
TOWARDS A GENERIC DATA MODEL
FOR REA BASED APPLICATIONS

Bernhard Wally and Christian Huemer
Institute of Software Technology & Interactive Systems, Vienna University of Technology, Favoritenstr. 9-11, Vienna, Austria

wally@big.tuwien.ac.at, huemer@big.tuwien.ac.at

Keywords: Software Engineering, Business Models, Business Ontologies, Database Engineering.

Abstract: The original REA accounting model (McCarthy, 1982) has been extended in previous years into a business
modeling language. Apart from its conceptual model, academic effort has been put into the definition of a
formal description language, based on standards such as UML or OWL. The specification of a generic data
model from a software engineering point of view for domain independent use of REA for business model
specification and execution has been touched only briefly in the past. Thus, we present a data model concept
for runtime-configurable REA business model definition and execution.

1 INTRODUCTION

The REA accounting model (McCarthy, 1982) was
initially developed as a modern accounting methodol-
ogy based on real world artefacts instead of the rather
artificial double entry book keeping, originating in the
Middle Ages. Over the years, it has been extended to-
wards a business modeling language, which enables
the description of value chains and enterprise resource
planning (Geerts and McCarthy, 1997; Geerts and
McCarthy, 2000; Gailly and Poels, 2007).

Figure 1: Sample object diagram of REA’s core concepts.

Figure 1 depicts the REA core concept in terms of
an UML object diagram: an economic exchange (du-
ality) of goods comprises increment and decrement
events, where the former represent events that add
value to the company (e.g.receiving cash in a sales ac-
tivity) and the latter are events that decrease the value
of a company (e.g.handing over a product in a sales

activity). Each of the events is related to a certain eco-
nomic resource (cash and product in our example, re-
spectively) and to two economic agents, the provider
and the receiver of the economic resource.

The REA business model language has been used
to model various application scenarios, however the
data structure of these scenarios has been tailored to
the specific needs of that scenario—it was not defined
in a domain agnostic way. The approach found in the
literature to implement REA applications is to declare
concrete instances of entities of the REA meta model
as classes in a programming language accompanied
by corresponding database tables, see e.g. (Hrubỳ
et al., 2006) for a “Pizza Delivery” and (Mayrhofer,
2012) for a “Fish Sale” sample application. In our ap-
proach, we are preparing a uniform infrastructure as a
generic data model for the implementation of various
application scenarios on top. We are thus designing
the REA meta model as a multi-layered class hierar-
chy with corresponding database design and in turn
enable specific applications to be modeled and exe-
cuted based thereon.

Our effort on a generic data model for REA is
in its beginnings—first concepts, findings and results
have been published in (Gürth, 2014), (Mayrhofer
et al., 2014) and (Wally et al., 2014). In this work we
present details on the meta modeling methodology we
are applying and its implementation concepts.



2 RELATED WORK

(Hrubỳ et al., 2006) is an extensive work on basic
and advanced REA concepts and their realization in
terms of software models. The presented workflow
in the concrete examples follows an intuitive pat-
tern: (i) the REA Meta model is modeled in terms of
classes in an object oriented programming language,
(ii) the domain specific model is again modeled and
implemented in terms of software classes, and (iii) the
domain model classes are instantiated at runtime for
capturing and representing business artefacts.

In (Nakamura and Johnson, 1998) the Type Ob-
ject pattern (Johnson and Woolf, 1997) is introduced
to describe REA models—this notation is picked up
also in (Hrubỳ et al., 2006; Geerts and McCarthy,
2006): REA concepts are described on a type and on
an object layer, where instances on type layer define
common properties for instances on the object layer.
Also, this typification is used as a business model no-
tation: in case a specific REA entity cannot be noted
explicitly, its type object is used as a specification for
what kind of entity would take part in a certain busi-
ness pattern.

A model driven approach for the notation of REA
based business models is presented in (Gailly and
Poels, 2010), where the REA Meta model is defined
as an UML profile, and the concrete domain model
is modeled as a class diagram applying the REA
UML profile. Again, this approach freezes the do-
main model at design time (expressed in UML) and
requires different technology for the definition and the
execution of business models.

In contrast to these approaches, we are propos-
ing an integrated solution , where (i) the REA Meta
model serves as language definition on MOF1 layer
M2 (modeled and implemented as concrete classes
in an object oriented programming language), (ii) the
domain model is dynamically modeled in M1 in form
of instances of the previously mentioned classes, and
(iii) the business artefacts on M0 are again instances
of the model instances in M1. This approach allows
the user of an enterprise resource planning system that
is based upon REA concepts to declare additional ex-
change methods, resources or agents on-the-fly, and
make use of them immediately. To foster M1–M0 in-
teroperability, we strive for an approach that incor-
porates M1 and M0 models in a single storage and
execution system. Interoperability with the approach
described in (Gailly and Poels, 2010) could be real-
ized via an import/export mechanism.

1Meta Object Facility (Object Management Group, Inc.,
2013), see http://www.omg.org/spec/MOF/

2.1 Meta Modeling

In (Atkinson and Kühne, 2008) it is argued that two
level modeling is introducing “accidental complex-
ity” in cases where the domain scenario features three
or more levels, because some workaround must be
found to fit the many levels into the two levels pro-
vided. One such application scenario is when an
element of a domain scenario requires to influence
instances traditionally “out of reach” of that ele-
ment (declare properties for instances of instances).
For that purpose the concepts of “clabjects” (intro-
duced in (Atkinson and Kühne, 2000)) and “deep in-
stantiation/characterization” with “potencies” (Atkin-
son and Kühne, 2001; Kühne and Steimann, 2004)
are introduced. It allows specifying properties that
should be instantiated potency number of levels be-
low its declaration. However, in our modeling ap-
proach, and for the given use case of REA busi-
ness models, we agree with (Frank, 2011a), in that
“potencies > 2 are not needed”. In order to be
able to model potencies of value 2, (Frank, 2011a)
and (Frank, 2011b) introduce the concept of “in-
trinsic features/attributes/properties” (properties that
are not implemented by instances but by instances
of instances)—in a sense, intrinsic features are thus
deeply instantiated properties with a hardcoded po-
tency of 2. In (Yoder and Johnson, 2002) the “adap-
tive object-model” architectural style is described by
discussing various concepts found in the literature
and in implementations for the purpose of providing
meta modeling support for the design and implemen-
tation of adaptive software systems. As a foundation
for such systems the type object pattern and property
pattern are identified, which together form a “type
square”.

In object oriented languages such as Java and
C++, a single class declaration/definition is a sketch
for four different data related concepts (purposely
leaving out behavioral concepts like static or instance
methods): (i) it declares the contract of static proper-
ties (top-right in Figure 2), (ii) it declares the contract
of instance properties (top-left), (iii) it defines values
for the static properties (bottom-right), and (iv) in-
stances of that class define values for instance proper-
ties (bottom-left). We are currently not explicitly con-
sidering methods in our model because (i) in the first
step we have no need for adaptive behavior and (ii) we
believe that behavior can be well integrated in the ap-
proach we are presenting here. In our approach, we
are decomposing the three-layered type object pattern
into a 2x2 matrix which more closely resembles how
class and instance properties are declared and defined
in traditional object oriented programming.



Figure 2: Decomposition of the type object pattern into four
elements that correspond to property declaration and instan-
tiation in object oriented programming. Potencies of the
types indicate that the top elements are instantiated on M1
and the bottom elements on M0.

3 MODELING APPROACH

In this work we present a structural view on our run-
time configurable approach and show how the struc-
tural contract of a business model can be modified at
runtime without the need for recompilation and rede-
ployment. This structural contract has direct impact
on the execution of the business model (mainly by
constraining the association of entities and thus re-
ducing the possibilities of configuration).

Specific business models within the REA ontol-
ogy are traditionally declared in a graphical language
based on UML class or object diagram notation2,
which we adopt in the context of this document. They
define (i) a taxonomy of entities relevant for that busi-
ness model (the domain vocabulary) and (ii) the rela-
tions between those entities (the business model), e.g.
what other entities (mainly agents and resources) cer-
tain events interact with or how events relate to com-
mitments.

The remainder of this section will first introduce
the concepts we use for the declaration of domain
vocabulary and business models (most notable frag-
ments and REA declarations) and then explain how
the declaration is realized.

3.1 Attributes and Associations

Attributes are our modeling vehicle to declare vari-
ables of built-in data types such as INT, DECIMAL, and
TEXT; Associations declare complex variables as
associations to other Declarations. Figure 3 depicts
a simplified class diagram of the meta model of the
declaration layer M1 in our model. It shows how the
REA modeling language is embedded into our model:
all REA entities (green: Resource, Event, Agent, ...)

2While this makes sense, especially from a software en-
gineering point of view, users of business applications are
often non-technical domain experts. For that account graph-
ical concrete syntaxes for domain specific languages have
been developed (Mayrhofer, 2012; Al-Jallad, 2012).

inherit from PropertiedDeclaration, which essen-
tially means that on the declaration layer, REA enti-
ties can be equipped with properties of any kind. Red
items (Entity, Declaration, Group, PropertiedDeclara-
tion) represent generic concepts, most notable group-
ing, cf.(Hrubỳ et al., 2006). Brown items (Property,
Attribute, Association) depict attributes and associ-
ations, while blue items (Enumeration, Unit, Frag-
ment) represent additional concepts that will be ex-
plained below in more detail.

Figure 3: General (simplified) class diagram for M2. Dis-
tinct concepts are depicted with different fill colors (ex-
plicitly listed and explained in the text). In fact, each of
the REA elements (Resource, Event, Agent, ...) is imple-
mented 4-fold, as described in Figure 2, while Property,
Enumeration and Fragment are only implemented 2-fold
(no typification required).

3.2 Fragments

Fragments represent loosely coupled data capsules
that, just like core REA entities, inherit directly
from PropertiedDeclaration, i.e. they can declare
named properties (cf. Figures 3 and 4). The purpose
of fragments is their reuse in various domain vocabu-
lary declarations or within a single domain. Examples
for simple fragments are HumanName or Address—
they have in common that they define rather general
concepts that can be used multiple times in the do-
main vocabulary. In that respect, fragments are very
similar to aspects, as described in (Hruby tal., 2006).
While the concept of aspects described there is very
powerful and even allows the specification of behav-
ior, it is not as smoothly embedded into the model-
ing layer as our approach, as in our work fragments
are first class citizens of the modeling layer and are a
standard way of modeling the business vocabulary. In
addition, no aspect oriented programming framework
is required for usage, and modeling with fragments
“feels” just like modeling core REA. Specification of
behavior however is one of our elements in the design
of a comprehensive software architecture based on the
presented data model.

In Figure 4 some generic concepts have been mod-
eled as fragments: HumanName and Address only
specify attributes, while PersonalInformation is
composed of a HumanName and an Address associ-
ation amongst two other attributes.



Figure 4: Possible fragment declarations (M1).

3.3 Enumerations, Relations and Units

Enumerations inherit from Declaration, i.e. they
can be associated via associations from fragments or
REA entities. Enumerations declare a set of strings
which are usually related to each other. Examples are
fashion sizes (XS, S, M, L, XL, etc.) or colors (red,
green, blue). On the M1 layer, the enumeration is
declared only (i.e. its name is defined), however the
values for the enumerations are defined on the M0
layer (cf. Figure 5).

Figure 5: Examples for enumerations, units, and relations.

Units are derived from enumerations and extend
them in that they define an additional correspond-
ing factor that relates the values of the enumeration
to each other. In the metric system, we can specify
length in m, cm, km, etc., in the imperial and US cus-
tomary systems of measurement length is specified in
terms of inch, foot, yard, etc. For the definition of a
single unit we therefore need the term needed to de-
scribe the unit and the factor that relates the term to
the standard unit of the dimension that unit is defined
in. Now, at runtime it doesnt matter in which unit a
certain value is given, as it can be converted to any
other (known) unit easily.

Just like units basically relate different enumera-
tion values by a factor (and thus allow precise con-
version from one unit into another), other relations
could be defined, too. For instance, the fashion sizes
could be related by their size using a “greater than”
relation. In fact, the relational information can be
modeled completely self-contained, because the re-
lational mappings are defined by a ternary associa-
tion between enumeration instances: one enumera-
tion instance resembles, the left hand side of the rela-
tion, another one the right hand side and a third enu-

meration instance depicts the operator to be used for
the relation. This last enumeration is an instance of
the enumeration subclass Relation and defines three
additional fields: isTransitive, isReflexive, and
isSymmetric. Since the operator still is an enumer-
ation instance, its value is of type String—thus the
value of the relational enumeration instance could be
as simple as “≤”, or any literal description.

3.4 REA Declarations

In comparison to fragments that are used to describe
domain independent concepts, REA declarations are
much more specific, as they implement REA concepts
(but still in a domain independent manner when it
comes to specific business domains). REA declara-
tions provide the infrastructure to enable (i) the flex-
ible modeling of a specific business domain vocabu-
lary (cf. Section 3.4.1) and (ii) the modeling of the
business model (cf. Section 3.4.2).

3.4.1 Domain Vocabulary Declaration

At runtime, REA declarations enable the representa-
tion of a business domain in terms of the REA ontol-
ogy, i.e. instances at the M1 layer are created based
on the M2 Meta model infrastructure. These instances
on the M1 layer are in turn prescripts for instances
on the M0 layer, both of which are managed at run-
time. REA declarations are implemented as a set of
trees, where each trees root element is one of the core
REA concepts, i.e. one tree declares resources, an-
other one declares agents, etc. (cf. Figure 6). In
our concept, these declarations define hierarchically
structured data capsules only, i.e. each declaration
on layer M1 is basically a set of properties (cf. Sec-
tion 3.1). Behavior is currently not modeled, but sup-
port for runtime configurable declaration/definition of
methods is planned for the software architecture built
upon this data model and thus for future versions of
this model.

Each REA declaration is defined by its name,
which implies that each name can be given only once.
For instance in Figure 6 the given names “Clerk”,
“Customer”, “Sale”, etc. cannot be used by any other
REA declaration. With this restriction we suppress
ambiguities and help designing a cleaner domain vo-
cabulary.

The behavior of a declaration is currently defined
by its Meta class only, for instance any kind of agent
that is declared on the M1 layer can participate in
events, and only the language rules of the REA ontol-
ogy define the application flow. The provided view on
the M1 layer in Figure 6 is a shortcut for what is hap-
pening behind the scenes. Based on the power type



Figure 6: REA declarations: each REA concept spans
its own tree of domain vocabulary declarations on layer
M1. For the sake of simplicity we exclude further spe-
cialization of REA entities, such as the Event subclasses
ExchangeEvent and ConversionEvent and their sub-
classes from this view.

concept, each entity declaration modeled on layer
M1 is in the background split in two entities: an in-
stance declaration and a type declaration—the gener-
ated data structure is depicted in Figure 7. The in-
stance declaration holds properties declared for each
instance of the given entity, whereas the type decla-
ration holds the class properties that are to be defined
only once on the M0 layer in a type instance and are
referenced from each of the M0 instances through a
type association. It is declared in the declaration
layer whether the properties of fragments and REA
declarations are required or optional—thus the run-
time engine needs to check object and type instances
for the fulfillment of this domain vocabulary peculiar-
ities.

Figure 7: When modeling the domain vocabulary, “behind
the scenes” the data structure depicted in grey is generated.
The presented properties are all associations, i.e. they ei-
ther refer to a fragment declaration (this is intended here) or
another REA declaration.

3.4.2 Business Model Declaration

Business models are designed at the declaration layer
(M1), just like declarations and fragments. For
the specification of a value chain of the operational
level, the REA declarations need to be arranged
accordingly—cf. Figure 8 for a simple sales example,
trading products for cash. In this constellation a sin-

gle sales duality comprises the selling of at least one
product (as in a shopping cart) for a single cash pay-
ment. At runtime it is rather trivial to check whether
an event might occur in a specific duality or not, but
of course the inheritance tree must be considered, i.e.
instances of any sub-declaration of a REA declaration
specified in a constellation are valid entities.

Figure 8: Declaration of a simple “Sales” duality on M1—
the cardinality statements on the duality relations specify
how often the corresponding event must occur in order to
resemble a “valid” duality at runtime (at least one Product
must be handed out and only exactly one Cash payment is
allowed).

4 CONCLUSIONS

We have presented a data model for the declaration of
REA based business models. The concepts of frag-
ments and REA declarations have been sketched and
their implementation has been discussed. The pre-
sented approach provides a solid basis for the exe-
cution of such defined business models in the sense
that all required data is available in a single database
which can be manipulated and queried at runtime us-
ing traditional database interaction methods.

With the separation of declarations and types we
have improved the expressiveness of REA models and
we have shown that declarations are naturally located
on layer M1 while types (of the type object pattern)
are really located at layer M0. Our approach provides
a consistent view on entities of both layers, and it is
thought to be implemented against a single data store,
i.e. instances of layers M0 and M1 are “stored to-
gether”, thus enabling use of referential constraints
and referential integrity checking.

We have defined our REA core library with a re-
lational database in the background. Our model pro-
vides a class infrastructure for objects and types of the
declaration layer M1 and of the runtime layer M0.

We have shown how REA declaration entities
can be interconnected in order to resemble business
models of varying complexity. With the notion of
“fragments”, we have introduced a fully integrated
new first class citizen in the REA business modeling
world. One that does not relate to specific REA con-
cepts but can be applied to any (or none) of them.



One aspect which has not been discussed here is
the evolvability of business models, i.e. support for
runtime changes in the declaration layer, which is
scheduled for further investigation. Also, we are in
the process of integrating runtime configurable behav-
ior in addition to the flexible data capsules presented
here.

ACKNOWLEDGEMENTS

This work was supported as part of the BRIDGE pro-
gram of the Austrian Research Promotion Agency
(FFG) under grant number 841287—a joint research
effort of Vienna University of Technology and even-
tus Marketingservice GmbH.

REFERENCES

Al-Jallad, M. M. (2012). REA business modeling language:
Toward a REA based domain specific visual language.
Student thesis, KTH Royal Institute of Technology.

Atkinson, C. and Kühne, T. (2000). Meta-level indepen-
dent modelling. In International Workshop on Model
Engineering at 14th European Conference on Object-
Oriented Programming, pages 12–16.

Atkinson, C. and Kühne, T. (2001). The essence of multi-
level metamodeling. In Goos, G., Hartmanis, J., and
Leeuwen, J. v., editors, UML 2001—The Unified Mod-
eling Language. Modeling Languages, Concepts, and
Tools, Lecture Notes in Computer Science, pages 19–
33. Springer.

Atkinson, C. and Kühne, T. (2008). Reducing accidental
complexity in domain models. Software & Systems
Modeling, 7(3):345–359.

Frank, U. (2011a). The MEMO meta modelling language
(MML) and language architecture. ICB-Research Re-
port 43, Institute for Computer Science and Business
Information Systems, University Duisburg-Essen.

Frank, U. (2011b). Some guidelines for the conception of
domain-specific modelling languages. In Nüttgens,
M., Thomas, O., and Weber, B., editors, 4th Inter-
national Workshop on Enterprise Modelling and In-
formation Systems Architectures (EMISA 2011), vol-
ume P-190 of Lecture Notes in Informatics, pages
93–106, Bonn. Gesellschaft für Informatik, Köllen
Druck+Verlag GmbH.

Gailly, F. and Poels, G. (2007). Towards ontology-driven in-
formation systems: Redesign and formalization of the
REA ontology. In Abramowicz, W., editor, Business
Information Systems, volume 4439 of Lecture Notes
in Computer Science, pages 245–259. Springer Berlin
Heidelberg.

Gailly, F. and Poels, G. (2010). Conceptual modeling us-
ing domain ontologies. improving the domain-specific

quality of conceptual schemas. In 10th Workshop on
Domain-Specific Modeling, pages 18:1–18:6. ACM.

Geerts, G. L. and McCarthy, W. E. (1997). Modeling busi-
ness enterprises as value-added process hierarchies
with resource-event-agent object templates. In Suther-
land, J., Casanave, C., Miller, J., Patel, P., and Hol-
lowell, G., editors, Business Object Design and Im-
plementation, pages 94–113. Springer London.

Geerts, G. L. and McCarthy, W. E. (2000). The ontological
foundation of REA enterprise information systems. In
Annual Meeting of the American Accounting Associa-
tion, Philadelphia, PA, volume 362, pages 127–150.

Geerts, G. L. and McCarthy, W. E. (2006). Policy-level
specifications in REA enterprise information systems.
Journal of Information Systems, 20(2):37–63.

Gürth, T. (2014). Business model driven ERP customiza-
tion. Master’s thesis, Faculty of Informatics, Vienna
University of Technology.

Hrubỳ, P., Kiehn, J., and Scheller, C. V. (2006). Model-
Driven Design using Business Patterns. Springer.

Johnson, R. and Woolf, B. (1997). Type object. In Martin,
R. C., Riehle, D., and Buschmann, F., editors, Pat-
tern Languages of Program Design 3, chapter Type
Object, pages 47–65. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Kühne, T. and Steimann, F. (2004). Tiefe charakterisierung.
In Rumpe, B. and Hesse, W., editors, Modellierung
2004, volume P-45 of Lecture Notes in Informatics,
pages 109–120, Bonn. Gesellschaft für Informatik,
Köllen Druck+Verlag GmbH.

Mayrhofer, D. (2012). REA-DSL: Business Model Driven
Data Engineering. PhD dissertation, Vienna Univer-
sity of Technology.

Mayrhofer, D., Mazak, A., Wally, B., Huemer, C., and Re-
gatschnig, P. (2014). REAlist: Towards a business
model adapting multi-tenant ERP system in the cloud.
In 8th International Workshop on Value Modeling and
Business Ontology (VMBO 2014).

McCarthy, W. E. (1982). The REA accounting model: A
generalized framework for accounting systems in a
shared data environment. The Accounting Review,
57(3):554–578.

Nakamura, H. and Johnson, R. E. (1998). Adaptive frame-
work for the REA accounting model. In OOPSLA’98
Workshop on Business Object Design and Implemen-
tation IV.

Object Management Group, Inc. (2013). OMG Meta Object
Facility (MOF) Core Specification. Object Manage-
ment Group, Inc.

Wally, B., Mazak, A., Mayrhofer, D., and Huemer, C.
(2014). A generic REA software architecture based
on fragments and declarations. In 8th International
Workshop on Value Modeling and Business Ontology
(VMBO 2014).

Yoder, J. W. and Johnson, R. (2002). The adaptive object-
model architectural style. In Software Architecture,
pages 3–27. Springer.


