Abstract—The paper concerns with increasing wind turbine availability by avoiding the shut-down under generator stator insulation degradation. Field-oriented control algorithm is derived for the wound rotor synchronous generators in wind turbine, and further extended to achieve safe operation in the stator fault presence. The fault-tolerant control restricts the magnetic flux time derivative and thereby the stator voltage, which is the main cause for rapid fault development in the degraded stator insulation conditions. The method ensures maximum power production and wide wind turbine operation for different developed fault stages. The algorithm is set for the case of 700 kW wind turbine with direct-drive wound rotor synchronous generator but can be applied for any other type of generator as well.

Index Terms—Wind Turbine Control, Wound Rotor Synchronous Generator, Field-oriented Control, Fault-tolerant Control

I. INTRODUCTION

Increase by 18% in 2010 and new announcements of large power direct-drive wind turbines (WT) [1] makes it evident that such a concept is the future trend in wind energy, mainly related to usage of permanent magnet synchronous generators (PMSGs). However, some companies opted for wound rotor synchronous generator (WRSG) type because of the long building tradition, easier manufacturing and far cheaper design, with proven value for very large powers. The concept is a mature technology used for a long time in hydro power plants, suitable for easy control of active and reactive power delivery.

Because of the marginal applications so far, the control of wound rotor synchronous machine concept with stator fully decoupled from the grid by a power converter is a topic tapped only with few of the research groups [2]–[4]. Highly dynamic performance and exploitation of best possible torque range of such machines is an imperative in WTs. The first contribution of the paper is the adjustment of field-oriented control (FOC) widely used in PMSGs to WRS with independent excitation based on proportional-integral (PI) controllers in rotor flux coordinates with introduced decoupling of variables.

Direct-drive generators in WTs absorb some of the previous gearbox problems and have a fault frequency about 10 times greater than equivalent-power industrial machines [5]. Lots of effort is currently put into development of new diagnostic methods for insulation faults detection [6]–[8]. Motivated by this, we propose a fault-tolerant control (FTC) for generator electromechanical faults that avoids WT shut down and enables safe operation, conceived as a modular extension of FOC and WT control.

About 30% to 40% of electric machine faults are related to stator insulation [5]–[8]. Some of the most common causes are moisture in the insulation, winding overheating or vibrations [9]. Modern voltage-source inverters also introduce additional voltage stress on the inter-turn insulation caused by the steep-fronted voltage surge.

Building on available diagnostic methods, we isolate the fault and reallocate the generator stress such that the fault propagation is stopped and the generator is operating safely in the fault presence. Specifically, we consider stator winding faults such as insulation degradation that eventually causes inter-turn, phase-to-phase or phase-to-ground short circuits.

Researches show that emergence of this kind of faults occurs gradually and can be detected on-line before they are fully developed to catastrophic proportions, i.e., phase-to-phase or phase-to-ground short circuits [6]–[8]. This gives an opportunity for an autonomous reaction of the control algorithm to protect the generator and enable safe operation under occurred fault. The FTC is used to modulate generator electromechanical variables in a way that the main cause of rapid fault spreading is removed but also the maximum possible power production in faulty conditions is maintained. Generator stator flux linkage is therefore modulated in a way that its time derivative and consequently the induced voltage in a faulty phase are kept restricted under a maximum allowed value specified by the generator diagnostics.

In our recent work, we proposed FTC of squirrel-cage induction generator for stator inter-turn short circuit [10] and PMSG insulation degradation [11]. Here we make a contribution to the WRS with specific distinctions of synchronous operation and excitation-generated flux. The method can be applied to any electrical machine, regardless of the size and purpose.

Conventional control algorithms of wind turbine and FOC of WRS are presented in Section II. Fault-tolerant control theory, developed algorithm, achievable WT operation and an extension of conventional control structure are elaborated in Section III. Simulation results are presented in Section IV, whereas the simulations are performed on a 700 kW direct-drive WT aerodynamics with corresponding WRS. Finally, the Section V provides conclusions.
II. WIND TURBINE CONTROL SYSTEM

A. Turbine control

Modern variable-speed variable-pitch wind turbines operate in two different regions. One is the so-called low-wind-speed region where torque control loop adjusts the generator torque to achieve desired wind turbine rotational speed in order to make the power production optimal. The other region is high-wind-speed region where the power output is maintained constant while keeping the aerodynamic torque and generator speed at the rated value. For this task a blade-pitch control loop is responsible.

To achieve optimum power production in the low-wind-speed region, wind turbine operates at the maximum value of power factor \(C_P = C_{P_{\text{max}}} \) by maintaining the optimum value of the tip-speed-ratio, \(\lambda = \lambda_{\text{opt}} \). The power factor \(C_P \) defines how much power is extracted from the wind. Generator torque reference is calculated from:

\[
T^*_g = \frac{1}{2\lambda_{\text{opt}}} R_{\text{air}} \pi R^2 C_{P_{\text{max}}} \omega^2 = K_\lambda \omega^2,
\]

where \(R_{\text{air}} \) is air density, \(R \) is aerodynamic disc radius and \(\omega \) is rotational speed. For more information about wind turbine modeling and control system design see [12].

B. Generator control

Electrical subsystem sketch of direct-drive WT concept with WRSG suitable for FOC is shown in Fig. 1. Common approach in modeling and control of electrical machines used for FOC design is a mathematical model represented in a two-phase \((d,q)\) coordinate system that rotates with supply voltage speed \(\omega_c \) and is aligned with \(d \)-axis of the rotor flux (rotor flux vector \(\psi_r \) is set to constant \(\psi_{rd} = \psi_f \)). The general model without damper windings is described with:

\[
\begin{align*}
 u_{sd} &= R_s i_{sd} + \frac{d\psi_{sd}}{dt} - \omega_c \psi_{sq}, \\
 u_{sq} &= R_s i_{sq} + \frac{d\psi_{sq}}{dt} + \omega_c \psi_{sd}, \\
 u_f &= R_f i_f + \frac{d\psi_f}{dt},
\end{align*}
\]

where \(u_{sd,q} \) are stator phase voltages in \((d,q)\) coordinate system, \(u_f \) is the excitation voltage, \(i_{sd,q} \) are stator phase currents, \(i_f \) is the excitation current, \(R_s \) is the stator resistance and \(R_f \) is the rotor resistance. Flux linkages are described with:

\[
\begin{align*}
 \psi_{sd} &= L_{sd} i_{sd} + L_{md} i_f, \\
 \psi_{sq} &= L_{sq} i_{sq}, \\
 \psi_f &= L_{sd} i_{sd} + L_{lf} i_f.
\end{align*}
\]

The flux perceived by stator is comprised of (5) and (6), whereas \(\psi_s = \sqrt{\psi_{sd}^2 + \psi_{sq}^2} \) holds. Parameters \(L_{sd,q} \) and are stator inductances, \(L_{md} \) is mutual inductance in \(d \)-axis and \(L_f \) is the rotor inductance. For the case of cylindrical rotor poles, stator inductances are approximately equal, \(L_{sd} \approx L_{sq} \).

Model used for controller design is formed from (2)-(7):

\[
\begin{align*}
 u_{sd} + \Delta u_{sd} &= R_s i_{sd} + L_{sd} \frac{di_{sd}}{dt} + \frac{L_{md}}{L_f} u_f - \frac{L_{md}}{L_f} R_f i_f, \\
 u_{sq} + \Delta u_{sq} &= R_s i_{sq} + L_{sq} \frac{di_{sq}}{dt}, \\
 u_f &= R_f i_f + L_{lf} \frac{di_f}{dt} + \frac{L_{md}}{L_{sd}} (u_{sd} + \Delta u_{sd}) - \frac{L_{md}}{L_{sd}} R_s i_{sd},
\end{align*}
\]

where \(L_{ls} = \left(L_{sd} - \frac{L^2_d}{L_f} \right) \) and \(L_{lf} = \left(L_f - \frac{L^2_d}{L_{sd}} \right) \). Decoupling or correction voltages are:

\[
\begin{align*}
 \Delta u_{sd} &= L_{sq} \omega_c i_{sq}, \\
 \Delta u_{sq} &= -L_{sd} \omega_c i_{sd} - L_{md} \omega_c i_f,
\end{align*}
\]

which ensure the back-electromotive force cancelation and linear machine model. Machine electromagnetic torque is given by:

\[
T_g = \frac{3}{2} p \left[L_{md} i_f + (L_{sd} - L_{sq}) i_{sd} \right] i_{sq},
\]

where \(p \) denotes the number of pole pairs. The maximum possible torque range is achieved when the machine is fully magnetized with rotor excitation current \(i_f \) and \(d \)-stator current component is set to zero, since \(L_{md} \gg (L_{sd} - L_{sq}) \) in (13). This enables full rated stator current range to be used for \(i_{sq} \) and torque control, and generator operates only as an active power source.

Machine model given by (8)-(10) is suitable for controller design. We opt for a conventional multiple-input and multiple-output (MIMO) controller design approach with decoupling controllers [13] since the model is coupled through rotor and stator currents. The model is represented with following transfer functions:

\[
\begin{align*}
 G_{ff} &= \frac{I_f(s)}{U_f(s)} = \frac{K_{ff}(1 + T_{ff}s)}{(1 + T_{p1}s)(1 + T_{p2}s)}, \\
 G_{fd} &= \frac{I_f(s)}{U_{sd}(s) + \Delta u_{sd}} = \frac{K_{fd}s}{(1 + T_{p1}s)(1 + T_{p2}s)}, \\
 G_{df} &= \frac{I_{sd}(s)}{U_f(s)} = G_{fd}, \\
 G_{dd} &= \frac{I_{sd}(s)}{U_{sd}(s) + \Delta u_{sd}} = \frac{K_{dd}(1 + T_{dd}s)}{(1 + T_{p1}s)(1 + T_{p2}s)}, \\
 G_{qq} &= \frac{I_{sq}(s)}{U_{sq}(s) + \Delta u_{sq}} = \frac{K_{qq}}{1 + T_{qq}s},
\end{align*}
\]

Fig. 1. Wind turbine electrical subsystem with WRSG.
where corresponding system gains \((K_{ff}, K_{fd}, K_{dd}, K_{qq})\) and time constants \((T_{ff}, T_{dd}, T_{p1}, T_{p2}, T_{qq})\) are derived from (8)-(10).

With \(T_{p2} \gg T_{p1}\) and by ignoring the system zero, main controllers are suitable for PI form and magnitude optimum approach:

\[
R_{ff} = K_{rf} \frac{1+T_{ff}}{T_{if} s}, \quad R_{dd} = K_{rd} \frac{1+T_{id}}{T_{ia} s},
\]

\[
R_{qq} = K_{rq} \frac{1+T_{iq}}{T_{ia} s},
\]

while MIMO decoupling is performed accordingly:

\[
R_{fd} = -\frac{G_{jd}}{G_{ff}}, \quad R_{df} = -\frac{G_{dd}}{G_{dd}},
\]

Since the MIMO control law is influenced both by internal variables and system output, faster response of variables is achieved. Parameters of PI controllers are selected: \(T_{ff} = T_{if} = T_{p2}, T_{iq} = T_{qq}\) with corresponding magnitude optimum gains \(K_{rf}, K_{rd}\) and \(K_{rq}\). Whole control structure is shown in Fig. 2. Block denoted with variable estimation is a model-based observer with included stationary to rotary frame transformations. The representative FOC concept is given here and for more information about machine modeling and control please refer to [14].

C. Flux-weakening

The above-rated speed operation, i.e., the flux-weakening is performed to keep the machine at rated power and can be achieved by reducing \(i_{sd}, i_{sq}\) or \(i_f\). Choosing the optimum flux-weakening method is dependent on machine parameters, uppermost with \(L_{sq}/L_{sd}\) ratio. For the case of WT generator types with large number of salient poles, large diameter and small length (hydro generators), reduction of \(i_{sd}\) and \(i_{sq}\) currents is more efficient approach since the \(\psi_{sq}\) takes the dominant part in \(\psi_s\). For the case of fast rotating, cylindrical generators with small diameter and large length (turbo generators), \(\psi_{sd}\) is dominant and the flux-weakening is more efficient with reduction of \(i_f\) current.

III. FAULT-TOLERANT CONTROL

The stator insulation is usually modeled as a realistic, high-frequency capacitance, with the current flow caused by voltage time derivative, i.e., the insulation is negatively affected by the pulse-width modulation. However, once degraded, the insulation has pronounced resistive character and is rapidly damaged further by the inter-turn currents, which are dependent on stator voltage amplitude [7]. Therefore, in order to stop the fault development, induced voltage in the generator stator windings needs to be restricted and kept under some safe value \(K\) obtained from the machine diagnostics. To this aim, the \(K\) restriction is to be imposed on stator flux time derivative, which is the main contribution to the induced stator voltage, represented in phase coordinates as:

\[
u_{sx} = i_{sx} R_s + \frac{d\psi_{sx}}{dt} \approx \frac{d\psi_{sx}}{dt},
\]

where \(x\) denotes one of the phases \((a, b, c)\). The goal for suppressing the fault in phase \(x\) is formed as:

\[
\left| \frac{d\psi_{sx}}{dt} \right| \leq K.
\]

The magnetic flux perceived by stator windings from (5) and (6) can be reduced with adequate stator currents without affecting the generator torque building current \(i_{sq}\) such that rotor flux is dissipated in the air-gap instead of closed through stator coils. This feature is commonly used in machine control as the flux-weakening method in the above-rated-speed operation. We utilize this possibility to form a FTC and to restrict the flux time derivative in WRSG.

Approach with globally reduced voltage and weakened flux in the below-rated-speed operation can be also used to avoid the fault propagation, but it reduces the power production unnecessarily (Fig. 3). Theoretical maximum of power production in faulty operation and boundary condition for fault suppressing is the case when flux time derivative reaches the exact value of \(K\):

\[
\left| \frac{d\psi_{sx}}{dt} \right| = K.
\]

Arising from this condition, the flux is modulated to obtain a triangular waveform with slope value of \(K\) such that its time derivative is equal to fault restriction coefficient:

\[
\psi_{sx}(t) = K(t + \varphi_x), \quad t \in \left[-\frac{\pi}{2\omega_x}, -\frac{\pi}{2\omega_x} + \frac{2k\pi - \varphi_x}{\omega_x} \right],
\]

\[
\psi_{sx}(t) = -K(t + \varphi_x - \pi), \quad t \in \left[-\frac{\pi}{2\omega_x}, -\frac{\pi}{2\omega_x} + \frac{2k\pi - \varphi_x}{\omega_x} \right],
\]

where \(\varphi_x\) are \((a, b, c)\) phase offsets \(\{0, \frac{\pi}{3}, \frac{\pi}{3}\}\), respectively.

Generally, the stator flux is considered sine-wave (in the fundamental-wave approaches, such as \(d, q\) model) with amplitude \(|\psi_s|\), angular frequency \(\omega_x\) and phase offset \(\varphi_x\).
Normal operation
Flux-weakening
Theoretical maximum with FTC

\[\psi_{sn} \]

\(\theta_e \) Electrical angle, (rad)

\[\psi_{s}(\theta_e) \] Stator flux, (Wb)

The stator flux amplitude, \(|\psi_s(t)| \), is chosen to achieve smooth operation.

The magnetic flux is generated with rotor excitation and modulated stator flux waveform when multiplied with sine magnetic flux distribution generated by rotor windings rotation. With modulated stator flux amplitude, the stator flux rate of change and consequently the induced voltage in stator windings are restricted and the fault development is stopped or greatly delayed.

Proper values of \(i_{sd} \) are chosen to achieve the triangular form in Eq. (27) while taking into account: (i) \(|i_{sd}| \) must not exceed predefined nominal value \(i_{sn} \), (ii) desired machine torque and corresponding \(i_{sq} \), (iii) the maximum flux restriction (rated value \(\psi_{sn} \)) due to saturation. If \(i_{sd} \) is kept at the minimum allowed value, which corresponds to minimum value of stator flux \(\psi_{s,min} = K/\omega_e \), the FTC is acting as a simple flux-weakening.

For a time-variable flux amplitude envelope \(|\psi_s(t)| \), the flux time derivative for fault suppression is defined with:

\[
\frac{d|\psi_s(t)|}{dt} = \frac{d|\psi_s(t)|}{dt} \sin(\omega_c t) + |\psi_s(t)| \omega_e \cos(\omega_c t) \leq K,
\]

where the time derivative of amplitude envelope from (27) is also dependent on \(|\psi_s| \).

The modulated flux is shown in Fig. 4. The minimum value corresponds to safe operation for the faulty case addressed by constant flux weakening and rest of the magnitude modulation is to extract the maximum possible power production under the safety constraint. The peak value of modulation is restricted by the rated value of stator flux \(\psi_{sn} \). The modulation is performed with twice the frequency of magnetic flux rotation.

The magnetic flux is generated with rotor excitation and is kept constant in the normal operation. The torque (13) is comprised of dominant mutual product of \(i_f \) and \(i_{sq} \). This allows the \(i_{sd} \) to handle the flux modulation to achieve corresponding \(|\psi_s(t)| \) and perform FTC. For the case of salient pole machine, slight variations in the torque due to changing of \(i_{sd} \) are compensated with \(i_{sq} \) to achieve smooth operation.

Note that targeted flux amplitude is in fact a time-sequence of sinc functions, which ultimately results in a triangular waveform when multiplied with sine magnetic flux distribution generated by rotor windings rotation. With modulated stator flux amplitude, the stator flux rate of change and consequently the induced voltage in stator windings are restricted and the fault development is stopped or greatly delayed.

Proper values of \(i_{sd} \) are chosen to achieve the triangular form in Eq. (27) while taking into account: (i) \(|i_{sd}| \) must not exceed predefined nominal value \(i_{sn} \), (ii) desired machine torque and corresponding \(i_{sq} \), (iii) the maximum flux restriction (rated value \(\psi_{sn} \)) due to saturation. If \(i_{sd} \) is kept at the minimum allowed value, which corresponds to minimum value of stator flux \(\psi_{s,min} = K/\omega_e \), the FTC is acting as a simple flux-weakening.

For a time-variable flux amplitude envelope \(|\psi_s(t)| \), the flux time derivative for fault suppression is defined with:

\[
\frac{d|\psi_s(t)|}{dt} = \frac{d|\psi_s(t)|}{dt} \sin(\omega_c t) + |\psi_s(t)| \omega_e \cos(\omega_c t) \leq K,
\]

where the time derivative of amplitude envelope from (27) is also dependent on \(|\psi_s| \).

The modulated flux is shown in Fig. 4. The minimum value corresponds to safe operation for the faulty case addressed by constant flux weakening and rest of the magnitude modulation is to extract the maximum possible power production under the safety constraint. The peak value of modulation is restricted by the rated value of stator flux \(\psi_{sn} \). The modulation is performed with twice the frequency of magnetic flux rotation.

The magnetic flux is generated with rotor excitation and is kept constant in the normal operation. The torque (13) is comprised of dominant mutual product of \(i_f \) and \(i_{sq} \). This allows the \(i_{sd} \) to handle the flux modulation to achieve corresponding \(|\psi_s(t)| \) and perform FTC. For the case of salient pole machine, slight variations in the torque due to changing of \(i_{sd} \) are compensated with \(i_{sq} \) to achieve smooth operation.

Note that targeted flux amplitude is in fact a time-sequence of sinc functions, which ultimately results in a triangular waveform when multiplied with sine magnetic flux distribution generated by rotor windings rotation. With modulated stator flux amplitude, the stator flux rate of change and consequently the induced voltage in stator windings are restricted and the fault development is stopped or greatly delayed.

Proper values of \(i_{sd} \) are chosen to achieve the triangular form in Eq. (27) while taking into account: (i) \(|i_{sd}| \) must not exceed predefined nominal value \(i_{sn} \), (ii) desired machine torque and corresponding \(i_{sq} \), (iii) the maximum flux restriction (rated value \(\psi_{sn} \)) due to saturation. If \(i_{sd} \) is kept at the minimum allowed value, which corresponds to minimum value of stator flux \(\psi_{s,min} = K/\omega_e \), the FTC is acting as a simple flux-weakening.

For a time-variable flux amplitude envelope \(|\psi_s(t)| \), the flux time derivative for fault suppression is defined with:

\[
\frac{d|\psi_s(t)|}{dt} = \frac{d|\psi_s(t)|}{dt} \sin(\omega_c t) + |\psi_s(t)| \omega_e \cos(\omega_c t) \leq K,
\]

where the time derivative of amplitude envelope from (27) is also dependent on \(|\psi_s| \).

The modulated flux is shown in Fig. 4. The minimum value corresponds to safe operation for the faulty case addressed by constant flux weakening and rest of the magnitude modulation is to extract the maximum possible power production under the safety constraint. The peak value of modulation is restricted by the rated value of stator flux \(\psi_{sn} \). The modulation is performed with twice the frequency of magnetic flux rotation.

The magnetic flux is generated with rotor excitation and is kept constant in the normal operation. The torque (13) is comprised of dominant mutual product of \(i_f \) and \(i_{sq} \). This allows the \(i_{sd} \) to handle the flux modulation to achieve corresponding \(|\psi_s(t)| \) and perform FTC. For the case of salient pole machine, slight variations in the torque due to changing of \(i_{sd} \) are compensated with \(i_{sq} \) to achieve smooth operation.
values of i_{sd} and i_{sq} for flux-weakening we obtained by using a two-loop iterative approach with different values of stator and excitation currents covering all possible operating region, and with the goal of torque maximization under the constraint of rated product $\psi_{sn}\omega_{en}$ (rated voltage). The same iterative approach is then extended for different values of constrained product $\psi_{\omega_{en}}$, i.e., the fault condition K. Simple look-up tables were formed: $T_{gA}(K)$, $T_{gB}(K)$, $T_{gC}(K)$ and $\omega_C(K)$, where point 'B' corresponds to the minimum value and 'C' to the mean value of achievable flux modulation (27). With this approach, the on-line part of FTC algorithm is trivial, consisting only of simple algebraic relations that require fairly low computer resources, as given in the Algorithm 1.

If there is a short-circuit between turns of the same phase, variable magnetic flux induces voltage in the shorted turn and, due to very small resistance, causes very high current that develops the fault rapidly. By constraining the flux time derivative, the current in shorted turn is restricted as well. Therefore, the proposed method works both for the insulation degradation and inter-turn short circuit cases and can be applied to any stage of the fault development. The stage of fault is dictated only by the coefficient K, which usually falls in the interval (10% \div 100%) of rated product $\psi_{sn}\omega_{en}$.

IV. Simulation Results

This section provides simulation results for a 700 kW MATLAB/Simulink variable-speed variable-pitch WT model. Simulations are performed on an ideal WRSG model presented in Section II with the goal of observing electrical transients and possibilities for stator flux modulation and FTC. Inverter dynamics are therefore neglected due to minor influence on the observed problem. Generator parameters are given in Table I. The generator is scaled to match the 700 kW WT with aerodynamical torque of 230 kNm and speed of 29 rpm. Since WT dynamics are by far slower than generator transients, results are presented in time scale that correspond to four modulation periods and appear as a steady-state operation.

Simulations are performed for the case of $K = 600$ Wb/s and the phase a is targeted by flux modulation and FTC. Figure 7 shows the MIMO controller performance and manipulated currents for flux modulation. Reduced PI controller tracking capability introduces time lags between reference values and responses for i_{sd} and i_{sq}. The figure also shows that

Algorithm 1 Fault-tolerant control for WRSG

1. Obtain T^*_g from (1) for current ω;
2. If T^*_g falls in the interval below 'A', the generator is operating in the safe area and no FTC is needed; calculate i^*_{sd} from (13), set $i^*_{sd} = i_{sdn}$, $i^*_{f} = i_{fn}$, $\omega^* = \omega_n$ and continue to step 5;
3. If T^*_g falls in the interval between 'A' and 'B', apply flux-weakening; obtain $i_{sd,min}$ and $i_{sq,min}$ that correspond with $\psi_{s,min}$ for current ω; set $i^*_{sd} = i_{sd,min}$, $i^*_{sq} = i_{sq,min}$, $i^*_{f} = i_{fn}$, $\omega^* = \omega_C$ and continue to step 5;
4. If T^*_g falls in the interval between 'B' and 'C', introduce torque modulation; obtain $|\psi_s|(t)$ from (27) for current stator flux angle and calculate $i_{sd}^* = |\psi_s(t)|/\psi_{s,min}$ $i_{sd,min}$; maintain smooth torque by calculating adequate i_{sq}^* from $i_{sd,min}$ and $i_{sq,min}$ by using (13); set $i^*_{f} = i_{fn}$ and $\omega^* = \omega_C$;
5. Pass i^*_{sd}, i^*_{sq} and i^*_{f} to FOC; pass ω^* to pitch controller;

Table I

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>P_g</td>
<td>1800 kVA</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>U_n</td>
<td>1250 V</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>f_a</td>
<td>13.5 Hz</td>
</tr>
<tr>
<td>Number of pole pairs</td>
<td>p</td>
<td>30</td>
</tr>
<tr>
<td>Stator resistance</td>
<td>R_s</td>
<td>0.022 Ω</td>
</tr>
<tr>
<td>Stator inductance in d-axis</td>
<td>L_{sd}</td>
<td>12.18 mH</td>
</tr>
<tr>
<td>Stator inductance in q-axis</td>
<td>L_{sq}</td>
<td>8.53 mH</td>
</tr>
<tr>
<td>Stator mutual inductance</td>
<td>L_{md}</td>
<td>10.46 mH</td>
</tr>
<tr>
<td>Rotor inductance</td>
<td>L_f</td>
<td>12.65 mH</td>
</tr>
<tr>
<td>Rotor resistance</td>
<td>R_f</td>
<td>1.24 Ω</td>
</tr>
<tr>
<td>Rated excitation voltage</td>
<td>U_f</td>
<td>800 V</td>
</tr>
</tbody>
</table>
rapid change in d-current has minor influence on excitation current i_f due to the decoupled controller.

The stator flux waveform deviates slightly from the targeted triangular waveform (Fig. 8) due to machine rated flux restrictions and controller tendency to achieve the reference values of FOC variables. The fault restriction is fully satisfied as stator flux time derivative in faulty phase never exceeds the imposed limit of K, as shown in Fig. 9. Further improvement may be achieved by eliminating the tracking lag of currents with e.g. predictive controller, where the reference values are known for the forthcoming modulation period (by considering a constant ω during the modulation period).

Stator currents, shown in Fig. 10, introduce higher harmonics but the issue is not reflected on the power delivered to the grid due to back-to-back power converter between the generator and the grid. Since the goal of FTC is to tamper solely electrical variables, torque and speed are influenced only by system coupling and PI controller imperfections, as shown in Fig. 11, which makes the generator behave identically from the outer WT control loops perspective (only with reduced operating range).

V. CONCLUSIONS

Field-oriented control of wound rotor synchronous generator offers fast dynamics and wide torque operation. Generator insulation faults can be stopped from rapid spreading by restricting the stator flux time derivative and thus by removing the cause for fault development. Safe operation of wind turbine can be achieved with maximized power production in the faulty conditions. Proposed control algorithms are conceived as cheap, efficient and modular software upgrades to the existing classical generator control algorithms and whole wind
The nature of upgrades allows the fault-tolerant control to be easily incorporated in new concepts, but also in already available and working wind turbines and for any type of generator. Moreover, the modular approach means the concept can be applied with minor modifications to any inverter-fed AC electric machine operated by field-oriented control, regardless of size and application. Machine safe operation is maintained regardless of the fault, only with reduced operating range due to the voltage restriction and slightly slower possible transients for smaller machines, depending on the fault severity.

ACKNOWLEDGEMENT

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement no 285939 (ACROSS), from the “Centre of Excellence for Structural Health” (CEEStructHealth) supported by the EU under contract IPA2007/HR/16IPO/001-040513, and from the Republic of Croatia Proof of Concept Grant Fund for Researchers through project “Proof of Concept for Wind Turbine Generator Fault-tolerant Control” (PoC-WTGFTC), grant no PoC5_1_108.

REFERENCES

Vinko Lešić received his master degree in electrical engineering and information technology from University of Zagreb Faculty of Electrical Engineering and Computing (UNIZG-FER) in 2010. Currently, he is with the Department of Control and Computer Engineering at UNIZG-FER where he is pursuing his Ph.D. degree. His research interests are in the area of control theory with application to advanced control of electrical drives and wind turbine generators.

Mario Vašak received the Ph.D. degree in electrical engineering from the University of Zagreb Faculty of Electrical Engineering and Computing (UNIZG-FER), Zagreb, Croatia, in 2007. He is currently an Associate Professor with the Department of Control and Computer Engineering, UNIZG-FER. He works in the areas of predictive/robust/fault-tolerant control and computational geometry applied to the following application domains: renewable energy systems, water management systems, energy-efficient buildings, energy-efficient railway transportation, and automotive systems. On behalf of UNIZG-FER, he led the FP7-SEE-ERA.net PLUS research project MONGS on generator fault-tolerant control in wind turbines, and currently, he is the UNIZG-FER leader of the FP7-STREP UrbanWater that deals with fresh water supply system management in urban environments. He has published over 50 papers in journals and conference proceedings.

Goran Stojić received the B.Sc. degree in Electrical Engineering and the M.Sc. degree in Power Engineering from Vienna University of Technology, Vienna, Austria in 2009 and 2011, respectively. From 2011 to 2014 he was with the Department of Energy Systems and Electrical Drives, Vienna University of Technology where he has worked towards his Ph.D. in the field of fault detection and condition monitoring of inverter-fed drives. Currently, he works at Bernecker + Rainer GmbH, Austria, as a hardware developer in the field of inverter systems for electrical drives.

Thomas M. Wolbank received the doctoral degree and the habilitation (Associate Professor degree) from the Vienna University of Technology, Vienna, Austria, in 1996 and 2004, respectively. He is currently with the Department of Energy Systems and Electrical Drives, Vienna University of Technology. He has coauthored more than 100 papers published in refereed journals and international conference proceedings. His research interests include saliency-based sensorless control of ac drives, dynamic properties and condition monitoring of inverter-fed machines, transient electrical behavior of ac machines, and motor drives and their components and controlling them by the use of intelligent control algorithms.