) �= 0

}
is finite

}
,

and define linear functionals
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φi :
{

F(K,M) → C,

f �→
∑

ζ∈M (K(ζ, ηi)f(ζ), ai)K,
i = 1, . . . , n.

Next, we define a sesquilinear form [·,·]K,δ : F(K, M) ×F(K, M) → C as

[f, g]K,δ :=
∑

ζ,η∈M

(
K(ζ, η)f(ζ), g(η)

)
K −

n∑
i=1

γi · φi(f)φi(g), f, g ∈ F(K,M). ♦

From the fact that K is a hermitian kernel, it is obvious that [·,·]K,δ is an inner product 
on F(K, M).

Two inner products [·,·]K,δ1 and [·,·]K,δ2 may coincide. For example, this is certainly 
the case if δk = ((aki )

nk
i=1; (ηki )nk

i=1; (γk
i )nk

i=1), k = 1, 2, and there exists a bijection

σ :
{
i ∈ {1, . . . , n1} : γ1

i �= 0
}
→

{
i ∈ {1, . . . , n2} : γ2

i �= 0
}

with

a1
i = a2

σ(i), η1
i = η2

σ(i), γ1
i = γ2

σ(i) whenever γ1
i �= 0.

A particular role is played by the inner product [·,·]K,∅ where ∅ is the unique element 
of K0 ×M0 × R0. Explicitly,

[f, g]K,∅ =
∑

ζ,η∈M

(
K(ζ, η)f(ζ), g(η)

)
K, f, g ∈ F(K,M).

Comparing with the definition of the negative index of a hermitian kernel, we see that

ind− K = ind−
〈
F(K,M), [·,·]K,∅

〉
.

Let us introduce one more notation. We denote by δη,a ∈ F(K, M) the function defined 
as

δη,a(ζ) :=
{
a, ζ = η,

0, otherwise, a ∈ K, η ∈ M.

Clearly,

δη,a+b = δη,a + δη,b, δη,αa = αδη,a, a, b ∈ K, α ∈ C, η ∈ M,

F(K,M) = span{δη,a : a ∈ K, η ∈ M}.

Necessity of finiteness of negative index in order to be an almost reproducing kernel now 
follows.
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Proposition 3.6. Let M be a nonempty set, let K be a Krein space, and let A be a 
reproducing kernel almost Pontryagin space of K-valued functions on M . Moreover, let 
K be a K-valued hermitian kernel on M , let n ∈ N0 and δ ∈ Kn×Mn×Rn, and assume 
that the formula (3.1) holds with this data. Then

ind− K ≤ ind− A + n.

Proof. Consider the linear map ι : F(K, M) → A which is defined as

ι(f) :=
∑
ζ∈M

K(ζ, ·)f(ζ), f ∈ F(K,M). (3.8)

From the definition of [·,·]K,δ and (3.1), clearly

[
K(ζ, ·)b,K(η, ·)a

]
A =

(
K(ζ, η)b, a

)
K −

n∑
i=1

γi · χηi,ai

(
K(ζ, ·)b

)
χηi,ai

(
K(η, ·)a

)
= [δζ,b, δη,a]K,δ, a, b ∈ K, η, ζ ∈ M.

This implies that ι is isometric, and it follows that

ind−
〈
F(K,M), [·,·]K,δ

〉
≤ ind− A.

On the linear subspace L :=
⋂n

i=1 kerφi of A the inner products [·,·]K,δ and [·,·]K,∅

coincide. Since codimL ≤ n, it follows that

∣∣ind− K − ind−
〈
F(K,M), [·,·]K,δ

〉∣∣ ≤ n.

Together, we obtain ind− K ≤ ind− A + n. �
For sufficiency, we again mimick the formula (3.1); this time on a concrete level.

Definition 3.7. Let M be a nonempty set, let K be a Krein space, and let K be a 
K-valued hermitian kernel on M with ind− K < ∞. Moreover, let data n ∈ N0 and 
δ ∈ Kn ×Mn × Rn be given.

Denote by 〈AK , �·,·�K〉 the unique reproducing kernel Pontryagin space with repro-
ducing kernel K, cf. Theorem 2.9, and define a sesquilinear form �·,·�K,δ : AK ×AK → C

as

�f, g�K,δ := �f, g�K −
n∑

i=1
γi · χηi,ai

(f)χηi,ai
(g), f, g ∈ AK . (3.9)

Obviously, �·,·�K,δ is an inner product on AK . We denote the inner product space 
〈AK , �·,·�K,δ〉 as AK,δ.
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Proposition 3.8. Let M be a nonempty set, let K be a Krein space, and let K be a 
K-valued hermitian kernel on M with ind− K < ∞. Moreover, let data n ∈ N0 and 
δ ∈ Kn ×Mn × Rn be given. Then the following statements hold.

(i) The inner product space AK,δ is a reproducing kernel almost Pontryagin space. Its 
almost Pontryagin space topology coincides with the Pontryagin space topology of 
AK,∅ = 〈AK , �·,·�〉K .

(ii) The formula (3.1) holds in AK,δ with K and δ. In particular, we have ind0 AK,δ ≤ n.
(iii) We have ind0 AK,δ = n if and only if

γi �= 0, i = 1, . . . , n and
(
K(ηj , ηi)aj , ai

)
K = δij

1
γi
, i, j = 1, . . . , n.

Proof. Consider the space AK endowed with the inner product �·,·�K,δ and with the 
Pontryagin space topology O of AK,∅. The inner product �f, g�K,δ is a finite rank per-
turbation of �f, g�K,∅ in the sense of Lemma A.8. This yields that 〈AK , �·,·�K,δ, O〉 is an 
almost Pontryagin space. Since the space has not changed topologically, point evaluations 
are continuous.

Validity of (3.1) is built in the definition. Namely, by the reproducing kernel property 
of K in AK , we have from (3.9)

(
f(η), a

)
K =

�
f,K(η, ·)a

�
K

=
�
f,K(η, ·)a

�
K,δ +

n∑
i=1

γi · χηi,ai
(f)χηi,ai

(
K(η, ·)a

)
, f ∈ AK .

The statement in (iii) is immediate from Lemma 3.4(iii). �
After having settled existence questions (of kernels for a given space and of spaces for 

a given kernel), we turn to uniqueness. First, we show uniqueness of kernels for given 
space and data δ.

Proposition 3.9. Let M be a nonempty set, let K be a Krein space, and let A be a 
reproducing kernel almost Pontryagin space of K-valued functions on M . Moreover, set 
n := ind0 A, and let δ ∈ Kn ×Mn × Rn.

Then there exists at most one almost reproducing kernel K of A such that (3.1) holds 
for K with δ.

Proof. Let K1 and K2 be almost reproducing kernels of A such that (3.1) holds for 
K1 and K2 with δ = ((ai)ni=1; (ηi)ni=1; (γi)ni=1). Consider the map Λ defined in (3.7). 
Lemma 3.4(i) shows that Λ|A◦ is injective. By Lemma 3.4(iii), we have Kl(ηi, ·)ai ∈ A◦, 
i = 1, . . . , n, l = 1, 2, and Λ(K1(ηi, ·)ai) = Λ(K2(ηi, ·)ai), i = 1, . . . , n. It follows that

K1(ηi, ·)ai = K2(ηi, ·)ai, i = 1, . . . , n.
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From this we have

χηi,ai

(
K1(η, ·)a

)
=

(
K1(η, ηi)a, ai

)
K =

(
a,K1(ηi, η)ai

)
K =

(
a,K2(ηi, η)ai

)
K

=
(
K2(η, ηi)a, ai

)
K = χηi,ai

(
K2(η, ·)a

)
, i = 1, . . . , n, a ∈ K, η ∈ M.

Now (3.1) yields

[
f,K1(η, ·)a

]
A =

(
f(η), a

)
K −

n∑
i=1

γi · χηi,ai
(f)χηi,ai

(
K1(η, ·)a

)
=

[
f,K2(η, ·)a

]
A, f ∈ A, a ∈ K, η ∈ M.

It follows that K1(η, ·)a −K2(η, ·)a ∈ A◦, a ∈ K, η ∈ M . Injectivity of Λ|A◦ implies that 
K1(η, ·)a = K2(η, ·)a. �

Second, we show uniqueness of the space for given kernel and data δ. In the proof, 
we utilise the theory of almost Pontryagin space completions as developed in [40]; for 
the relevant statements see Appendix A (p. 312ff).

Proposition 3.10. Let M be a nonempty set, let K be a Krein space, and let K be 
a K-valued hermitian kernel on M with ind− K < ∞. Moreover, let n ∈ N0 and 
δ ∈ Kn ×Mn × Rn.

Then there exists at most one reproducing kernel almost Pontryagin space A such that 
K is an almost reproducing kernel of A with the data δ in (3.1).

Proof. Let A be a reproducing kernel almost Pontryagin space, assume that (3.1) holds 
with K and δ and that n = dimA◦. Consider the subspace L := span{K(η, ·)a :
a ∈ K, η ∈ M}. Then, by Lemma 3.4(ii), (iii), we have

L⊥ = A◦ ⊆ L.

Using Lemma A.6(iii), it follows that L is dense in A.
Consider the map ι : F(K, M) → A defined in (3.8). Then, as substituting in the 

definitions shows, ι is an isometry of 〈F(K, M), [·,·]K,δ〉 onto L. Hence, we may consider 
〈ι, A〉 as an almost Pontryagin space completion of 〈F(K, M), [·,·]K,δ〉.

Since {χηi,ai
: i = 1, . . . , n} is point separating on A◦, Proposition A.3(ii), yields

A′ =
{
[·, y]A : y ∈ A

}
+ span{χηi,ai

: i = 1, . . . , n}.

Remembering Lemma A.13, thus

ι∗
(
A′) =

〈
F(K,M), [·,·]K,δ

〉′ + span{ωi : i = 1, . . . , n}, (3.10)
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where ωi : F(K, M) → C are the functionals acting as

ωi(f) :=
∑
ζ∈M

(
K(ζ, ηi)f(ζ), ai

)
K, f ∈ F(K,M), i = 1, . . . , n.

The central observation is that the right side of (3.10) of course depends on K and δ, 
but does not depend on A.

Assume now that A1 and A2 are two reproducing kernel almost Pontryagin spaces 
which have K as an almost reproducing kernel with the data n and δ in (3.1).

By what we proved above, ι∗(A′
1) = ι∗(A′

2). Theorem A.15 provides us with a linear 
and isometric homeomorphism ϕ : A1 → A2 such that ϕ ◦ ι = ι. It follows that ϕ(f) = f , 
f ∈ L, i.e., for each η ∈ M the restrictions of the continuous maps χη ◦ ϕ and χη to the 
subspace L of A1 coincide. Since L is dense, these maps coincide on all of A1. From this, 
we have

ϕ(f) = f, f ∈ A1,

and hence that A1 and A2 are equal. �
➪ The relation Ξ (defined on p. 280) is the graph of a function which maps

domΞ =
{

(K; δ) ∈ K(K,M) ×
⋃

n∈N0

(
Kn ×Mn × Rn

)
:

ind− K < ∞, γi �= 0,
(
K(ηj , ηi)aj , ai

)
K = δij

1
γi

}

surjectively onto RKS(K, M). Here well-definedness is Proposition 3.10, the descrip-
tion of the domain is Proposition 3.8 for “⊇” together with Lemma 3.4(iii), and 
Proposition 3.6 for “⊆”, and surjectivity is Theorem 3.2.
Let A ∈ RKS(K, M) be fixed. In order to describe the inverse image Ξ−1({A}), 
we set n := ind0 A and denote by π0, π1, and π2 the projections

π0 : K(K,M) ×
(
Kn ×Mn × Rn

)
→ K(K,M),

π1 : K(K,M) ×
(
Kn ×Mn × Rn

)
→ Kn ×Mn,

π2 : K(K,M) ×
(
Kn ×Mn × Rn

)
→ Rn.

Then it holds that

Ξ−1({A}
)
∩ π−1

1
({(

(ai)ni=1; (ηi)ni=1
)})

�= ∅ ⇐⇒ A◦ ∩
n⋂

i=1
kerχηi,ai

= {0}

If the set on the left side is nonempty, then

Rn \ π2
(
Ξ−1({A}

)
∩ π−1

1
({(

(ai)ni=1; (ηi)ni=1
)}))
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is contained in a closed and nowhere dense subset of Rn. For each ((ai)ni=1; (ηi)ni=1;
(γi)ni=1) we have

#
(
Ξ−1({A}

)
∩ (π1 × π2)−1({((ai)ni=1; (ηi)ni=1; (γi)ni=1

)}))
≤ 1.

Here the implication “⇐” and the second statement is Theorem 3.2, the implication 
“⇒” is Lemma 3.4(i), and the last statement is Proposition 3.9.

In order to apply Proposition 3.8 to construct reproducing kernel almost Pontryagin 
spaces with a prescribed kernel, one has to find δ such that (3.5) is satisfied. As a rule of 
thumb, this is not difficult. To illustrate this vague statement, let us consider an example.

Example 3.11. Let a > 0. The Paley–Wiener space PW a is the space of all entire func-
tions of exponential type at most a which are square integrable along the real axis. By 
a theorem of Paley and Wiener (see, e.g., [25, Chapter III.D]), PW a is nothing but the 
set of Fourier transforms of square integrable functions supported on the interval [−a, a]. 
If endowed with the L2(R)-inner product, i.e., with

(f, g) :=
∫
R

f(t)g(t) dt, f, g ∈ PW a,

PW a becomes a reproducing kernel Hilbert space (of complex valued functions on C). Its 
reproducing kernel Ka(η, ζ) is given as (for ζ = η this expression has to be interpreted 
as a derivative which is possible by analyticity)

Ka(η, ζ) = sin[a(ζ − η)]
π(ζ − η) , ζ, η ∈ C.

This is a classical result; a proof from the reproducing kernel space perspective is given, 
e.g., in [12, Theorem 16].

Let us now start from the kernel function Ka, and attempt to apply Proposition 3.8. 
It is easy to find suitable points ηi. In fact, for arbitrary n ∈ N, we simply choose pairwise 
different points η1, . . . , ηn contained in an arithmetic sequence α + 2π

a Z where α ∈ R. 
Then

Ka(ηi, ηj) = 1
π
δij , i, j = 1, . . . , n.

We see that for each n ∈ N there exists a reproducing kernel almost Pontryagin space 
A(n) with ind0 A(n) = n, such that Ka is an almost reproducing kernel of A(n).

Let us note that the same argument can be carried out for any (infinite dimensional) 
de Branges space in the sense of [29, Definition 6.4]. ♦
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4. Reproducing kernel space completions

In this section we investigate the second problem posed in the introduction. The 
question “Given an inner product space L whose elements are functions, does there 
exist a reproducing kernel almost Pontryagin space which contains L isometrically and 
densely?” can be answered as follows.

Theorem 4.1. Let M be a nonempty set, let K be a Krein space, and let L be an inner 
product space of K-valued functions on M (with linear operations acting as pointwise 
addition and scalar multiplication).

There exists a reproducing kernel almost Pontryagin space which contains L isomet-
rically, if and only if L satisfies the following conditions (A), (B), (C).

(A) ind− L < ∞.
(B) There exist N ∈ N, (ai)Ni=1 ∈ KN , and (ηi)Ni=1 ∈ MN , such that the following 

implication holds. If (fn)n∈N is a sequence of elements of L with

lim
n→∞

[fn, fn]L = 0, lim
n→∞

[fn, g]L = 0, g ∈ L,

lim
n→∞

χηi,ai
(fn) = 0, i = 1, . . . , N,

then limn→∞ χη,a(fn) = 0, a ∈ K, η ∈ M .
(C) If (fn)n∈N is a sequence of elements of L with

lim
n,m→∞

[fn − fm, fn − fm]L = 0, lim
n→∞

[fn − fm, g]L = 0, g ∈ L,

lim
n→∞

χη,a(fn) = 0, a ∈ K, η ∈ M, (4.1)

then limn→∞[fn, g]L = 0, g ∈ L.

If (A), (B) and (C) hold, then there exists a unique reproducing kernel almost Pontryagin 
space which contains L isometrically as a dense linear subspace.

This result is an indefinite version of [6, I.4, Theorem].
Before we come to the proof, let us comment on the conditions (A), (B), (C). The role 

of the condition (A) is of course clear; without having finite negative index there is no 
chance for L to be contained in any almost Pontryagin space. Conditions (B) and (C) are 
less obvious. Informally speaking, (B) is responsible for continuity and (C) is responsible 
for well-definedness of point evaluation maps. This picture will become mathematically 
precise in the course of the proof.

The proof of Theorem 4.1 proceeds in three steps. First, we show sufficiency of (A), 
(B), (C), second we show the uniqueness statement, and finally necessity is established. 
The essential tool for the proof is the theory of almost Pontryagin space completions.
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Proof of Theorem 4.1 (Sufficiency). Assume that L satisfies (A), (B), and (C). Since L
has finite negative index, we can choose an almost Pontryagin space completion (ι, B) of 
L with

ι∗
(
B′) = L′ + span{χηi,ai

|L : i = 1, . . . , N}.

Moreover, we denote by χ̃ηi,ai
the unique functional in B′ with ι∗(χ̃ηi,ai

) = χηi,ai
|L.

For each element f ∈ ker ι we have

[f, f ]L = [ιf, ιf ]B = 0, [f, g]L = [ιf, ιg]B = 0, g ∈ L,
χηi,ai

(f) = χ̃ηi,ai
(f) = 0, i = 1, . . . , N.

Our assumption (B) applied with the constant sequence (f)n∈N yields that χη,a(f) = 0, 
a ∈ K, η ∈ M . This just means that f = 0, and we conclude that ι is injective.

Set λη,a := χη,a ◦ ι−1 : ran ι → C, a ∈ K, η ∈ M . We are going to show that λη,a is 
bounded w.r.t. the norm of B. Let (xn)n∈N be a sequence in ran ι with limn→∞ xn = 0
in the norm of B. Set fn := ι−1xn, then

lim
n→∞

[fn, fn]L = lim
n→∞

[xn, xn]B = 0,

lim
n→∞

[fn, g]L = lim
n→∞

[xn, ιg]B = 0, g ∈ L,

lim
n→∞

χηi,ai
(fn) = lim

n→∞
χ̃ηi,ai

(xn) = 0, i = 1, . . . , N.

It follows from (B) that

lim
n→∞

λη,a(xn) = lim
n→∞

χη,a(fn) = 0, a ∈ K, η ∈ M.

This shows that indeed λη,a is bounded w.r.t. the norm of B. Let χ̃η,a ∈ B′ be the unique 
extension of λη,a to a continuous functional on B. Notice that this terminology is not 
in conflict with what we had above: When χ̃ηi,ai

denotes the functional introduced in 
the first paragraph of this proof, then ληi,ai

= χ̃ηi,ai
|ran ι. Hence, this functional is the 

unique extension of ληi,ai
.

Clearly, we have ι∗(χ̃η,a) = χη,a|L, a ∈ K, η ∈ M , and thus

ι∗
(
B′) = L′ + span{χη,a|L : a ∈ K, η ∈ M}. (4.2)

Keep η ∈ M fixed. For x ∈ B consider the linear functional ψx on K defined as

ψx(a) := χ̃η,a(x), a ∈ K.

We show that ψx is continuous. Since χ̃η,a ∈ B′, the map x �→ ψx is continuous w.r.t. 
the topology of B in its domain and the topology of pointwise convergence in its range. 
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Since ran ι is dense in B, thus, each functional ψx is the pointwise limit of a sequence of 
functionals of the form ψιf , f ∈ L. However, for each f ∈ L we have

ψιf (a) = χ̃η,a(ιf) = χη,a(ιf) =
(
a, f(η)

)
K, a ∈ K,

and hence ψιf ∈ K′. It follows, using the Principle of Uniform Boundedness, that ψx ∈ K′, 
x ∈ B.

Since every continuous linear functional on a Krein space can be represented as an 
inner product, a map ψ : B → KM is well-defined by requiring

(
(ψx)(η), a

)
K = χ̃η,a(x), x ∈ B, a ∈ K, η ∈ M. (4.3)

Let us show that kerψ ⊆ B◦. Assume that x ∈ B with ψx = 0, then χ̃η,a(x) = 0, a ∈ K, 
η ∈ M . Choose a sequence (fn)n∈N of elements fn ∈ L with limn→∞ ιfn = x. Then, 
in particular, (ιfn)n∈N is a Cauchy sequence in the norm of B, and it follows that

lim
n,m→∞

[fn − fm, fn − fm]L = lim
n,m→∞

[ιfn − ιfm, ιfn − ιfm]B = 0,

lim
n→∞

[fn − fm, g]L = lim
n→∞

[ιfn − ιfm, ιg]B = 0, g ∈ L.

Moreover, since χ̃η,a ∈ B′,

lim
n→∞

χη,a(fn) = lim
n→∞

χ̃η,a(ιfn) = χ̃η,a(x) = 0, a ∈ K, η ∈ M.

Our hypothesis (C) implies that

[x, ιg]B = lim
n→∞

[ιfn, ιg]B = lim
n→∞

[fn, g]L = 0, g ∈ L.

Since ran ι is dense in B, it follows that x ∈ B◦.
Set A := ranψ. We use Proposition A.7 to make A into an almost Pontryagin space. 

Then the map ψ becomes continuous, open, and isometric. Using the defining prop-
erty (4.3) of ψ, we obtain that for each f ∈ L

(
f(η), a

)
K = χη,a(f) = χ̃η,a(ιf) =

((
ψ(ιf)

)
(η), a

)
K, a ∈ K, η ∈ M.

This just says that (ψ ◦ ι)(f) = f , f ∈ L. We see that L is contained in A. Since ψ and 
ι are both isometric, the set-theoretic inclusion map of L into A (being equal to ψ ◦ ι) is 
also isometric.
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It remains to show that A is a reproducing kernel almost Pontryagin space. However, 
again referring to (4.3), we have for each a ∈ K and η ∈ M

B
χ̃η,a

ψ

C

A
χη,a|A

Since χ̃η,a is continuous and A carries the final topology w.r.t. ψ, it follows that χη,a|A
is continuous. �

Next, observe that (A), (B), (C) ensure existence of a reproducing kernel almost Pon-
tryagin space which contains L isometrically and densely. In fact, the space constructed 
in the above part of the proof has this property. This follows since ψ is surjective and 
open and ι(L) is dense in B. Moreover, generally, if we have any reproducing kernel 
almost Pontryagin space which contains L isometrically, the closure of L in this space 
is again a reproducing kernel almost Pontryagin space and contains L isometrically and 
densely.

We continue with a general observation.

Remark 4.2. Let A be a reproducing kernel almost Pontryagin space which contains 
L isometrically as a dense subspace. Then the pair 〈⊆, A〉, where “⊆” denotes the set-
theoretic inclusion map of L into A, is an almost Pontryagin space completion of L. The 
family F := {χη,a|A : a ∈ K, η ∈ M} ⊆ A′ is point separating, and hence in particular 
point separating on A◦. By Proposition A.3(ii), it follows that

A′ =
{
[·, y]A : y ∈ A

}
+ span{χη,a|A : a ∈ K, η ∈ M}. (4.4)

Clearly, we have ⊆∗(χη,a|A) = χη,a|L. Remembering Lemma A.13, we obtain

⊆∗(A′) = L′ + span{χη,a|L : a ∈ K, η ∈ M}. ♦ (4.5)

Proof of Theorem 4.1 (Uniqueness statement). Let A1 and A2 be two reproducing kernel 
almost Pontryagin spaces which contain L isometrically and densely. As a consequence 
of (4.5), the completions 〈⊆, A1〉 and 〈⊆, A2〉 are isomorphic, cf. Theorem A.15. Let ω
be a linear and isometric homeomorphism ω : A1 → A2 with

L
⊆ ⊆

A1 ω
A2
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Then ω(f) = f , f ∈ L, and hence

[χη,a|A2 ◦ ω]|L = [χη,a|A1 ]|L, a ∈ K, η ∈ M.

Since point evaluations are continuous in both spaces A1 and A2, it follows that 
χη,a|A2 ◦ ω = χη,a|A1 . Hence, ω(f) = f for all f ∈ A1. This just says that A1 and 
A2 are equal (since ω is isometric and homeomorphic, they are equal as almost Pontrya-
gin spaces). �
Proof of Theorem 4.1 (Necessity). Assume that we are given a reproducing kernel almost 
Pontryagin space A which contains L isometrically and, w.l.o.g., densely. Then, clearly, 
ind− L ≤ ind− A < ∞. From (4.5) we conclude that

dim
([
L′ + span{χη,a|L : a ∈ K, η ∈ M}

]
/L′) = ind0 A < ∞. (4.6)

Set N := ind0 A, and choose (ai)Ni=1 ∈ KN and (ηi)Ni=1 ∈ MN , such that

L′ + span{χη,a|L : a ∈ K, η ∈ M} = L′ + span{χηi,ai
|L : i = 1, . . . , N}. (4.7)

Let us show that the implication in (B) holds with this choice of N , (ai)Ni=1 ∈ KN , and 
(ηi)Ni=1 ∈ MN . Let (fn)n∈N be a sequence having the properties stated in the hypothesis 
of (B). By (4.4) and (4.7), the family {χηi,ai

|L : i = 1, . . . , N} acts point separating 
on A◦, cf. Remark A.4. Hence, we may apply Proposition A.5(i), with the subset L and 
the family {χηi,ai

: i = 1, . . . , n}, and conclude that limn→∞ fn = 0 in the norm of A. 
Continuity of χη,a|A now gives limn→∞ χη,a(fn) = 0, a ∈ K, η ∈ M .

We show that the implication in (C) holds. Let (fn)n∈N be a sequence of elements 
of L with the properties stated in the hypothesis of (C). Then, by Proposition A.5(ii), 
applied with the subset L and the family {χη,a : a ∈ K, η ∈ M}, the sequence (fn)n∈N

is a Cauchy-sequence in the norm of A. By completeness there exists x ∈ A with 
limn→∞ fn = x in the norm of A. Since

χη,a(x) = lim
n→∞

χη,a(fn) = 0,

we have x = 0. In particular, limn→∞[fn, g]A = 0, g ∈ A, and hence (again, in particular) 
the conclusion in (C) holds. �

The conditions (B) and (C) of Theorem 4.1 can be reformulated in a more geometric 
way.

Proposition 4.3. Let M be a nonempty set, let K be a Krein space, and let L be an inner 
product space of K-valued functions on M with ind− L < ∞. Consider the conditions 
(here T (L′) denotes the topology on L′ introduced in Definition A.16)
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(B′) dim([L′ + span{χη,a|L : a ∈ K, η ∈ M}]/L′) < ∞;
(C′) L′ ∩ span{χη,a|L : a ∈ K, η ∈ M} is T (L′)-dense in L′.

Then the following implications/equivalences hold:

(B) ⇔
(
B′) (

C′) ⇒ (C)
(
B′) ∧ (C) ⇒

(
C′)

Corollary 4.4. In Theorem 4.1 we may, separately or simultaneously, substitute (B) by
(B′) and (C) by (C′). �
Proof of Proposition 4.3. (B)⇒ (B′): This has already been shown in the proof of suffi-
ciency in Theorem 4.1. Namely, since the argument up to (4.2) does not use (C).

(B′)⇒ (B): This has in essence been shown in the proof of necessity in Theorem 4.1. 
Namely, choose an almost Pontryagin space completion 〈ι, A〉 with

ι∗
(
A′) = L′ + span{χη,a|L : a ∈ K, η ∈ M}, (4.8)

and proceed as after (4.6). Note here that (4.4) holds by the choice of 〈ι, A〉, when χη,a|A
is substituted by (ι∗|A′)−1(χη,a|L).

(C′)⇒ (C): Choose a Pontryagin space completion 〈ι, A〉 of L, and set

M := L′ ∩ span{χη,a|L : a ∈ K, η ∈ M}, N :=
(
ι∗|A′

)−1(M).

Since ι∗|A′ is a homeomorphism of A′ with its norm topology onto L′ with T (L′), the 
space N is dense in A′. Let (fn)n∈N be a sequence in L subject to (4.1). Then (ιfn)n∈N

is a Cauchy-sequence in the norm of A, cf. [22, Theorem 2.4]. Set x := limn→∞(ιfn), 
then [(

ι∗|A′
)−1

φ
]
(x) = lim

n→∞

[(
ι∗|A′

)−1
φ
]
(ιfn) = lim

n→∞
φ(fn) = 0, φ ∈ M.

Since N is dense, this implies that x = 0. In turn, we have limn→∞[fn, g]L =
limn→∞[ιfn, ιg]A = 0, g ∈ L.

(B′)∧ (C)⇒ (C′): Again choose an almost Pontryagin space completion 〈ι, A〉 of L
with (4.8), and set χ̃η,a := (ι∗|A′)−1(χη,a|L), a ∈ K, η ∈ M . We claim that the annihilator 
of span{χ̃η,a : a ∈ K, η ∈ M} w.r.t. the canonical duality between A and A′ is equal 
to {0}. Assume that x ∈ A with χ̃η,a(x) = 0, a ∈ K, η ∈ M , and choose a sequence 
(fn)n∈N in L with limn→∞(ιfn) = x in the norm of A. Then (fn)n∈N satisfies (4.1), and 
(C) implies that

[x, ιg]A = lim
n→∞

[ιfn, ιg]A = lim
n→∞

[fn, g]L = 0, g ∈ L.

It follows that x = 0, and our claim is established. We conclude that span{χ̃η,a :
a ∈ K, η ∈ M} is σ(A′, A)-dense in A′. Since A is reflexive, it follows that this linear 
span is also norm-dense in A′.
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Set N := ind0 A, and choose (ai)ni=1 ∈ KN and (ηi)ni=1 ∈ MN such that (4.7) holds. 
Then (for the notation A� see (A.6))

A′ = A�+̇ span{χ̃ηi,ai
: i = 1, . . . , n}.

Let P be the projection of A′ onto A� with kernel span{χ̃ηi,ai
: i = 1, . . . , n}. Then 

ranP is closed by Proposition A.1 and kerP is closed by finite-dimensionality. Hence, 
P is continuous. Being continuous and surjective, P maps dense sets of A′ onto dense 
sets of A�. Clearly,

P
(
span{χ̃η,a : a ∈ K, η ∈ M}

)
= A� ∩ span{χ̃η,a : a ∈ K, η ∈ M}

=
(
ι∗|A′

)−1(L′ ∩ span{χη,a|L : a ∈ K, η ∈ M}
)
.

Since ι∗|A� is a homeomorphism, validity of (C′) follows. �
Let L be a space of K-valued functions on M and assume that L has a reproducing 

kernel completion. Then, generically, there exist many reproducing kernel almost Pon-
tryagin spaces which contain L isometrically but not necessarily densely. Let us briefly 
comment on this fact.

Lemma 4.5. Let L be a space of K-valued functions on M , assume that L has a re-
producing kernel completion, and denote it by A. Let B be an almost Pontryagin space 
which contains A isometrically as a closed subspace with finite codimension. Provided 
that dim(B/A) ≤ dim(KM/A), there exists an isomorphic copy of B which is a repro-
ducing kernel almost Pontryagin space and which contains A isometrically as a closed 
subspace with finite codimension.

Proof. Set n := dim(B/A), and choose elements x1, . . . , xn ∈ B and g1, . . . , gn ∈ KM

which are linearly independent modulo A (in B and in KM , respectively). Then we can 
define a map ψ : B → KM by linearity and

ψ(f) := f, f ∈ A, ψ(xi) := gi, i = 1, . . . , n.

Clearly, ψ maps B injectively into KM . Set B̃ := ranψ, and define an almost Pontryagin 
space structure on B̃ by means of Proposition A.7. Then ψ becomes an isomorphism. 
We know that for each a ∈ K and η ∈ M the functional χη,a|A is continuous. Since A is a 
closed subspace of B̃ with finite codimension, its extension χη,a|B̃ is again continuous. �

Theorem 4.1 justifies the following definition.

Definition 4.6. Let M be a nonempty set, let K be a Krein space, and let L be an inner 
product space of K-valued functions on M . Assume that there exists a reproducing kernel 
almost Pontryagin space which contains L isometrically. Then we refer to the unique 
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reproducing kernel almost Pontryagin space which contains L isometrically and densely 
as the reproducing kernel space completion of L. We denote the degree of degeneracy of 
this space as Δ(L). ♦

The number Δ(L) is an important structural constant associated with L. As we saw 
in the proof of necessity, cf. (4.6), we have

Δ(L) = dim
([
L′ + span{χη,a|L : a ∈ K, η ∈ M}

]
/L′) < ∞

An alternative way to compute Δ(L), proceeds in terms of the condition (B). The fol-
lowing fact is seen by revisiting the proof of Theorem 4.1.

Proposition 4.7. Let L be a space of K-valued functions on M and assume that L has a 
reproducing kernel space completion. Then Δ(L) is the minimum of all numbers N such 
that (B) holds with N ∈ N0 and some choice of (ai)Ni=1 ∈ KN , (ηi)Ni=1 ∈ MN .

Proof. To see this, assume first that (B) holds with N and some data (ai)Ni=1 ∈ KN , 
(ηi)Ni=1 ∈ MN . We can use this data in the proof of sufficiency. Remembering (4.2) and 
the construction of A as an isometric image of B, yields

Δ(L) = ind0 A ≤ ind0 B = N.

Conversely, revisit the proof of necessity. There we saw that (B) holds for an appropriate 
choice of Δ(L) many functionals χηi,ai

|L; see (4.7) and the argument following it. �
A sufficient condition for existence of a Pontryagin space completion occurs when the 

space L is connected with an L2-space of a positive measure. For simplicity, we restrict 
considerations to the scalar-valued case.

Proposition 4.8. Let L be an inner product space of complex-valued functions on a set M . 
Assume that there exists a positive measure μ defined on some σ-algebra on M , points 
η1, . . . , ηn ∈ M and numbers γ1, . . . , γn ∈ R, such that each element of L is square 
integrable w.r.t. μ and

[f, g]L =
∫
M

f(λ)g(λ) dμ(λ) +
n∑

i=1
γif(ηi)g(ηi), f, g ∈ L. (4.9)

Then the conditions (A) and (C) hold. If, in addition, we find λ1, . . . , λm ∈ M and 
Cη > 0, η ∈ M , with

∣∣f(η)
∣∣2 ≤ Cη

(∫
M

∣∣f(λ)
∣∣2 dμ(λ) +

m∑
j=1

∣∣f(λj)
∣∣2), f ∈ L, η ∈ M, (4.10)

then also the condition (B) holds.
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Proof. From the representation (4.9), we see that the inner product [·,·]A is positive 
semidefinite on the subspace 

⋂n
i=1 ker(χηi

|A). This subspace has finite codimension, and 
hence ind− L < ∞. Assume now that a sequence (fn)n∈N of elements of L is given which 
satisfies

lim
n,m→∞

[fn − fm, fn − fm]L = 0, lim
n→∞

χη(fn) = 0, η ∈ M.

Then (4.9) implies that

lim
n,m→∞

∫
M

|fn − fm|2 dμ = 0.

Hence, there exists f ∈ L2(μ) such that limn→∞ fn = f in the norm of L2(μ). Conver-
gence in L2(μ) implies pointwise convergence μ-a.e. of some subsequence. The pointwise 
limit of the sequence (fn)n∈N, however, is equal to 0. It follows that f = 0 μ-a.e. Using 
again the representation (4.9) of the inner product on L, we see that limn→∞[fn, g]L = 0
for all g ∈ L.

Assume in addition that (4.10) holds. Consider the space

B := L2(μ) × Cn × Cm

endowed with the product topology. Clearly, B contains the Hilbert space L2(μ) as a 
closed subspace with finite codimension. Note that the product topology is induced by 
the Hilbert space inner product

((
h; (αi)ni=1; (βi)mj=1

)
,
(
h′;

(
α′
i

)n
i=1;

(
β′
j

)m
j=1

))
B

:=
∫
M

h(λ)h′(λ) dμ +
n∑

i=1
αiα′

i +
m∑
j=1

βjβ′
j .

We endow B with the inner product

[(
h; (αi)ni=1; (βi)mj=1

)
,
(
h′;

(
α′
i

)n
i=1;

(
β′
j

)m
j=1

)]
B :=

∫
M

h(λ)h′(λ) dμ +
n∑

i=1
γiαiα′

i.

Clearly, this inner product is continuous w.r.t. the topology of B, and a Hilbert space 
inner product on L2(μ). We conclude that B is an almost Pontryagin space.

Define a map ι : L → B as

ι(f) :=
(
f ;

(
f(ηi)

)n
i=1;

(
f(λj)

)m
j=1

)
, f ∈ L.

By our definition of [·,·]B, this map is isometric. Hence, 〈ι, Clos(ran ι)〉 is an almost 
Pontryagin space completion of L. From (4.10) we see that ι is injective. The composition 
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(χη|L) ◦ ι−1 is a linear functional on ran ι, and by (4.10) it is bounded w.r.t. the norm 
induced by (·,·)B. Hence, it has an extension χ̃η ∈ [Clos(ran ι)]′. Clearly, ι∗(χ̃η) = χη|L. 
We obtain

dim
([
L′ + span{χη|L : η ∈ M}

]
/L′) ≤ dim

(
ι∗
([

Clos(ran ι)
]′)

/L′) < ∞.

From the argument in the proof of Theorem 4.1, necessity, we obtain that (B) holds. �
We close this section with showing a practical result which increases applicability of 

Theorem 4.1. Namely, sometimes one has much better control on some subspace of an 
inner product space L than on L itself. The following statement says that, concern-
ing completions, it is possible to restrict to subspaces which are in some sense dense. 
Of course this fact is not a surprise, however, its proof is not obvious.

Proposition 4.9. Let M be a nonempty set, let K be a Krein space, and let L and L0 be 
inner product spaces of K-valued functions on M such that L contains L0 isometrically. 
Assume that the following density condition holds: For each f ∈ L there exists a sequence 
(fn)n∈N, fn ∈ L0, with

lim
n→∞

[fn, fn]L = lim
n→∞

[fn, f ]L = [f, f ]L,

lim
n→∞

χη,a(fn) = χη,a(f), a ∈ K, η ∈ M. (4.11)

Then L has a reproducing kernel space completion if and only if L0 has one. If L and 
L0 have reproducing kernel space completions, then they are equal.

Proof. One implication is obvious. Namely, each reproducing kernel almost Pontryagin 
space which isometrically contains L also isometrically contains L0. Hence existence of 
a reproducing kernel space completion of L implies existence of one for L0.

For the proof of the converse assume that A is the reproducing kernel space completion 
of L0. We are thus in the situation

L A

L0

⊇ ⊆

By Proposition A.9, applied with the family {χη,a : a ∈ K, η ∈ M}, there exist 
η1, . . . , ηn ∈ M and a1, . . . , an ∈ K, such that the inner product (by possibly chang-
ing the values of ai, we may assume that the constant γ obtained from Proposition A.9
is equal to 1)

(f, g)A = [f, g]A +
n∑

χηi,ai
(f)χηi,ai

(g), f, g ∈ A,

i=1
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is a Hilbert space scalar product on A (and induces the topology of A). We define an 
inner product on L by the same formula, i.e.,

�f, g�L := [f, g]L +
n∑

i=1
χηi,ai

(f)χηi,ai
(g), f, g ∈ L.

Since A contains L0 isometrically, we have

(f, g)A = �f, g�L, f, g ∈ L0.

If f ∈ L, choose a sequence (fn)n∈N, fn ∈ L0, with (4.11). Then

�f, f�L = [f, f ]L +
n∑

i=1

∣∣χηi,ai
(f)

∣∣2

= lim
n→∞

(
[fn, fn]L0 +

n∑
i=1

∣∣χηi,ai
(fn)

∣∣2) = lim
n→∞

(fn, fn)A ≥ 0.

Due to (4.11), we have limn→∞[fn − f, fn − f ]L = 0, and in turn limn→∞�fn − f,

fn− f�L = 0. Since �·,·�L is positive semidefinite, the triangle inequality applies, and we 
obtain

(fn − fm, fn − fm)
1
2
A = �fn − fm, fn − fm� 1

2
L

≤ �fn − f, fn − f� 1
2
L + �f − fm, f − fm� 1

2
L → 0, n,m → ∞.

Let g ∈ A be such that limn→∞ fn = g in the norm of A. Since point evaluations are 
continuous on A, we obtain

χη,a(g) = lim
n→∞

χη,a(fn) = χη,a(f), a ∈ K, η ∈ M,

i.e., g = f . This already shows that L ⊆ A. By continuity of the inner product, we more-
over have

[f, f ]A = lim
n→∞

[fn, fn]L0 = [f, f ]L.

Using the polar identity, thus, L is contained isometrically in A. Since L ⊇ L0 and L0 is 
dense in A, also L is dense in A. Hence, A is the reproducing kernel completion of L. �
Appendix A. Some supplements to the theory of almost Pontryagin spaces

In this appendix we provide some general results about almost Pontryagin spaces 
which are used in the present paper but are not yet available in the literature. The 
first couple of them (Propositions A.1–A.7) are simple and in essence straightforward
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generalisations of well-known Pontryagin space results. Proposition A.9 and Lemma A.10
are more involved. They contain a practical perturbation method and provide a geometric 
proof for it. In the last part of this appendix we recall the notion of almost Pontryagin 
space completions, those results about such completions which are used in the present 
context, and provide some supplements on this topic. In order to keep the presentation 
clean and mainly self-contained, we try to minimise the number of results imported from 
the literature.

A.1. Geometry of almost Pontryagin spaces and their duals

We frequently use the weak-star topology on the topological dual A′ of A, and the 
weak topology on A itself. If necessary, the topology to which a notion (like closedness, 
continuity, etc.) refers, is made explicit by prepending “w-” or “w∗-”, respectively. Recall 
that we speak of “convergence in the norm of A”, meaning convergence w.r.t. some norm 
inducing the topology of A.

The first object which we investigate is the topological dual of an almost Pontryagin 
space. It is well-known that the topological dual space A′ of a Pontryagin space A is 
exhausted by the functionals [·, y]A, y ∈ A, see, e.g., [22, Lemma 5.1]. In the presence 
of degeneracy, this is not anymore the case; this family of functionals is not even point 
separating. However, the dual of an almost Pontryagin space is not much larger than 
that. The argument which shows this already appeared in the proof of [40, Lemma 6.5]
(and is in fact a general “Banach-space argument”).

Proposition A.1. Let A be an almost Pontryagin space. Then the linear subspace {[·, y]A :
y ∈ A} of A′ is w∗-closed, and

dim
(
A′/

{
[·, y]A : y ∈ A

})
= ind0 A.

Proof. Consider the Pontryagin space A/A◦ and let π : A → A/A◦ be the canonical 
projection, cf. [29, Proposition 3.5]. Moreover, let π′ : (A/A◦)′ → A′ be the adjoint of 
π. Since π is surjective, in particular, the range of π is closed. By the Closed Range 
Theorem, thus ranπ′ is a w∗-closed subspace of A′. Since π is isometric we have

π′([·, πy]A/A◦
)

= [·, y]A, y ∈ A.

Now the fact that π is surjective yields

π′((A/A◦)′
)

=
{
[·, y]A : y ∈ A

}
, (A.1)

and hence {[·, y]A : y ∈ A} is a w∗-closed subspace of A′. To compute the codimension 
of {[·, y]A : y ∈ A}, we use closedness and the fact that kerπ = A◦ is finite dimensional. 
From this it follows that (here (kerπ)⊥ denotes the annihilator of kerπ in A′)

A′/
{
[·, y]A : y ∈ A

}
= A′/ ranπ′ = A′/(kerπ)⊥ ∼= (kerπ)′ ∼= kerπ = A◦. �



306 H. Woracek / Linear Algebra and its Applications 461 (2014) 271–317
Informally speaking, the proof of the above proposition relies on the fact that the 
almost Pontryagin space A differs from the Pontryagin space A/A◦ only by “something 
finite-dimensional”. Let us exploit this idea further.

To formulate the below results, we introduce one notation.

Definition A.2. Let A be an almost Pontryagin space, and let F be a family of continuous 
linear functionals on A. Then we say that F is point separating on A◦, if

A◦ ∩
⋂
ϕ∈F

kerϕ = {0}. ♦

Proposition A.3. Let A be an almost Pontryagin space, and let F ⊆ A′ be point separating 
on A◦. Denote by π : A → A/A◦ the canonical projection. Then the following statements 
hold.

(i) The topology of A is the initial topology with respect to the family of maps

{π : A → A/A◦} ∪ {ϕ : A → C, ϕ ∈ F}. (A.2)

Here A/A◦ is understood to be endowed with its Pontryagin space topology (and C
with the Euclidean topology).

(ii) The topological dual A′ of A is given as

A′ =
{
[·, y]A : y ∈ A

}
+ spanF . (A.3)

Proof. Denote by O the topology of the almost Pontryagin space A, and by T the initial 
topology induced on A by the family (A.2). Note that, since F is point separating on A◦, 
and kerπ = A◦, the topology T is Hausdorff. Moreover, since π as well as each ϕ ∈ F is 
continuous w.r.t. O, we certainly have T ⊆ O.

Since dimA◦ < ∞, we may choose a T -closed subspace B of A such that A = B +̇A◦. 
Then 〈A, T 〉 is homeomorphic to 〈B, T |B〉 × 〈A◦, T |A◦〉. Clearly, B is also O-closed, and 
hence 〈A, O〉 is homeomorphic to 〈B, O|B〉 × 〈A◦, O|A◦〉.

By the Open Mapping Theorem π|B is a homeomorphism of 〈B, O|B〉 onto A/A◦. 
Hence, O|B is the initial topology on B w.r.t. the one-element family {π : A → A/A◦}. 
This implies that O|B is coarser than T |B. Together with the fact that T ⊆ O, thus, 
O|B = T |B. Since dimA◦ < ∞, and both of O|A◦ and T |A◦ are Hausdorff, we also have 
O|A◦ = T |A◦ . In total, O = T .

We come to the proof of (ii). Denote the linear space on the right side of (A.3) by G. 
Since by Proposition A.1

dim
(
G/

{
[·, y]A : y ∈ A

})
≤ dim

(
A′/

{
[·, y]A : y ∈ A

})
< ∞,

and {[·, y]A : y ∈ A} is w∗-closed, also G is w∗-closed.
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Assume on the contrary that the equality (A.3) does not hold, so that we have “�” 
in (A.3). The Hahn–Banach Theorem provides us with a w∗-continuous functional on A′

which annihilates G but does not vanish identically. Since every w∗-continuous functional 
is point evaluation at a point of A, we obtain an element x ∈ A \ {0} with ψ(x) = 0, 
ψ ∈ G. From this it follows first that x ∈ A◦ and then by the hypothesis on F that 
x = 0. We have reached a contradiction. �
Remark A.4. Note that, if F ⊆ A′ satisfies (A.3), then F must be point separating on A◦. 
This follows since A′ is point separating, and A◦ is annihilated by {[·, y]A : y ∈ A}. ♦

Next, we turn to convergence and Cauchy-property of sequences. From (A.3) we read-
ily see that a sequence (xn)n∈N in an almost Pontryagin space A converges weakly to an 
element x ∈ A, if and only if

lim
n→∞

[xn, y]A = [x, y]A, y ∈ A, lim
n→∞

ϕ(xn) → ϕ(x), ϕ ∈ F ,

provided F ⊆ A′ is point separating on A◦.
The next result shows that also convergence in the norm of A (or being a Cauchy-

sequence w.r.t. the norm of A) can be characterised in a similar fashion. For the 
nondegenerated case this is a standard fact, see, e.g., [22, Theorem 2.4].

Proposition A.5. Let A be an almost Pontryagin space, let L ⊆ A be a subset with 
ClosA[spanL] = A, and let F ⊆ A′ be point separating on A◦. Moreover, let (xn)n∈N be 
a sequence in A and x ∈ A.

(i) It holds that limn→∞ xn = x in the norm of A, if and only if

lim
n→∞

[xn, y]A = [x, y]A, y ∈ L, lim
n→∞

[xn, xn]A = [x, x]A,

lim
n→∞

ϕ(xn) = ϕ(x), ϕ ∈ F .

(ii) The sequence (xn)n∈N is a Cauchy-sequence in the norm of A, if and only if

lim
n,m→∞

[xn − xm, y]A = 0, y ∈ L, lim
n,m→∞

[xn − xm, xn − xm]A = 0,

lim
n→∞

ϕ(xn − xm) = 0, ϕ ∈ F .

Proof. Necessity is obvious. To show sufficiency, assume that the conditions stated in (i) 
are satisfied. The crucial point is that, by Proposition A.3(i), the topology of A is the 
initial topology w.r.t. the family {π} ∪ F . For item (i), it thus suffices to show that

lim π(xn) = π(x) and lim ϕ(xn) = ϕ(x), ϕ ∈ F .

n→∞ n→∞
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The second condition is written explicitly in the hypothesis. To see the first, since π is 
isometric, we have

lim
n→∞

[πxn, πy]A/A◦ = [πx, πy]A/A◦ , y ∈ M,

lim
n→∞

[πxn, πxn]A/A◦ = [πx, πx]A/A◦ .

An application of [22, Theorem 2.4(i)] gives limn→∞ π(xn) = π(x) in the norm of A/A◦.
The proof of item (ii) is established in the same way, referring to [22, Theo-

rem 2.4(ii)]. �
We continue with some geometric facts. Again, the corresponding results in the Pon-

tryagin space case are well-known, see, e.g., [22, Theorem 3.2] for (i), and [22, p. 25, 
Corollary 2] for (ii), and [22, Theorem 3.1] for (iii).

Lemma A.6. Let 〈A, [·,·]A, O〉 be an almost Pontryagin space, and let B be an O-closed 
subspace of A.

(i) If B is nondegenerated, then B is orthocomplemented (i.e., B + B⊥ = A).
(ii) If B is positive definite, then 〈B, [·,·]A|B×B〉 is a Hilbert space and the topology 

induced on B by [·,·]A|B×B is equal to O|B.
(iii) If B⊥ = A◦ ⊆ B, then B = A.

Proof. Assume that B is nondegenerated. We reduce to the Pontryagin space case. De-
note by π : A → A/A◦ the canonical projection, and remember that π maps closed 
subspaces to closed subspaces, cf. [29, Proposition 3.5]. Then π(B) is a closed and non-
degenerated subspace of A/A◦, and hence

π(B)[+̇]π(B)⊥ = A/A◦.

It follows that

π−1(π(B)
)
[+]π−1(π(B)⊥

)
= A.

However, π−1(π(B)) = B + A◦ and π−1(π(B)⊥) = B⊥ + A◦. Since A◦ ⊆ B⊥, it follows 
that B[+]B⊥ = A.

Assume that B is positive definite. Since B is closed, 〈B, [·,·]A, O|B〉 is an almost 
Pontryagin space. The present assertion now follows from the notice after Theorem 2.3
(uniqueness of topology).

Finally, if B⊥ = A◦ then we have π(B)⊥ = {0} in the space A/A◦. Since π(B) is 
closed, this implies that π(B) = A/A◦, cf. [22, Theorem 3.1]. From A◦ ⊆ B, it now 
follows that B = A. �
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We have discussed a couple of constructions which can be carried out with almost 
Pontryagin spaces in [29, Propositions 3.1, 3.5]. Let us provide a reformulation of the 
second mentioned result which is sometimes smoother to apply.

Proposition A.7. Let 〈A, [·,·]A, O〉 be an almost Pontryagin space, let L be a linear space, 
and let ψ : A → L be a linear map with kerψ ⊆ A◦. Set B := ranψ and let T be the 
final topology w.r.t. ψ. Then an inner product [·,·]B is well-defined by

[
ψ(x), ψ(y)

]
B := [x, y]A, x, y ∈ A,

the triple 〈B, [·,·]B, T 〉 is an almost Pontryagin space, and the map ψ is a linear, isomet-
ric, continuous, and open surjection of A onto B.

Proof. Apply [29, Proposition 3.5] with “R := kerψ”, and notice that ψ : A → B
factorises into a bijection after the canonical projection. �
A.2. A perturbation method

Another simple way of constructing new almost Pontryagin spaces from a given one 
is by finite rank perturbations of the inner product. This method has been applied 
extensively in our study of de Branges spaces, specifically see [27, Theorem 3.3]. The 
following lemma provides a general formulation.

Lemma A.8. Let 〈A, [·,·]A, O〉 be an almost Pontryagin space, and let ϕ1, . . . , ϕn ∈ A′

and γ1, . . . , γn ∈ R. Define an inner product �·,·�A on A as

�x, y�A := [x, y]A +
n∑

i=1
γiϕi(x)ϕi(y), x, y ∈ A.

Then 〈A, �·,·�A, O〉 is an almost Pontryagin space.

Proof. Since ϕi ∈ A′, the inner product �·,·�A is continuous w.r.t. O. Choose an O-closed 
linear subspace M of A with finite codimension in A, such that 〈M, [·,·]A|M×M〉 is a 
Hilbert space. Then the subspace

N := M∩
n⋂

i=1
kerϕi

is an O-closed subspace of A and in turn a closed subspace of the Hilbert space 
〈M, [·,·]A|M×M〉. Clearly, the inner products [·,·]A and �·,·�A coincide on N , and hence 
〈N , �·,·�A|N×N 〉 is a Hilbert space. Clearly, the codimension of N in A is finite; it cannot 
exceed the codimension of M by more than n. �

The next proposition contains a strong converse version.
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Proposition A.9. Let 〈A, [·,·]A, O〉 be an almost Pontryagin space, and let F ⊆ A′ be point 
separating. Then there exist ϕ1, . . . , ϕn ∈ F such that for all sufficiently large values of 
γ ∈ R the space A becomes a Hilbert space with the inner product

(x, y)A := [x, y]A + γ

n∑
i=1

ϕi(x)ϕi(y), x, y ∈ A.

The Hilbert space topology induced by (·,·)A on A is equal to O.

We give a geometric proof based on a compactness argument. A different proof (pro-
ceeding via Gram operators) could be extracted from the proof of [27, Theorem 3.3]. 
However, to our taste, the presently proposed intrinsic approach is more appealing. It is 
based on the following interesting topological property.

Lemma A.10. Let 〈A, [·,·]A, O〉 be an almost Pontryagin space. Then each set

A≤r :=
{
x ∈ A : [x, x]A ≤ r

}
, r ∈ R,

is w-closed.

Notice that the set A≤r considered in this lemma is generically not convex; for geo-
metric intuition think of R3 with [(x1; x2; x3), (y1; y2; y3)] := x1y1 − x2y2 − x3y3.

Proof of Lemma A.10. Choose a direct and orthogonal decomposition A = A+[+̇]B
where A+ is closed and positive definite, and B is negative semidefinite (and hence 
finite dimensional). Existence of such a decomposition is obvious from Theorem 2.3(ii). 
Moreover, denote by P the projection of A onto A+ with kernel B, and set

A+
r :=

{
x ∈ A+ : [x, x]A ≤ r

}
, r ∈ R.

Since the inner product [·,·]A is positive definite on A+, the triangle inequality holds, 
and therefore A+

r is convex. Since A+
r is O-closed, it is thus also w-closed. The operator 

P : A → A+ is O-to-O|A+ -continuous, and hence also w-to-w-continuous. It follows that 
for each r ∈ R the set

{
x ∈ A : [Px, Px]A ≤ r

}
= P−1(A+

r

)
is w-closed. In other words, the function ν1 : A → R acting as x �→ [Px, Px]A is 
w-lower semicontinuous. The operator I − P : A → B is again w-to-w-continuous. Since 
dimB < ∞, it is also w-to-O|B-continuous. Thus the function ν2 : A → R acting as x �→
[(I −P )x, (I −P )x]A is w-continuous. It follows that ν1 + ν2 is w-lower semicontinuous. 
However, (ν1 + ν2)(x) = [x, x]A, x ∈ A, and hence for each r ∈ R the set
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A≤r =
{
x ∈ A : (ν1 + ν2)(x) ≤ r

}
is w-closed. �
Proof of Proposition A.9. Let Ffin denote the set of all finite subsets of F . We claim 
that

∃M ∈ Ffin : [x, x]A > 0, x ∈
[ ⋂
ϕ∈M

kerϕ
]
\{0}. (A.4)

Denote by ‖.‖ any norm which induces the topology of A. Using the Banach–Alaoglu 
Theorem, Lemma A.10, and the fact that A is reflexive (since it carries a Hilbert space 
topology), we obtain that each set

C(M) :=
[ ⋂
ϕ∈M

kerϕ
]
∩

{
x ∈ A : ‖x‖ = 1, [x, x]A ≤ 0

}
, M ∈ Ffin,

is w-compact. Assume now that (A.4) is false. This just means that C(M) �= ∅, M ∈ Ffin. 
Clearly, C(M1) ∩ C(M2) = C(M1 ∪M2), and hence the family {C(M) : M ∈ Ffin} has 
the finite intersection property. It follows that 

⋂
M∈Ffin

C(M) �= ∅. However, if x belongs 
to this intersection, then ‖x‖ = 1 and ϕ(x) = 0, ϕ ∈ F . Since F is point separating, 
we have reached a contradiction, and this establishes our claim (A.4).

Choose ϕ1, . . . , ϕn ∈ F such that

B :=
n⋂

i=1
kerϕi

is positive definite w.r.t. [·,·]A. Clearly, B is closed in A, and Lemma A.6 shows that B
is orthocomplemented and that [·,·]A|B×B induces the topology O|B on B.

Consider the seminorm on A defined as

p(x) :=
(

n∑
i=1

∣∣ϕi(x)
∣∣2) 1

2

, x ∈ A.

Then p(x) = 0, x ∈ B, and p|B⊥ is a norm on B⊥. Since dimB⊥ < ∞, this norm 
induces the topology O|B⊥ (both being equal to the Euclidean topology). The function 
x �→ [x, x]A is continuous on B⊥, and hence bounded on the unit ball of p|B⊥ . Thus, for 
all sufficiently large values of γ > 0 we have

∣∣[x, x]A
∣∣ < γp(x)2, x ∈ B⊥ \ {0}.
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Consider the inner product on A defined as

(x, y)A := [x, y]A + γ

n∑
i=1

ϕi(x)ϕi(y), x, y ∈ A.

If x ∈ A, we write x = y + z with y ∈ B and z ∈ B⊥, and compute

(x, x)A = [y, y]A +
(
[z, z]A + γp(y + z)2

)
.

However, p(y) = 0, and hence p(y + z) = p(z). Now it follows that (x, x)A ≥ 0, with 
equality if and only if y = z = 0.

Next, we observe that

(x, y)A = [x, y]A + γ

n∑
i=1

ϕi(x)︸ ︷︷ ︸
=0

ϕi(y) = [x, y]A, x ∈ B, y ∈ A.

This relation implies that B[⊥] = B(⊥) and in turn that A decomposes as the 
[·,·]A-orthogonal and (·,·)A-orthogonal sum

A = B[+̇]B⊥ = B(+̇)B⊥.

Hence, topologically,

〈A,O〉 ∼= 〈B,O|B〉 ×
〈
B⊥,O|B⊥

〉
,〈

A, (·,·)A
〉 ∼= 〈

B, (·,·)A|B×B
〉
×

〈
B⊥, (·,·)A|B⊥×B⊥

〉
.

Since (·,·)A|B×B = [·,·]A|B×B, Lemma A.6 implies that (·,·)A|B×B induces O|B. Since 
dimB⊥ < ∞, certainly, (·,·A)|B⊥×B⊥ induces O|B⊥ . Together we see that (·,·A) induces 
O on A. �
A.3. Almost Pontryagin space completions

Almost Pontryagin space completions play a central role in the present paper. In this 
part of the appendix, we recall the required notions and facts as given in [40, §6], and 
provide some supplements. Completions in the almost Pontryagin space context have 
been studied previously in [29, §4], some ideas are going back to [23].

Definition A.11. Let L be an inner product space. We call a pair 〈ι, A〉 an almost Pon-
tryagin space completion of L, if A is an almost Pontryagin space, and ι is a linear and 
isometric map of L onto a dense subspace of A.

Let 〈ιi, Ai〉, i = 1, 2, be two almost Pontryagin space completions of L. We say that 
〈ι1, A1〉 and 〈ι2, A2〉 are isomorphic, if there exists a linear and isometric homeomorphism 
ϕ of A1 onto A2 with ϕ ◦ ι1 = ι2. ♦
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It is easy to see that an inner product space L has an almost Pontryagin space 
completion if and only if ind− L < ∞, cf. [40, Remark 6.4]. The totality of all almost 
Pontryagin space completions of L can be described via linear functionals on L; we recall 
this result in Theorem A.15 below. Before that, we introduce some more terminology.

An inner product space with finite negative index carries a very particular topology 
which is induced by a seminorm constructed intrinsically from the inner product, cf. [11, 
Theorem I.11.7, Chapter IV.6]. This topology is called the decomposition majorant of L. 
It is not necessarily a Hausdorff topology, in fact, the intersection of all neighbourhoods of 
zero equals L◦. The seminorm used to construct this topology is not unique, however, the 
topology itself is. It is characterised by a minimality property of its Hausdorff quotient, 
cf. [11, §IV.6]

For a linear space V, we denote by V∗ its algebraic dual space, i.e., the linear space 
of all linear functionals on V. If V1 and V2 are linear spaces and φ : V1 → V2 is a linear 
map, we denote by φ∗ : V∗

2 → V∗
1 its algebraic dual map, i.e., the map acting as

φ∗(ψ) := ψ ◦ φ, ψ ∈ V∗
2 .

Definition A.12. Let L be an inner product space with ind− L < ∞. We denote by L′ the 
linear space of all linear functionals on L which are bounded w.r.t. the decomposition 
majorant of L. ♦

Let us point out in this place that, whenever 〈ι, A〉 is an almost Pontryagin space 
completion of a space L, the map ι∗|A′ is injective (a consequence of the fact that ran ι

is dense).
A description of L′ generalising the connection pointed out in [40, Remark 6.7] is the 

following.

Lemma A.13. Let L be an inner product space with ind− L < ∞, and let 〈ι, A〉 be an 
almost Pontryagin space completion of L. Then

L′ =
{
x �→ [ιx, y]A : y ∈ A

}
.

Proof. Let π : A → A/A◦ be the canonical projection. Then 〈π◦ι, A/A◦〉 is a Pontryagin 
space completion of L. Using [40, Remark 6.7] and (A.1), we obtain

L′ = (π ◦ ι)∗
(
(A/A◦)′

)
= ι∗

({
[·, y]A : y ∈ A

})
=

{
x �→ [ιx, y]A : y ∈ A

}
. �

It is also not difficult to give an intrinsic description of L′.

Lemma A.14. Let L be an inner product space with ind− L < ∞, and let ϕ ∈ L∗. Then 
ϕ ∈ L′ if and only if for each sequence (xn)n∈N of elements of L which satisfies

lim
n→∞

[xn, x]L = 0, x ∈ L, lim
n→∞

[xn, xn]L = 0, (A.5)

it holds that limn→∞ ϕ(xn) = 0.
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Proof. Let 〈ι, A〉 be a Pontryagin space completion of L. For necessity, assume that there 
exists y ∈ A with ϕ(x) = [ιx, y]A, x ∈ L. If (xn)n∈N is a sequence in L with (A.5), then 
the sequence (ιxn)n∈N converges to 0 in the norm of A, cf. [22, Theorem 2.4]. It follows 
that limn→∞ ϕ(xn) = limn→∞[ιxn, y]A = 0.

Conversely, assume that the stated implication holds true. Since ran ι is dense in A and 
A is nondegenerated, we have ker ι = L◦. Hence, for each x ∈ ker ι, the hypothesis (A.5)
of the stated implication is fulfilled for the constant sequence (x)n∈N, and it follows that 
ϕ(x) = 0. We conclude that ker ι ⊆ kerϕ. Thus there exists a linear map ψ : ran ι → C

with ψ ◦ ι = ϕ. We claim that ψ is bounded w.r.t. the norm of A. Let (yn)n∈N be a 
sequence of elements of ran ι with limn→∞ yn = 0 in the norm of A. Choose xn ∈ L with 
yn = ιxn, then

lim
n→∞

[xn, x]L = lim
n→∞

[yn, ιx]A = 0, x ∈ L, lim
n→∞

[xn, xn]L = lim
n→∞

[yn, yn]A = 0.

It follows that limn→∞ ψ(yn) = limn→∞ ϕ(xn) = 0, and this establishes our claim. 
Being a bounded functional defined on a subspace of the Pontryagin space A, ψ has a 
representation [·, y]A with some y ∈ A. Thus ϕ = ι∗([·, y]A) ∈ L′. �

We can now state a description of all almost Pontryagin space completions of a given 
inner product space with finite negative index.

Theorem A.15. (See [40, Theorem 6.8].) Let L be an inner product space with 
ind− L < ∞. The set of all isomorphy classes of almost Pontryagin space completions of 
L corresponds bijectively to the set of all linear subspaces of L∗ which contain L′ with 
finite codimension. This correspondence is established by the map

〈ι,A〉 �→ ι∗
(
A′),

and we have dim(ι∗(A′)/L′) = ind0 A.

Next we aim at topologising the linear space L′. It trivially carries the topology of 
pointwise convergence, i.e., the weak topology σ(L′, L). However, this topology is usually 
too coarse. A more useful one is the following.

Definition A.16. Let L be an inner product space with ind− L < ∞, and let 〈ι, A〉 be a 
Pontryagin space completion of L. We denote by T (L′) the final topology on L′ w.r.t. 
the map ι∗|A′ : A′ → L′ where A′ is endowed with its norm topology. ♦

We need to show that T (L′) is well-defined. The following lemma says a bit more 
than that. Thereby, for an almost Pontryagin space A, we set

A� :=
{
[·, y]A : y ∈ A

}
. (A.6)

Note that A� = A′ if and only if A is a Pontryagin space, cf. Proposition A.1.
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Lemma A.17. Let L be an inner product space with ind− L < ∞. For an almost Pon-
tryagin space completion 〈ι, A〉 of L, let T〈ι,A〉 be the final topology on L′ w.r.t. the map 
ι∗|A� : A� → L′ where A� is endowed with the norm topology inherited from A′.

The topology T〈ι,A〉 is independent of the choice of 〈ι, A〉. In particular, T (L′) is 
well-defined and coincides with T〈ι,A〉 for any 〈ι, A〉. Moreover, T (L′) is a Hilbert space 
topology.

Proof. Let 〈ι1, A1〉 and 〈ι2, A2〉 be almost Pontryagin space completions of L. Denote by 
πi : Ai → Ai/Ai

◦, i = 1, 2, the canonical projection. Then 〈πi ◦ ιi, Ai/Ai
◦〉, i = 1, 2, are 

Pontryagin space completions of L, and hence are isomorphic. Let Φ : A1/A1
◦ → A2/A2

◦

be a linear and isometric homeomorphism with

A1

π1

L
ι1 ι2 A2

π2

A1/A1
◦

Φ
A2/A2

◦

Passing to adjoints, and remembering (A.1) yields

A′
1 ⊇ ran π′

1 = A�
1

ι∗1 L′ A�
2 = ranπ′

2 ⊆ A′
2

ι∗2

(A1/A1
◦)′

π′
1

(A2/A2
◦)′

Φ′

π′
2

By the Open Mapping Theorem, π′
2 is open (as a map onto its range). Hence, the map 

ι∗2 ◦π′
2 is a continuous and open surjection of (A2/A2

◦)′ endowed with its norm topology 
onto 〈L′, T〈ι2,A2〉〉. In the same way, ι∗1 ◦ π′

1 ◦ Φ′ is a continuous and open surjection of 
(A2/A2

◦)′ onto 〈L′, T〈ι1,A1〉〉. By the above diagram these two maps coincide, and it 
follows that T〈ι1,A1〉 = T〈ι2,A2〉.

It remains to show that T (L′) is a Hilbert space topology. However, the norm topology 
of A and hence also the one of A′ is such. Since A� is a closed subspace of A′ and ι∗|A�

is a homeomorphism of A� onto 〈L′, T (L′)〉, this property is inherited by T (L′). �
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