Diplomarbeit

Einfluss der Messunsicherheiten auf Leistungs- und Wirkungsgradmessung einer Kleingasturbine

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Reinhard WILLINGER
und Univ.Ass. Dipl.-Ing. Pouya GHAFFARI
E302
Institut für Energietechnik und Thermodynamik

eingereicht an der Technischen Universität Wien
Fakultät für Maschinenwesen und Betriebswissenschaften

von

Anna Wraneschitz
0826381
Obere Hauptstraße 41
2141 Ameis

Wien, im Juni 2015
Kurzfassung

Abstract

The purpose of this thesis is the knowledge about test uncertainty of the results of the efficiency measurement and the performance test. Measuring object is a small gas turbine at the Institute for Energy Systems and Thermodynamics of the Vienna University of Technology. The gas turbine is a ROVER 1S/60. The guiding rules are the acceptance test codes in ASME PTC 22 and in DIN 4341. Within them the test uncertainty is calculated with the DIN 1319 and the ASME PTC 19.1. The random error of the turbine’s directly measured physical values is determined with statistical methods. The systematic uncertainty is not included in this observation. It is taken to be eliminated by calibration.

The error of the calculated values can’t be calculated straight. So the equations for the uncertainty of a result are derived from the propagation equation. Calculated are the thermal efficiency, the isentropic efficiency of the compressor and the turbine, the efficiency of the combustor, the specific fuel consumption and the power. The value with the greatest impact on the uncertainty of a result is found with a sensitivity analysis. The result is that the biggest relative error is made at the power test with the eddy current brake. Furthermore the turbine outlet temperature has a great impact on the uncertainty of the result.
Inhaltsverzeichnis

1. Einleitung ... 8
 1.1. Problemstellung ... 8
 1.2. Motivation ... 8
2. Theoretische Grundlagen ... 8
 2.1. Gasturbinenprozess ... 8
 2.2. Messtechnik ... 9
3. Grundlagen über Abnahmemessungen ... 11
 3.1. Die wichtigsten Normen und Richtlinien .. 11
 3.1.1. DIN 1319: Grundlagen der Messtechnik lt. [2; 3; 4] .. 11
 3.1.3. DIN 4341: Abnahmeregeln für Gasturbinen [13, 6] .. 12
 3.1.4. ISO 2314: Gas turbines – Acceptance tests lt. [8] ... 12
 3.1.5. VDI 2048: Messunsicherheiten bei Abnahmemessungen an energie- und
 kraftwerkstechnischen Anlagen [9; 10; 11] ... 12
 3.2. Tabellarische Zusammenfassung .. 13
 3.3. Die Differenzen .. 13
 3.4. Blendenmessung nach DIN EN ISO 5167 [16, 17, 18, 19] 14
4. Messung .. 15
 4.2. Der Turbinenprüfstand .. 15
 4.3. Messgrößen und Messgeräte ... 17
 4.3.1. Die Umgebungstemperatur t_0 und der Umgebungsdruck p_0 17
 4.3.2. Der Blendendifferenzdruck Δp_{Bl} und Differenzdruck Δp_{st} 18
 4.3.3. Der Verdichteraustrittsdruck p_2 und der Turbineneintrittsdruck p_1 18
 4.3.4. Die Verdichteraustrittstemperatur t_2 ... 18
 4.3.5. Zeitmessung für Verbrauch eines Liters Brennstoff τ 18
 4.3.6. Die Turbinenaustrittstemperatur t_4 ... 18
 4.3.7. Der Differenzdruck Δp_{st} ... 18
 4.3.8. Die effektive Leistung P_{eff}, die Drehzahl n, das Drehmoment M 19
 4.4. Versuchsdurchführung .. 19
 4.5. Versuchsauswertung ... 20
 4.5.1. Berechnungsbeschreibung ... 20
Einleitung

4.5.2. Vorgehen bei der Fehlerberechnung [2] ... 25
4.5.3. Annahmen .. 27
4.5.4. Berechnung der Fehler .. 28
4.5.5. Berechnung der Sensitivitäten .. 45

5. Zusammenfassung und Ausblick ... 54
5.1. Zusammenfassung der Messunsicherheiten ... 54
5.2. Zusammenfassung der Sensitivitäten ... 58
5.2.1. Brennkammerwirkungsgrad η_{BK} .. 59
5.2.2. Gesamtwirkungsgrad η_{eff} .. 59
5.2.3. isentroper Turbinenwirkungsgrad η_{Ts} ... 59
5.2.4. isentroper Verdichterwirkungsgrad η_{Vs} ... 60
5.2.5. spezifischer Brennstoffverbrauch b_B ... 60
5.2.6. Turbineneintrittstemperatur T_3 .. 61
5.3. Ausblick auf weitere Arbeiten ... 61

6. Anhang ... 63
6.1. Abbildungen .. 63
Literaturangaben .. 65
Bedeutung der Formelzeichen

Lateinische Formelzeichen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{1-6}</td>
<td>Koeffizienten zur Berechnung der Unsicherheit der Blendenmessung [-]</td>
</tr>
<tr>
<td>A_{Bl}</td>
<td>Fläche des inneren Durchmessers d [m²]</td>
</tr>
<tr>
<td>B</td>
<td>systematischer Fehler einer Messgröße nach [1]</td>
</tr>
<tr>
<td>B_{1-2}</td>
<td>Koeffizienten zur Berechnung der Unsicherheit der Blendenmessung [-]</td>
</tr>
<tr>
<td>B_R</td>
<td>systematischer Fehler des Messergebnisses nach [1]</td>
</tr>
<tr>
<td>C</td>
<td>Durchflusskoeffizient [-]</td>
</tr>
<tr>
<td>D</td>
<td>Durchmesser vor der Blende [m]</td>
</tr>
<tr>
<td>D'</td>
<td>Durchmesser nach der Blende [m]</td>
</tr>
<tr>
<td>E</td>
<td>Vorgeschwindigkeitsfaktor [-]</td>
</tr>
<tr>
<td>F_{Brems}</td>
<td>Bremskraft [N]</td>
</tr>
<tr>
<td>H_U</td>
<td>unterer Heizwert des Brennstoffes [J/kg]</td>
</tr>
<tr>
<td>H</td>
<td>spezifische Arbeit [J/kg]</td>
</tr>
<tr>
<td>M</td>
<td>Drehmoment [Nm]</td>
</tr>
<tr>
<td>P</td>
<td>Leistung [kW]</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>Leistung an der Wirbelstrombremse [kW]</td>
</tr>
<tr>
<td>P_R</td>
<td>Verlustleistung [kW]</td>
</tr>
<tr>
<td>P_T</td>
<td>Turbinenleistung [kW]</td>
</tr>
<tr>
<td>Q_0</td>
<td>Gaskonstante für reine Luft [J/kgK]</td>
</tr>
<tr>
<td>R_{RG}</td>
<td>Gaskonstante für Rauchgas [J/kgK]</td>
</tr>
<tr>
<td>S_R</td>
<td>zufälliger Fehler des Messergebnisses nach [1]</td>
</tr>
<tr>
<td>S_x</td>
<td>Standardabweichung der Messgrößen nach [1]</td>
</tr>
<tr>
<td>S_y</td>
<td>Standardabweichung der Mittelwerte nach [1]</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur [K]</td>
</tr>
<tr>
<td>U_{95}</td>
<td>Messunsicherheit einer Messgröße mit Vertrauensniveau 95% nach [1]</td>
</tr>
<tr>
<td>U_{R95}</td>
<td>Messunsicherheit des Messergebnisses mit Vertrauensniveau 95% nach [1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_B</td>
<td>spezifischer Brennstoffverbrauch [kg/kWh]</td>
</tr>
<tr>
<td>c_p</td>
<td>spezifische Wärmekapazität [J/kgK]</td>
</tr>
<tr>
<td>c_{pm}</td>
<td>mittlere spezifische Wärmekapazität [J/kgK]</td>
</tr>
<tr>
<td>d</td>
<td>Innendurchmesser der Blende [m]</td>
</tr>
<tr>
<td>f</td>
<td>Modellfunktion</td>
</tr>
<tr>
<td>I_{hebel}</td>
<td>Hebelarm [m]</td>
</tr>
<tr>
<td>m</td>
<td>Anzahl der Messgrößen für ein Messergebnis [-]</td>
</tr>
<tr>
<td>m_B</td>
<td>Massenstrom des Brennstoffes [kg/s]</td>
</tr>
<tr>
<td>m_L</td>
<td>Luftmassenstrom [kg/s]</td>
</tr>
<tr>
<td>m_{RG}</td>
<td>Rauchgasmassenstrom [kg/s]</td>
</tr>
<tr>
<td>n</td>
<td>Abtriebsdrehzahl [U/min]</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl der Messungen [-]</td>
</tr>
<tr>
<td>p_0</td>
<td>Luftdruck [mbar]</td>
</tr>
<tr>
<td>p_1</td>
<td>Verdichtereintrittsdruck [mbar]</td>
</tr>
<tr>
<td>p_2</td>
<td>Verdichteraustrittsdruck [mbar]</td>
</tr>
<tr>
<td>p_3</td>
<td>Turbineneintrittsdruck [mbar]</td>
</tr>
<tr>
<td>p_4</td>
<td>Turbinenaustrittsdruck [mbar]</td>
</tr>
<tr>
<td>q_m</td>
<td>Massendurchfluss [kg/s]</td>
</tr>
</tbody>
</table>
Einleitung

Griechische Formelzeichen

\(s \) ... empirische Standardabweichung
\(s_{\Delta p_{Bl}} \) .. empirische Standardabweichung der Blendendruckdifferenz
\(s_{u_4} \) ... Ergebnismessunsicherheit der Temperatur am Turbinenaustritt [K]
\(t \) ... Studentfaktor [-]
\(t_0 \) .. Umgebungstemperatur [°C]
\(t_1 \) Verdichtereintrittstemperatur [°C]
\(t_2 \) ... Verdichteraustrittstemperatur [°C]
\(t_4 \) Turbinenaustrittstemperatur [°C]
\(u \) ... Messunsicherheit, Standardunsicherheit
\(u' \) ... erweiterte Messunsicherheit
\(x \) .. vollständiges Messergebnis
\(\bar{x} \) .. arithmetischer Mittelwert
\(x_i \) .. Messgröße
\(y \) .. Messergebnis

\(\alpha \) .. Durchflusszahl [-]
\(\beta \) ... effektiver Gesamtwirkungsgrad [-]
\(\varepsilon \) .. Expansionszahl [-]
\(\eta_{\text{eff}} \) ... Brennkammerwirkungsgrad [-]
\(\eta_{BK} \) ... Isentroper Verdichterwirkungsgrad [-]
\(\eta_{TS} \) ... Isentroper Turbinenwirkungsgrad [-]
\(\theta \) ... Sensitivität [-]
\(\theta' \) .. relative Sensitivität [-]
\(\kappa \) .. Isentropexponent [-]
\(\lambda \) ... Luftzahl [-]
\(\rho_B \) .. Dichte des Brennstoffes [kg/m³]
\(\rho_l \) .. Dichte der Luft [kg/m³]
\(\Pi_V \) ... Druckverhältnis des Verdichters [-]
\(\tau \) .. Zeit für Verbrauch von einem Liter Brennstoff [s]

\(\Delta \) ... Ergebnismessunsicherheit der jeweiligen Größe mit Ausnahme der Druckdifferenzen
\(\Delta p \) .. Druckdifferenz [mbar]
\(\Delta p_{Bl} \) .. Druckdifferenz Blende [mbar]
\(\Delta p_{01} \) Druckdifferenz zwischen Verdichtereintritt und Umgebung [mbar]
\(\Delta p_{04} \) Druckdifferenz zwischen Turbinenaustritt und Umgebung [mbar]
\(\Delta x \) ... Fehler einer Einzelmessgröße
\(\Delta y \) ... Fehler einer Ergebnisgröße
\((1 - \alpha) \) .. Vertrauensniveau [-]
Einleitung

Bedeutung der Indizes

0 ... Umgebung
1 ... Verdichtereintritt
2 ... Verdichteraustritt
3 ... Turbineneintritt
4 ... Turbinenaustritt
An ... Annahme
BK ... Brennstoff
i ... Brennkammer
L ... Laufvariable
RG ... Luft
s ... Rauchgas
T ... isentrop
th ... Turbine
V ... Verdichter
1. Einleitung

1.1. Problemstellung

Ziel dieser Arbeit ist es ein einheitliches Verfahren zu finden, das ermöglicht Unsicherheiten in der Leistungs- und Wirkungsgradmessung zu berücksichtigen.

1.2. Motivation

Motivation ist die Umsiedlung der Laborräumlichkeiten vom Getreidemarkt ins Arsenal. Dort möchte man an der Messtechnik arbeiten, um eine Datenverarbeitung mit dem PC zu ermöglichen. Es sollen dann alle Versuchsmessgrößen in LabView eingespeist werden.

2. Theoretische Grundlagen

2.1. Gasturbinenprozess

Abbildung 1: Der offene Gasturbinenprozess [15], S.1

In Abbildung 2 ist der ideale Prozessverlauf der isentropen Verdichtung (1-2s) und der isentropen Entspannung (3-4s) strichliert eingetragen.

Abbildung 2: T, s - Diagramm eines Gasturbinenprozesses [15], S.2

2.2. Messtechnik
Da sich das Thema der Arbeit um Messunsicherheiten dreht folgt hier eine kurze Erklärung der wichtigsten Begriffe und Definitionen der Messtechnik.

Der wahre Wert
Nach DIN 1319-1 [3], S.3 kann der wahre Wert einer Messung aufgrund der Unzulänglichkeiten der Messgeräte und des Messobjekts nie angegeben werden. Es kann nur ein Schätzwert ermittelt werden. Die beste Schätzung für den wahren Wert ist das arithmetische Mittel \(\bar{x} \), das nach Gleichung (1) berechnet wird.

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}
\]

Das Messergebnis wird verfälscht durch zwei Arten von Abweichungen, den systematischen und den zufälligen.

Lt. DIN 1319-1 [3], S.12 kommt ein zufälliger Messfehler durch nicht kontrollierbare Einflüsse zustande. Dazu gehören die Veränderungen der gemessenen Größe, die Veränderungen der Einflussgrößen, wie zum Beispiel die Umgebungstemperatur, der Einfluss des Messgeräts und der durchführenden Person.

Messunsicherheit
Lt. DIN 1319-1 [3], S.14 ist die Messunsicherheit ein Bereich, der vorgibt wo der wahre Messwert zu finden ist. Er kennzeichnet die Genauigkeit einer Messung. Es gibt hier zwei unterschiedliche Werte: Einmal gibt es die Standardunsicherheit \(u \). Und dann gibt es noch eine erweiterte Unsicherheit \(u^* \), die zu einem Vertrauensniveau \(1 - \alpha \) angegeben wird. Das Vertrauensniveau gibt an, mit welcher Wahrscheinlichkeit der wahre Wert im angegebenen Bereich, dem Vertrauensbereich, liegt.

Die Standardunsicherheit errecknet sich nach Gleichung (2) aus der empirischen Standardabweichung in (3) und die erweiterte Messunsicherheit nach (4).
Mit n wird die Anzahl der Messungen bezeichnet, mit t der Studentfaktor, das ist der Erweiterungsfaktor für eine bestimmte Anzahl von Messungen und ein festes Vertrauensniveau.
3. Grundlagen über Abnahmemessungen

3.1. Die wichtigsten Normen und Richtlinien
Zur Übersicht wird hier nun auf alle dieser Arbeit zugrundeliegenden Normen und Richtlinien eingegangen. Dazu zählen die folgenden:

- DIN 1319
- DIN 1943
- DIN 4341
- ISO 2314
- VDI 2048
- ASME PTC 19.1
- ASME PTC 22

3.1.1. DIN 1319: Grundlagen der Messtechnik lt. [2; 3; 4]

$$u(y) = \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i} \right)^2 u^2(x_i)} \tag{5}$$

Wenn bei einem Messproblem die Bestimmung mehrerer Größen aus den Messwerten gefordert ist, kann die DIN 1319-4 [4] verwendet werden. Hier wird mit Matrizen gearbeitet, was für diese Arbeit allerdings keine Rolle spielt, da nur mit kleinen Datenmengen gearbeitet wird.

3.1.2. DIN 1943: Wärmetechnische Abnahmeversuche an Dampfturbinen lt. [5]
Die DIN 1943 befasst sich mit Abnahmeversuchen bei Dampfturbinen. Sie geht genau auf die Vorgänge rund um einen Abnahmeversuch ein. Auch mit der Auswertung dieser Versuche beschäftigt sich die Norm, was sie für diese Arbeit interessant macht.

Weiters gibt die DIN 1943 eine Anleitung wie lange die Versuchszeit zu wählen ist und in welchen Intervallen die Messgrößen abgelesen werden sollen.

3.1.3. DIN 4341: Abnahmeregel für Gasturbinen [13, 6]

\[
\Delta y = \pm \sqrt{\left(\frac{\partial y}{\partial x_1} \cdot \Delta x_1 \right)^2 + \left(\frac{\partial y}{\partial x_2} \cdot \Delta x_2 \right)^2 + \cdots + \left(\frac{\partial y}{\partial x_n} \cdot \Delta x_n \right)^2}
\]

3.1.4. ISO 2314: Gas turbines – Acceptance tests lt. [8]

Die ISO 2314 entspricht der oben beschriebenen DIN 4341, daher wird auf diese Norm der „International Organization for Standardization“ nicht näher eingegangen.

3.1.5. VDI 2048: Messunsicherheiten bei Abnahmemessungen an energie- und kraftwerkstechnischen Anlagen [9; 10; 11]

3.1.6. ASME PTC 19.1: Test Uncertainty lt. [1]

Die ASME PTC 19.1 wurde angepasst an die ISO Richtlinien zur Angabe von Messunsicherheiten, daher ist sie im Großeinheitlich mit der DIN 1319 [2; 3; 4]. Im Unterschied zur ISO beachtet die ASME PTC 19.1 die Herkunft der Messunsicherheiten nicht.

Grundlagen über Abnahmemessungen

\[U_{95} = 2 \sqrt{\left(\frac{B}{2}\right)^2 + (S_X)^2} \]
(7) aus [1]

Gleichung (7) gilt nur, wenn das Vertrauensniveau von einer Wahrscheinlichkeit von 95 % angebracht ist, die Annahme von \(t_{\alpha} \), d.h. mehr als 30 Messungen vorliegen müssen. Darüber hinaus muss noch gelten, dass der Fehler normalverteilt ist.

3.1.7. ASME PTC 22: Performance Test Code on Gas Turbines Lt. [12]

Die ASME PTC 22 gilt im Speziellen für Abnahmemessungen von Gasturbinen. Wichtig hierbei sind die Messung der Prozessgrößen und die Bestimmung der abgegebenen Leistung und des Wirkungsgrades. Table 3.3.3 S. 10 [12] gibt an, ab wann gemessen werden darf, da sich der Betrieb erst stabilisieren muss. Auch über die Messdauer und die Ableseintervalle macht sie eine Aussage.

3.2. Tabellarische Zusammenfassung

Einen Vergleich zu den Angaben der Frequenz der Messung und der Messdauer im betrachteten Betriebspunkt gibt Tabelle 1

<table>
<thead>
<tr>
<th>Tabelle 1: Testdurchführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messdauer</td>
</tr>
<tr>
<td>DIN 4341 [6; 13]</td>
</tr>
<tr>
<td>Intervall der Messungen</td>
</tr>
<tr>
<td>DIN 4341 [6; 13]</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10</td>
</tr>
</tbody>
</table>

Einen zahlenmäßigen Vergleich zu den zulässigen Abweichungen der Größen von ihren Mittelwerten und zum stabilen Betriebspunkt gibt die untenstehende Tabelle 2 an.

<table>
<thead>
<tr>
<th>Tabelle 2: maximal zulässige Abweichung einer Messgröße von ihrem Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drehzahl n</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10 Table 3.3.3</td>
</tr>
<tr>
<td>Umgebungsluftdruck (p_0)</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10 Table 3.3.3</td>
</tr>
<tr>
<td>Verdichtereintrittstemperatur (T_2)</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10 Table 3.3.3</td>
</tr>
<tr>
<td>Verdichtereintrittsdruck (p_1)</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10 Table 3.3.3</td>
</tr>
<tr>
<td>Turbinenaustrittsdruck (p_3)</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10 Table 3.3.3</td>
</tr>
<tr>
<td>Drehmoment M</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10 Table 3.3.3</td>
</tr>
<tr>
<td>Leistung P</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
<tr>
<td>ASME PTC 22 [12] S.10 Table 3.3.3</td>
</tr>
<tr>
<td>Brennstoffmassenstrom</td>
</tr>
<tr>
<td>DIN 4341 [6; 13] S.8 Tabelle 2</td>
</tr>
</tbody>
</table>

3.3. Die Differenzen

Grundlagen über Abnahmemessungen

3.4. Blendenmessung nach DIN EN ISO 5167 [16, 17, 18, 19]

Damit die Messung nach DIN EN ISO 5167 durchgeführt werden kann, darf sich der Durchfluss nicht stark verändern und das Medium muss einphasig strömen. Für die Messung am Rohreinlauf muss sichergestellt werden, dass Störungen abgeklungen sind.

Auf Messunsicherheiten bei der Durchflussmessung geht sie in Kapitel 8 ein (S.20). Sie verweist aber auf genauere Bestimmungen in ISO/TR 5168 [20].

In Teil 2 [18], S.5 wird auf die Berechnung eingegangen. Der Massendurchfluss \(q_m \) berechnet sich aus (9).

\[
q_m = \frac{C}{\sqrt{1 - \beta^4}} \frac{\pi d^2}{4} \sqrt{2 \Delta pp_1} \tag{9} \text{ aus [18] Gl. (1)}
\]

Für Messungen am Rohreinlauf gilt die VDI/VDE 2041 [7]. L.t. derer ist das Durchmesserverhältnis \(\beta \) null, da sich \(\beta \) als Verhältnis zwischen Blendendurchmesser und Durchmesser davor errechnet und beim Einlauf gilt \(D = \infty \).

Der Durchflusskoeffizient \(C \) ist danach 0,5961 und die Expansionszahl \(\varepsilon \) ist durch Gleichung (10) gegeben.

\[
\varepsilon = 1 - 0,351 \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{1}{\gamma}} \right] \tag{10} \text{ aus [19], S.11}
\]

Die Einbausituation einer solchen Blende ist in Abbildung 3 zu sehen. Anhand dieser Abbildung sieht man, dass in Gleichung (10) für \(p_1 \) und \(p_2 \) die Drücke vor und nach der Blende eingesetzt werden.

\[
U_{r_{95}} = 2 \left[\frac{(B_R)^2}{2} + (S_R)^2 \right]^{1/2} \tag{8} \text{ aus [1]}
\]

Abbildung 3: Blendeneinbau [19], S.10
4. Messung

<table>
<thead>
<tr>
<th>Tabelle 3: Kenndaten der Rover 1S/60 [15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennleistung</td>
</tr>
<tr>
<td>Rotordrehzahl</td>
</tr>
<tr>
<td>Abtriebsdrehzahl</td>
</tr>
<tr>
<td>Getriebeuntersetzung</td>
</tr>
<tr>
<td>Brennstoff</td>
</tr>
<tr>
<td>Luftverhältnis</td>
</tr>
<tr>
<td>Brennkammerdruck</td>
</tr>
<tr>
<td>Turbineneintrittstemperatur</td>
</tr>
<tr>
<td>Abgastemperatur</td>
</tr>
</tbody>
</table>

Die betrachtete Turbine besitzt im Auslegungspunkt einen thermischen Wirkungsgrad von ungefähr 13 %. Für die benötigten niedrigen Leistungen würde man heute einen Verbrennungsmotor einsetzen, beziehungsweise eine Gasturbine mit Rekuperator.

4.2. Der Turbinenprüfstand
Der Turbinenprüfstand ist so aufgebaut, dass man auf einer Anzeigetafel die meisten relevanten Betriebsgrößen ablesen kann. Die Anzeigetafel ist auf der Fotografie in Abbildung 5 zu sehen. Wobei die Messaufnehmer verteilt über die Kleingasturbine sind, wie in Abbildung 6 zu sehen ist. Die Funktionsweise und die genaue Position dieser Messaufnehmer ist in Kapitel 4.3 angeführt.
4.3. Messgrößen und Messgeräte
Es werden bei jeder Versuchsdurchführung mehrere verschiedene Größen, die von der physikalischen Beschaffenheit verschieden sind, beobachtet und ihr geschätzter mittlerer Wert niedergeschrieben. Gemessen werden folgende Größen:

- Die Umgebungstemperatur t_0 und der Umgebungsdruck p_0,
- der Blendendifferenzdruck Δp_{Bl},
- der Differenzdruck zwischen Verdichtereintritt und der Umgebung Δp_{01},
- der Verdichteraustrittsdruck p_2,
- die Verdichteraustrittstemperatur t_2,
- die Dauer τ bis 1 l Brennstoff verbraucht ist,
- der Turbineneintrittsdruck p_3,
- die Turbinenaustrittstemperatur t_4 an 4 Stellen am Umfang,
- der Differenzdruck zwischen dem Turbinenaustritt und der Umgebung Δp_{04},
- die Drehzahl n,
- das Drehmoment M und
- die Leistung P_{eff}.

Abbildung 6: Messaufbau [15]

4.3.1. Die Umgebungstemperatur t_0 und der Umgebungsdruck p_0
Die Umgebungsbedingungen werden mit einem kombinierten Barometer und Thermometer gemessen. Der Umgebungsdruck p_0 ist ein Absolutdruck und wird in mbar gemessen. Die Temperatur wird in °C angezeigt. Ausgegeben werden sie als diskrete Zahlenwerte die in ihrem Verhalten sehr stabil sind.
4.3.2. Der Blendendifferenzdruck Δp_{Bl} und Differenzdruck Δp_{01}
Der Blendendifferenzdruck Δp_{Bl} dient der Bestimmung des Luftmassenstroms \dot{m}_L, nach der VDI/VDE 2041 für Blendemessungen am Rohreinlauf.

Diese beiden Differenzdrücke werden in der Maßeinheit mbar angegeben. Das Differenzdruckmessgerät ist von JUMO mit der Nummer 43.4304 mit einem Messbereich von 0-25 mbar.

4.3.3. Der Verdichteraustrittsdruck p_2 und der Turbineneintrittsdruck p_3

4.3.4. Die Verdichteraustrittstemperatur t_2
Die Verdichteraustrittstemperatur t_2 wird mittels eines Thermoelements bestimmt. Die Thermoelemente nutzen den sogenannten thermoelektrischen SEEBECK-Effekt aus. Dabei wirkt eine Spannung zwischen zwei Leitern wenn ihnen eine Temperaturdifferenz anliegt.

4.3.5. Zeitmessung für Verbrauch eines Liters Brennstoff τ
Die Zeitmessung wird mit einer Stoppuhr durchgeführt. Dabei wird angenommen, dass der Fehler rein durch den Abstoppvorgang entsteht. Hier wird davon ausgegangen, dass der Fehler aus der Reaktionszeit von 0,2 Sekunden hervorgerufen wird. Aufgrund dieser Annahme wird in weiterer Folge die Standardabweichung geschätzt.

4.3.6. Die Turbinenaustrittstemperatur t_4
Die Turbinenaustrittstemperatur t_4 wird mittels vier am Umfang verteilten Thermoelementen gemessen. Das Ergebnis erhält man durch Mittelung über die vier Messergebnisse. Die Werte der Temperatur sind über den Umfang verschieden.

4.3.7. Der Differenzdruck Δp_{04}
Δp_{04} gibt die Differenz vom Umgebungsdruck p_0 und dem Turbinenaustrittsdruck p_4 an, wie man dem h/s-Diagramm in Abbildung 7 entnehmen kann. Sie charakterisiert den Austrittsdruckverlust über der Rohrleitung und dem Schalldämpfer, der sich zwischen den Punkten 4 und 5 in Abbildung 6 befindet.

Für Δp_{04} wird ebenfalls ein JUMO Differenzdruckmessgerät Nr. 43.4304 verwendet. Der Messbereich reicht von 0 bis 1,6 mbar.
4.3.8. Die effektive Leistung P_{eff}, die Drehzahl n, das Drehmoment M

$$M = F_{\text{Brems}} \cdot l_{\text{Hebel}} \quad (11)$$

Mittels eines passiven Induktivgebers am Flansch zwischen Getriebe und Bremse wird die Drehzahl ermittelt. Der passive Sensor besteht aus einer Spule mit magnetischem Kern. Wenn das magnetische Gegenstück sich dreht ändert sich das Magnetfeld und induziert eine Spannung in der Spule. Der Sensor benötigt Hilfsenergie, daher wird er als passiv bezeichnet.

Für die effektive Leistung gilt die Gleichung (12):

$$P_{\text{eff}} = M \frac{2\pi n}{60} \quad (12)$$

4.4. Versuchsdurchführung

Die anderen Größen werden während der Laborübung ein Mal im Mittel geschätzt und notiert. In dem dieser Arbeit vorausgehenden Durchlauf (05.03.2015) wurde in regelmäßigen Abständen jeder Messwert aufgezeichnet, nach dem Vorbild der ASME PTC 22 [12]. Sie gibt vor, dass Werte die stärker schwanken in kürzeren Abständen gemessen werden sollen, um ihre Standardabweichung besser abschätzen zu können.

Bei der Ablesung der Werte fällt auf, dass die Druckdifferenz zwischen Turbinenaustritt und Umgebung Δp_{04} sehr stark schwankt. Sonst bewegen sich alle Messwertveränderungen in moderaten Bereichen.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Größe & Einheit & BP1 & BP2 & BP3 & BP4 \\
\hline
t_0 °C & 18,4 & 18,4 & 18,4 & 18,4 \\
p_0 mbar & 1007,6 & 1007,6 & 1007,6 & 1007,6 \\
P_{eff} kW & 3,78 & 6,224 & 8,269 & 10,736 \\
Δp_{BI} mbar & 6,15 & 6,25 & 6,08 & 5,75 \\
Δp_{01} mbar & 9,4 & 9,55 & 9,3 & 8,64 \\
p_2 mbar & 1619 & 1657 & 1665 & 1672,5 \\
p_3 mbar & 1543,5 & 1582,5 & 1592 & 1603,5 \\
Δp_{04} mbar & 0,3543 & 0,5254 & 0,4983 & 0,2382 \\
t_2 °C & 88,2 & 91,6 & 93,65 & 96 \\
$t_{4,1}$ °C & 472 & 511,7 & 548 & 593,2 \\
$t_{4,2}$ °C & 457,5 & 501 & 549 & 616,2 \\
$t_{4,3}$ °C & 517 & 563 & 585 & 657,8 \\
$t_{4,4}$ °C & 499,5 & 526 & 548,5 & 588 \\
t_4 °C & 486,5 & 525,4 & 557,6 & 613,8 \\
r s & 175,2 & 163,2 & 154,2 & 142,2 \\
M Nm & 18,5 & 29,4 & 39,2 & 51,3 \\
\hline
\end{tabular}
\caption{Tabelle 4: Messwerte der vier Betriebspunkte (BP)}
\end{table}

\section*{4.5. Versuchsauswertung}
\subsection*{4.5.1. Berechnungsbeschreibung}
\subsubsection*{4.5.1.1. Berechnung der fehlenden Drücke und Temperaturen}
Mithilfe der einfachen Zusammenhänge nach den Gleichungen (13) und (14) berechnet man den Verdichtereintrittsdruck p_1 und den Turbinenaustrittsdruck p_4.

\begin{align*}
p_1 &= p_0 - \Delta p_{01} \quad (13) \text{ aus [15]} \\
p_4 &= p_0 + \Delta p_{04} \quad (14) \text{ aus [15]}
\end{align*}
Weiters gilt, dass die Verdichtereintrittstemperatur gleich der Umgebungstemperatur ist.

4.5.1.2. Luftmassenstrom \dot{m}_L

Um den Luftmassenstrom zu bestimmen, müssen die Koeffizienten für die Rohreinlaufblendenmessung bekannt sein. Diese sind in der Tabelle 5 grau hinterlegt. Die grün hinterlegten Größen sind berechnete Werte.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>°C</td>
<td>18,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>-</td>
<td>0,596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>m</td>
<td>0,140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>0,245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d/D</td>
<td>-</td>
<td>0,571</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>-</td>
<td>0,998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{Bl}</td>
<td>m²</td>
<td>0,015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_L</td>
<td>kg/m³</td>
<td>1,198</td>
<td>1,198</td>
<td>1,198</td>
<td>1,198</td>
</tr>
<tr>
<td>Δp</td>
<td>Pa</td>
<td>615</td>
<td>625</td>
<td>608</td>
<td>575</td>
</tr>
<tr>
<td>p_0</td>
<td>Pa</td>
<td>100760</td>
<td>100760</td>
<td>100760</td>
<td>100760</td>
</tr>
<tr>
<td>p_{1Bl}</td>
<td>Pa</td>
<td>100145</td>
<td>100135</td>
<td>100152</td>
<td>100185</td>
</tr>
<tr>
<td>m_L</td>
<td>kg/s</td>
<td>0,3517</td>
<td>0,3545</td>
<td>0,3497</td>
<td>0,3401</td>
</tr>
</tbody>
</table>

Die Blendenmessung wird nach den in Kapitel 3.4 beschriebenen Normen durchgeführt. Der Luftmassenstrom berechnet sich nach Gleichung (15)

$$ \dot{m}_L = \alpha \varepsilon A_{Bl} \sqrt{2 \rho \Delta p_{Bl}} \quad \text{(15) aus [7]}$$

Die Ausflusszahl α errechnet sich mit dem Durchflusskoeffizient C und dem Vorgeschwindigkeitsfaktor E.

$$ \alpha = C \cdot E \quad \text{(16) aus [15], S.9}$$

Die Expansionszahl ε ergibt sich aus der Gleichung (17).

$$ \varepsilon = 1 - 0,351 \cdot \left(1 - \frac{p_1}{p_0}\right)^{\frac{1}{2}} \quad \text{(17) aus [15], S.16}$$

4.5.1.3. Der Verdichter

Zur Berechnung der den Verdichter betreffenden Größen benötigt man die folgenden Stoffwerte:

- die spezifische isobare Wärmekapazität der Luft beim Verdichtereintritt c_{p1} und
- die spezifische isobare Wärmekapazität der Luft beim Verdichteraustritt c_{p2}.

Aus diesen beiden Werten wird die mittlere spezifische Wärmekapazität $c_{p_{12}}$ berechnet. Die Wärmekapazitäten entnimmt man der Abbildung 24. Die Werte werden bei den jeweiligen Temperaturen und für reine Luft, d.h. wieder mit einer unendlich großen Luftzahl, abgelesen.
Das Verdichterdruckverhältnis Π_V des Verdichters ist eine wichtige charakteristische Größe. Sie berechnet sich aus (18).

\[\Pi_V = \frac{p_2}{p_1} \] \hspace{1cm} (18) \text{ aus [15]}

Die spezifische (isentrope) Verdichterarbeit $H_{V(s)}$ berechnet sich nach Gleichung (19) und die isentrope Temperatur berechnet sich nach Gleichung (20).

\[H_{V(s)} = c_{pm12(s)}(T_{2(s)} - T_1) \] \hspace{1cm} (19)

\[T_{2s} = T_1\Pi_V^\frac{k-1}{k} \] \hspace{1cm} (20) \text{ aus [15]}

\[\eta_{V_S} = \frac{H_{VS}}{H_V} \] \hspace{1cm} (21)

Aus den beiden spezifischen Arbeiten H_V und H_{V_S} kann nun der isentrope Verdichterwirkungsgrad η_{V_S} nach (21) errechnet werden. In Tabelle 6 findet sich eine Zusammenfassung der benötigten und berechneten Größen. Wie man sieht, bewegt sich der isentrope Verdichterwirkungsgrad η_{V_S} ungefähr bei Werten zwischen 60 und 66 %.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>°C</td>
<td>18,4</td>
<td>18,4</td>
<td>18,4</td>
<td>18,4</td>
</tr>
<tr>
<td>T_1</td>
<td>K</td>
<td>291,55</td>
<td>291,55</td>
<td>291,55</td>
<td>291,55</td>
</tr>
<tr>
<td>t_2</td>
<td>°C</td>
<td>88,2</td>
<td>91,6</td>
<td>88,2</td>
<td>96</td>
</tr>
<tr>
<td>T_2</td>
<td>K</td>
<td>361,35</td>
<td>361,35</td>
<td>366,8</td>
<td>369,15</td>
</tr>
<tr>
<td>p_1</td>
<td>mbar</td>
<td>998,2</td>
<td>998,05</td>
<td>998,3</td>
<td>998,96</td>
</tr>
<tr>
<td>p_2</td>
<td>mbar</td>
<td>1619</td>
<td>1675</td>
<td>1665</td>
<td>1672,5</td>
</tr>
<tr>
<td>c_{p1}</td>
<td>kJ/kgK</td>
<td>1,0115</td>
<td>1,0115</td>
<td>1,0115</td>
<td>1,0115</td>
</tr>
<tr>
<td>c_{p2}</td>
<td>kJ/kgK</td>
<td>1,017</td>
<td>1,017</td>
<td>1,0175</td>
<td>1,0175</td>
</tr>
<tr>
<td>c_{pm12}</td>
<td>kJ/kgK</td>
<td>1,01425</td>
<td>1,01425</td>
<td>1,0145</td>
<td>1,0145</td>
</tr>
<tr>
<td>Π_V</td>
<td>-</td>
<td>1,621919</td>
<td>1,660237</td>
<td>1,667835</td>
<td>1,674241</td>
</tr>
<tr>
<td>H_V</td>
<td>kJ/kg</td>
<td>70,79465</td>
<td>74,2431</td>
<td>70,8121</td>
<td>78,7252</td>
</tr>
<tr>
<td>T_{2s}</td>
<td>K</td>
<td>334,75</td>
<td>336,99</td>
<td>337,43</td>
<td>337,80</td>
</tr>
<tr>
<td>H_{V_S}</td>
<td>kJ/kg</td>
<td>43,82</td>
<td>46,09</td>
<td>46,55</td>
<td>46,92</td>
</tr>
<tr>
<td>η_{V_S}</td>
<td>-</td>
<td>0,619</td>
<td>0,621</td>
<td>0,657</td>
<td>0,596</td>
</tr>
</tbody>
</table>

4.5.1.4. Die Brennkammer

Die benötigten Größen sind in Tabelle 7 zusammengefasst.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{RG}</td>
<td>kg/s</td>
<td>0,357</td>
<td>0,360</td>
<td>0,355</td>
<td>0,346</td>
</tr>
<tr>
<td>m_L</td>
<td>kg/s</td>
<td>0,352</td>
<td>0,355</td>
<td>0,350</td>
<td>0,340</td>
</tr>
<tr>
<td>m_B</td>
<td>kg/s</td>
<td>0,00499</td>
<td>0,00536</td>
<td>0,00567</td>
<td>0,00615</td>
</tr>
<tr>
<td>ρ_B</td>
<td>kg/l</td>
<td>0,875</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_u</td>
<td>kJ/kg</td>
<td>42700</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Die Stoffwerte des Brennstoßs, seine Dichte ρ_B und sein unterer Heizwert H_u sind aus [15], S.17 bekannt. Der Brennstoffmassenstrom m_B wird aus Gleichung (22) berechnet.

\[m_B = \frac{\rho_B}{\tau} \quad (22) \quad \text{aus [15]} \]

Der Rauchgasmassenstrom m_{RG} setzt sich additiv aus dem Brennstoffmassenstrom m_B und dem Luftmassenstrom m_L zusammen. Mit diesem Wissen kann nun die Luftzahl nach (23) berechnet werden.

\[\lambda = \frac{m_B}{m_{RG} \cdot 14,5} \quad (23) \quad \text{aus [15]} \]

Im nächsten Berechnungsschritt muss vorerst eine theoretische Temperatur am Turbineneintritt T_{3thAn} angenommen werden. Mit dieser liest man die Wärmekapazität c_{p3th} für die vorher berechnete Luftzahl aus der Abbildung 24 ab, berechnet daraus die mittlere spezifische Wärmekapazität c_{pm23th}. Schließlich ergibt sich mit (24) die theoretische Turbineneintrittstemperatur T_{3th}. Wenn nun die Differenz zwischen der angenommenen und der errechneten Temperatur kleiner als 5°C ist, kann an dieser Stelle abgebrochen werden. Wenn nicht, muss der Iterationsvorgang fortgeführt werden indem man eine neue Temperatur T_{3thAn} wählt und so weiterrechnet.

\[T_{3th} = \frac{m_B H_u}{c_{pm23th} m_{RG}} + T_2 \quad (24) \quad \text{aus [15]} \]

Die berechneten Werte sind in Tabelle 8 angegeben.

Tabelle 8: Ergebnis Brennkammer

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td></td>
<td>4,9</td>
<td>4,6</td>
<td>4,2</td>
<td>3,8</td>
</tr>
<tr>
<td>T_{3th}-Annahme</td>
<td>°C</td>
<td>640</td>
<td>675</td>
<td>720</td>
<td>790</td>
</tr>
<tr>
<td>C_{p2}</td>
<td>kJ/kgK</td>
<td>1,017</td>
<td>1,017</td>
<td>1,017</td>
<td>1,017</td>
</tr>
<tr>
<td>C_{p3th}</td>
<td>kJ/kgK</td>
<td>1,134</td>
<td>1,142</td>
<td>1,152</td>
<td>1,165</td>
</tr>
<tr>
<td>C_{pm23th}</td>
<td>kJ/kgK</td>
<td>1,0755</td>
<td>1,0795</td>
<td>1,0848</td>
<td>1,0913</td>
</tr>
<tr>
<td>T_{3th}-Berechnung</td>
<td>K</td>
<td>917,26</td>
<td>950,62</td>
<td>995,38</td>
<td>1064,60</td>
</tr>
</tbody>
</table>

4.5.1.5. Die Turbine

Die Leistung der Turbine ergibt sich aus der Summe der abgegebenen effektiven Leistung an der Wirbelstrombremse P_{eff}, der Leistung die der Verdichter aufnimmt P_V und den Reibungsverlusten P_R. Die Verlustleistung P_R ist abhängig von der Drehzahl n und wird lt. den Herstellerangaben mit Abbildung 25 abgeschätzt.

Aus den spezifischen Wärmekapazitäten berechnet sich nach (25) die mittlere spezifische Wärmekapazität c_{pm34}. Mit der Leistung der Turbine P_T wird mit (26) die Turbineneintrittstemperatur T_3 ermittelt und weiter dann die isentrope Turbinenaustrittstemperatur T_{4s} mit (27).
\[c_{pm34} = \frac{c_p + c_p}{2} \]

(25)

\[T_3 = \frac{P_T}{m_{RG} c_{pm34}} + T_4 \]

(26) aus [15]

\[T_{4s} = T_3 \left(\frac{P_4}{P_3} \right)^{\frac{R_{RG}}{c_{pm34}}} \]

(27)

Dann kann man schon die spezifischen Turbinenarbeiten \(H_T \) und \(H_{Ts} \) mit (28) und (29) errechnen, den isentropen Turbinenwirkungsgrad \(\eta_{Ts} \) durch (30). Die noch fehlenden Größen, der Gesamtwirkungsgrad der Kleingasturbine \(\eta_{eff} \) der Brennkammerwirkungsgrad \(\eta_{BK} \) und der spezifische Brennstoffverbrauch \(b_B \) werden über die Gleichungen (31), (32) und (33) bestimmt.

\[H_{Ts} = c_{pm34} (T_3 - T_{4s}) \]

(28)

\[H_T = \frac{P_T}{m_{RG}} \]

(29)

\[\eta_{Ts} = \frac{H_T}{H_{Ts}} \]

(30)

\[\eta_{eff} = \frac{P_{eff}}{m_B H_U} \]

(31) aus [15]

\[\eta_{BK} = \frac{c_p t_3 - c_p t_2}{c_p t_3 t_{3th} - c_p t_2} \]

(32)

\[b_B = \frac{m_B}{P_{eff}} \]

(33)

Die Zusammenfassung und die Ergebnisse dieser Rechnungen für die Turbine finden sich in Tabelle 9.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_V)</td>
<td>kW</td>
<td>24,8977</td>
<td>26,3219</td>
<td>24,7617</td>
<td>26,7713</td>
</tr>
<tr>
<td>(n)</td>
<td>U/min</td>
<td>1971</td>
<td>2004,33333</td>
<td>2004,5</td>
<td>2000,2</td>
</tr>
<tr>
<td>(P_R)</td>
<td>kW</td>
<td>1,35</td>
<td>1,33</td>
<td>1,34</td>
<td>1,35</td>
</tr>
<tr>
<td>(P_T)</td>
<td>kW</td>
<td>30,0277</td>
<td>33,8759</td>
<td>34,3707</td>
<td>38,8573</td>
</tr>
<tr>
<td>(t_{3An1})</td>
<td>°C</td>
<td>560</td>
<td>610</td>
<td>640</td>
<td>712</td>
</tr>
<tr>
<td>(T_{3An1})</td>
<td>K</td>
<td>833,15</td>
<td>883,15</td>
<td>913,15</td>
<td>985,15</td>
</tr>
<tr>
<td>(c_p3)</td>
<td>kJ/kgK</td>
<td>1,116</td>
<td>1,128</td>
<td>1,1345</td>
<td>1,15</td>
</tr>
<tr>
<td>(t_4)</td>
<td>°C</td>
<td>486,5</td>
<td>525,416667</td>
<td>557,625</td>
<td>613,8</td>
</tr>
<tr>
<td>(T_4)</td>
<td>K</td>
<td>759,65</td>
<td>798,566667</td>
<td>830,775</td>
<td>886,95</td>
</tr>
<tr>
<td>(c_p4)</td>
<td>kJ/kgK</td>
<td>1,099</td>
<td>1,104</td>
<td>1,116</td>
<td>1,1285</td>
</tr>
<tr>
<td>(c_{pm34})</td>
<td>kJ/kgK</td>
<td>1,1075</td>
<td>1,116</td>
<td>1,12525</td>
<td>1,13925</td>
</tr>
<tr>
<td>(R_{RG})</td>
<td>J/kgK</td>
<td>288,49</td>
<td>288,49</td>
<td>288,49</td>
<td>288,49</td>
</tr>
<tr>
<td>(T_3)</td>
<td>K</td>
<td>835,66</td>
<td>882,91</td>
<td>916,73</td>
<td>985,47</td>
</tr>
<tr>
<td>(t_3)</td>
<td>°C</td>
<td>562,51</td>
<td>609,76</td>
<td>643,58</td>
<td>712,32</td>
</tr>
<tr>
<td>(T_{4s})</td>
<td>K</td>
<td>747,87</td>
<td>785,77</td>
<td>815,39</td>
<td>876,14</td>
</tr>
<tr>
<td>(H_{Ts})</td>
<td>kJ/kg</td>
<td>97,24</td>
<td>108,41</td>
<td>114,03</td>
<td>124,56</td>
</tr>
<tr>
<td>(H_T)</td>
<td>kJ/kg</td>
<td>84,19</td>
<td>94,13</td>
<td>96,72</td>
<td>112,24</td>
</tr>
<tr>
<td>(\eta_{Ts})</td>
<td>-</td>
<td>0,866</td>
<td>0,868</td>
<td>0,848</td>
<td>0,901</td>
</tr>
<tr>
<td>(\eta_{eff})</td>
<td>-</td>
<td>0,018</td>
<td>0,027</td>
<td>0,034</td>
<td>0,041</td>
</tr>
<tr>
<td>(\eta_{BK})</td>
<td>-</td>
<td>0,840</td>
<td>0,874</td>
<td>0,863</td>
<td>0,875</td>
</tr>
<tr>
<td>(b_B)</td>
<td>kg/kWh</td>
<td>4,76</td>
<td>3,10</td>
<td>2,47</td>
<td>2,06</td>
</tr>
</tbody>
</table>
Zusammengefasst sind die Wirkungsgrade der Kleingasturbine in Abbildung 8.

Abbildung 8: Zusammenfassung

4.5.2. Vorgehen bei der Fehlerberechnung [2]

Die übliche Vorgehensweise um ein vollständiges Messergebnis zu erhalten, mit einem Mittelwert und einer geschätzten Messunsicherheit, wird hiernach vorgestellt:

Man kann bei einer Messung den wahren Wert nicht ermitteln. Für den wahren Wert steht der Erwartungswert μ. Als richtigen Wert versteht man jenen, der eine vernachlässigbare Abweichung zum wahren Wert aufweist. Es werden bei einer Messung eine Anzahl n von Messwerten x_i aufgenommen. Aus diesen werden nun der Mittelwert \bar{x} und die empirische Standardabweichung s nach den Gleichungen (34) und (35) berechnet:

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad (34) \quad \text{aus [2], S.5 (2)}
\]

\[
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \quad (35) \quad \text{aus [2], S.5 (3)}
\]

Unter der Standardabweichung σ versteht man die wahren Verhältnisse der Streuung um den wahren Wert μ, wenn man alle Werte betrachtet, die bei der Messung möglich sind. Die empirische Standardabweichung s ist sozusagen wiederum eine Schätzung dieses Wertes. Sie ist die Berechnung für eine begrenzte Anzahl von Messungen n.

Um eine Messunsicherheit beurteilen zu können, bedient man sich der Gleichung (36). Die Größe ν wird als Standardunsicherheit bezeichnet.

\[
\nu = \frac{s}{\sqrt{n}} \quad (36) \quad \text{aus [2], S.5 (4)}
\]

Dieses Procedere nach DIN 1319 deckt sich mit der Vorgehensweise in der ASME PTC 19.1.
Allgemein gilt natürlich, wenn mehr Messwerte zur Verfügung stehen, ist die Schätzung des wahren Wertes, der arithmetische Mittelwert \(\bar{x} \) genauer, dann wird die Unsicherheit \(u \) kleiner. Weiters gilt, dass die Streuung der Messwerte um den wahren Wert nur aus der zufälligen Messabweichung resultiert. Die systematische Messabweichung verschiebt nämlich den Mittelwert und den Bereich als Ganzes.

\[
\bar{x} = \bar{x} \pm u \tag{37}
\]

(9) aus [2], S.6

Das vollständige Messergebnis besteht nun aus dem berechneten Mittelwert und der Angabe des Intervalls der Messunsicherheit wie in (37). Diesen Bereich der Messunsicherheit kann man sich, wie in Abbildung 9 dargestellt, vorstellen. Darin sieht man, dass der wahre Wert nicht unbedingt innerhalb des angegebenen Bereiches liegen muss.

Abbildung 9: vollständiges Messergebnis

Nun ist lt. DIN 1319-3 die Wahrscheinlichkeit, dass sich der wahre Wert wirklich im angegebenen Bereich befindet ab 125 Messwerten bei 68%. [2], S.8 Tabelle 1. Um die Wahrscheinlichkeit zu erhöhen, gibt man in weiterer Folge meist den erweiterten Vertrauensbereich mit einem Vertrauensniveau \((1 - \alpha)\) von 95% an. Dabei wird einfach der Bereich um einen gewissen Faktor vergrößert. Der für feste Vertrauensniveaus bestimmte Wert heißt Studentfaktor \(t \). Den Studentfaktor \(t \) entnimmt man der Tabelle 10. Man findet diesen Wert aber auch in [1]. Die Normen zur Abnahmemessung empfehlen hier ein Vertrauensniveau mit einer Wahrscheinlichkeit von 95% zu wählen. Der zugehörige Wert des Studentfaktors ist ab einer Messwertanzahl von 30 Messungen gleich zwei.
Um nun von dieser Unsicherheit eines Einzelmessergebnisses auf die Messunsicherheit bei einer Berechnung aus mehreren Messwerten zu kommen, wird das GAUSS'sche Fortpflanzungsgesetz benutzt. Dieses ist in Gleichung (38) angegeben.

\[\Delta y = \pm \sqrt{\sum_{i=1}^{n} \left(\frac{\partial y}{\partial x_i} \cdot \Delta x_i \right)^2} \]

(38) aus [6], S.6,

(23)

In der DIN 4341 und in der DIN 1319 ist aber keine Gleichung für die erweiterte Messunsicherheit eines Messergebnisses angegeben. Diese wird nur in der ASME PTC 19.1 erwähnt. Hier ist das Vorgehen mit den Vertrauensniveaus und Wahrscheinlichkeiten genauso wie bei den Einzelmessunsicherheiten: Es wird zuerst aus \(\Delta y \) eine Standardunsicherheit berechnet indem durch die Wurzel der Anzahl dividiert wird. Dann wird dieser Wert mit dem Studentfaktor \(t = 2 \) multipliziert und man erhält den richtigen Fehler für ein Vertrauensniveau von 95\% für das Messergebnis.

4.5.3. Annahmen

In diesem Fall gehen wir davon aus, dass die systematische Komponente der Messabweichung durch Kalibrieren der Messgeräte beseitigt wurde. Darum wird nur die zufällige Messabweichung betrachtet. Jegliche anderen unbekannten systematischen Fehler, die bei der Berechnung den zufälligen Messfehlern zugerechnet würden, werden vernachlässigt.

Für die Berechnung der Fehler wird streng genommen eine Messreihe verwendet, die eine zu kleine Anzahl \(n \) an Messpunkten aufweist um mit statistischen Methoden ausgewertet werden zu können. Aber sie reicht um die Standardunsicherheiten abschätzen zu können und die Tendenzen der Fehler zu erkennen. Die Messung erfüllt ihren Zweck, da offensichtlich wird, welcher Messwert in den Fehler der daraus bestimmten Größe am stärksten eingeht.

Bei Beobachtung der Δp_{04} Anzeige merkt man große Schwankungen, die teilweise nicht zu erklären sind. Daher wird Δp_{04} bei der Fehlerbetrachtung vernachlässigt. Hier bedarf es einer genaueren Analyse um zulässige Aussagen über den Fehler machen zu können.

4.5.4. Berechnung der Fehler

Einzelmessunsicherheit:

Es werden innerhalb der Zeit τ (ca. 2 Minuten) alle Messwerte in regelmäßigen Abständen notiert, daraus der Mittelwert berechnet und die Standardabweichung s abgeschätzt. Die Standardunsicherheit wird (wie oben in Gleichung (36) angegeben) für jeden dieser Messwerte berechnet. Die Auswertung der Mittelwerte, der Standardunsicherheiten, des relativen Fehlers und der erweiterten Messunsicherheit findet sich in Tabelle 11 für den ersten Betriebspunkt. In den Tabellen Tabelle 12, Tabelle 13 und Tabelle 14 sind die anderen drei Messergebnisse der Betriebspunkte eingetragen.
Tabelle 11: Einzelmessergebnis Betriebspunkt 1

<table>
<thead>
<tr>
<th>Messung</th>
<th>Betriebspunkt 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größe</td>
<td>Einheit</td>
</tr>
<tr>
<td>t_0</td>
<td>°C</td>
</tr>
<tr>
<td>p_0</td>
<td>mbar</td>
</tr>
<tr>
<td>n</td>
<td>U/min</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>kW</td>
</tr>
<tr>
<td>Δp_{Bl}</td>
<td>mbar</td>
</tr>
<tr>
<td>Δp_{off}</td>
<td>mbar</td>
</tr>
<tr>
<td>p_2</td>
<td>mbar</td>
</tr>
<tr>
<td>p_3</td>
<td>mbar</td>
</tr>
<tr>
<td>Δp_{04}</td>
<td>mbar</td>
</tr>
<tr>
<td>t_2</td>
<td>°C</td>
</tr>
<tr>
<td>$t_{e,1}$</td>
<td>°C</td>
</tr>
<tr>
<td>$t_{e,2}$</td>
<td>°C</td>
</tr>
<tr>
<td>$t_{e,3}$</td>
<td>°C</td>
</tr>
<tr>
<td>$t_{e,4}$</td>
<td>°C</td>
</tr>
<tr>
<td>t_4</td>
<td>°C</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
</tr>
</tbody>
</table>

Umrechnung auf SI Einheiten

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>Mittelwert</th>
<th>Standardmessunsicherheit</th>
<th>relativer Fehler</th>
<th>erweiterte Messunsicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>K</td>
<td>291,55</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>P_0</td>
<td>Pa</td>
<td>100760</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>n</td>
<td>U/min</td>
<td>1971</td>
<td>1,6330</td>
<td>8,29E-04</td>
<td>3,2660</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>W</td>
<td>3780</td>
<td>8,0178</td>
<td>2,12E-03</td>
<td>16,0357</td>
</tr>
<tr>
<td>Δp_{Bl}</td>
<td>Pa</td>
<td>615</td>
<td>1,6667</td>
<td>2,71E-03</td>
<td>3,3333</td>
</tr>
<tr>
<td>Δp_{off}</td>
<td>Pa</td>
<td>940</td>
<td>2,8868</td>
<td>3,07E-03</td>
<td>5,7735</td>
</tr>
<tr>
<td>p_2</td>
<td>Pa</td>
<td>161900</td>
<td>66,6667</td>
<td>4,12E-04</td>
<td>133,333</td>
</tr>
<tr>
<td>p_3</td>
<td>Pa</td>
<td>154350</td>
<td>83,3333</td>
<td>5,40E-04</td>
<td>166,6667</td>
</tr>
<tr>
<td>Δp_{04}</td>
<td>Pa</td>
<td>35,43</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>T_2</td>
<td>K</td>
<td>361,35</td>
<td>0,0289</td>
<td>7,99E-05</td>
<td>0,0577</td>
</tr>
<tr>
<td>T_4</td>
<td>K</td>
<td>759,65</td>
<td>0,0417</td>
<td>5,48E-05</td>
<td>0,0833</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
<td>175,2</td>
<td>0,1333</td>
<td>7,61E-04</td>
<td>0,2667</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
<td>18,53</td>
<td>0,0167</td>
<td>8,99E-04</td>
<td>0,0333</td>
</tr>
</tbody>
</table>
Tabelle 12: Einzelmessergebnisse Betriebspunkt 2

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>Mittelwert</th>
<th>Standardmessunsicherheit</th>
<th>relativer Fehler</th>
<th>erweiterte Messunsicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>°C</td>
<td>18,40</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>p_0</td>
<td>mbar</td>
<td>1007,60</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>n</td>
<td>U/min</td>
<td>2004,33</td>
<td>0,1667</td>
<td>8,32E-05</td>
<td>0,3333</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>kW</td>
<td>6,224</td>
<td>0,0625</td>
<td>1,00E-02</td>
<td>0,1250</td>
</tr>
<tr>
<td>Δp_{Bl}</td>
<td>mbar</td>
<td>6,25</td>
<td>0,0167</td>
<td>2,67E-03</td>
<td>0,0333</td>
</tr>
<tr>
<td>Δp_{01}</td>
<td>mbar</td>
<td>9,55</td>
<td>0,0423</td>
<td>4,42E-03</td>
<td>0,0845</td>
</tr>
<tr>
<td>p_2</td>
<td>mbar</td>
<td>1657</td>
<td>0,00</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>p_3</td>
<td>mbar</td>
<td>1582,5</td>
<td>0,1667</td>
<td>1,05E-04</td>
<td>0,3333</td>
</tr>
<tr>
<td>Δp_{04}</td>
<td>mbar</td>
<td>0,5254</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>t_2</td>
<td>°C</td>
<td>91,6</td>
<td>0,0333</td>
<td>3,64E-04</td>
<td>0,0667</td>
</tr>
<tr>
<td>t_4_{1}</td>
<td>°C</td>
<td>511,67</td>
<td>0,6009</td>
<td>1,17E-03</td>
<td>1,2019</td>
</tr>
<tr>
<td>t_4_{2}</td>
<td>°C</td>
<td>501</td>
<td>0,7638</td>
<td>1,52E-03</td>
<td>1,5275</td>
</tr>
<tr>
<td>t_4_{3}</td>
<td>°C</td>
<td>563</td>
<td>0,7638</td>
<td>1,36E-03</td>
<td>1,5275</td>
</tr>
<tr>
<td>t_4_{4}</td>
<td>°C</td>
<td>526</td>
<td>0,3333</td>
<td>6,34E-04</td>
<td>0,6667</td>
</tr>
<tr>
<td>t_4</td>
<td>°C</td>
<td>525,42</td>
<td>0,1012</td>
<td>1,93E-04</td>
<td>0,2024</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
<td>163,2</td>
<td>0,1333</td>
<td>8,17E-04</td>
<td>0,2667</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
<td>29,43</td>
<td>0,3586</td>
<td>1,22E-02</td>
<td>0,7172</td>
</tr>
</tbody>
</table>

Umrechnung auf SI Einheiten

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>Mittelwert</th>
<th>Standardmessunsicherheit</th>
<th>relativer Fehler</th>
<th>erweiterte Messunsicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>K</td>
<td>291,55</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>P_0</td>
<td>Pa</td>
<td>100760</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>n</td>
<td>U/min</td>
<td>2004,33</td>
<td>1,67E-01</td>
<td>8,32E-05</td>
<td>0,3333</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>W</td>
<td>6224</td>
<td>6,25E+01</td>
<td>1,00E-02</td>
<td>124,9782</td>
</tr>
<tr>
<td>Δp_{Bl}</td>
<td>Pa</td>
<td>625</td>
<td>1,67E+00</td>
<td>2,67E-03</td>
<td>3,3333</td>
</tr>
<tr>
<td>Δp_{01}</td>
<td>Pa</td>
<td>955</td>
<td>4,23E+00</td>
<td>4,42E-03</td>
<td>8,4515</td>
</tr>
<tr>
<td>p_2</td>
<td>Pa</td>
<td>165700</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>p_3</td>
<td>Pa</td>
<td>158250</td>
<td>1,67E+01</td>
<td>1,05E-04</td>
<td>33,3333</td>
</tr>
<tr>
<td>Δp_{04}</td>
<td>Pa</td>
<td>52,54</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>T_2</td>
<td>K</td>
<td>364,75</td>
<td>3,33E-02</td>
<td>9,14E-05</td>
<td>0,0667</td>
</tr>
<tr>
<td>T_4</td>
<td>K</td>
<td>798,57</td>
<td>1,01E-01</td>
<td>1,27E-04</td>
<td>0,2024</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
<td>163,2</td>
<td>1,33E-01</td>
<td>8,17E-04</td>
<td>0,2667</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
<td>29,43</td>
<td>3,59E-01</td>
<td>1,22E-02</td>
<td>0,7172</td>
</tr>
</tbody>
</table>
Tabelle 13: Einzelmessergebnisse Betriebspunkt 3

<table>
<thead>
<tr>
<th>Messung</th>
<th>Betriebspunkt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größe</td>
<td>Einheit</td>
</tr>
<tr>
<td>t_0</td>
<td>°C</td>
</tr>
<tr>
<td>p_0</td>
<td>mbar</td>
</tr>
<tr>
<td>n</td>
<td>U/min</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>kW</td>
</tr>
<tr>
<td>Δp_{Bl}</td>
<td>mbar</td>
</tr>
<tr>
<td>Δp_{01}</td>
<td>mbar</td>
</tr>
<tr>
<td>p_2</td>
<td>mbar</td>
</tr>
<tr>
<td>p_3</td>
<td>mbar</td>
</tr>
<tr>
<td>Δp_{04}</td>
<td>mbar</td>
</tr>
<tr>
<td>t_2</td>
<td>°C</td>
</tr>
<tr>
<td>t_{E_1}</td>
<td>°C</td>
</tr>
<tr>
<td>t_{E_2}</td>
<td>°C</td>
</tr>
<tr>
<td>t_{E_3}</td>
<td>°C</td>
</tr>
<tr>
<td>t_{E_4}</td>
<td>°C</td>
</tr>
<tr>
<td>t_4</td>
<td>°C</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
</tr>
</tbody>
</table>

Umrechnung auf SI Einheiten

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>Mittelwert</th>
<th>Standardmessunsicherheit</th>
<th>relativer Fehler</th>
<th>erweiterte Messunsicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>K</td>
<td>291,55</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>P_0</td>
<td>Pa</td>
<td>100760,1</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>n</td>
<td>U/min</td>
<td>2004,5</td>
<td>0,1667</td>
<td>8,31E-05</td>
<td>0,3333</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>W</td>
<td>8269</td>
<td>28,7692</td>
<td>3,48E-03</td>
<td>57,5384</td>
</tr>
<tr>
<td>Δp_{Bl}</td>
<td>Pa</td>
<td>608</td>
<td>1,3333</td>
<td>2,19E-03</td>
<td>2,6667</td>
</tr>
<tr>
<td>Δp_{01}</td>
<td>Pa</td>
<td>930</td>
<td>2,8868</td>
<td>3,10E-03</td>
<td>5,7735</td>
</tr>
<tr>
<td>p_2</td>
<td>Pa</td>
<td>166500</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>p_3</td>
<td>Pa</td>
<td>159200</td>
<td>28,8675</td>
<td>1,81E-04</td>
<td>57,7350</td>
</tr>
<tr>
<td>Δp_{04}</td>
<td>Pa</td>
<td>49,83</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>T_2</td>
<td>K</td>
<td>366,8</td>
<td>0,0167</td>
<td>4,54E-05</td>
<td>0,0333</td>
</tr>
<tr>
<td>T_4</td>
<td>K</td>
<td>830,78</td>
<td>0,7315</td>
<td>8,80E-04</td>
<td>1,4630</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
<td>154,2</td>
<td>0,1333</td>
<td>8,65E-04</td>
<td>0,2667</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
<td>39,175</td>
<td>0,2381</td>
<td>6,08E-03</td>
<td>0,4762</td>
</tr>
</tbody>
</table>
Tabelle 14: Einzelmessergebnisse Betriebspunkt 4

<table>
<thead>
<tr>
<th>Messung</th>
<th>Betriebspunkt 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größe</td>
<td>Einheit</td>
</tr>
<tr>
<td>(t_0)</td>
<td>°C</td>
</tr>
<tr>
<td>(p_0)</td>
<td>mbar</td>
</tr>
<tr>
<td>(n)</td>
<td>U/min</td>
</tr>
<tr>
<td>(P_{\text{eff}})</td>
<td>kW</td>
</tr>
<tr>
<td>(\Delta p_{\text{Bl}})</td>
<td>mbar</td>
</tr>
<tr>
<td>(\Delta p_{\text{01}})</td>
<td>mbar</td>
</tr>
<tr>
<td>(\Delta p_2)</td>
<td>mbar</td>
</tr>
<tr>
<td>(\Delta p_3)</td>
<td>mbar</td>
</tr>
<tr>
<td>(\Delta p_{\text{04}})</td>
<td>mbar</td>
</tr>
<tr>
<td>(t_2)</td>
<td>°C</td>
</tr>
<tr>
<td>(t_{4,1})</td>
<td>°C</td>
</tr>
<tr>
<td>(t_{4,2})</td>
<td>°C</td>
</tr>
<tr>
<td>(t_{4,3})</td>
<td>°C</td>
</tr>
<tr>
<td>(t_{4,4})</td>
<td>°C</td>
</tr>
<tr>
<td>(t_4)</td>
<td>°C</td>
</tr>
<tr>
<td>(\tau)</td>
<td>s</td>
</tr>
<tr>
<td>(M)</td>
<td>Nm</td>
</tr>
</tbody>
</table>

Umrechnung auf SI Einheiten

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>Mittelwert</th>
<th>Standardmessunsicherheit</th>
<th>relativer Fehler</th>
<th>erweiterte Messunsicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_0)</td>
<td>K</td>
<td>291,55</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>(P_0)</td>
<td>Pa</td>
<td>1007 60,1</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>(n)</td>
<td>U/min</td>
<td>2000,2</td>
<td>0,1333</td>
<td>6,67E-05</td>
<td>0,2667</td>
</tr>
<tr>
<td>(P_{\text{eff}})</td>
<td>W</td>
<td>10736</td>
<td>11,3725</td>
<td>1,06E-03</td>
<td>22,7450</td>
</tr>
<tr>
<td>(\Delta p_{\text{Bl}})</td>
<td>Pa</td>
<td>575</td>
<td>1,6667</td>
<td>2,90E-03</td>
<td>3,3333</td>
</tr>
<tr>
<td>(\Delta p_{\text{01}})</td>
<td>Pa</td>
<td>864</td>
<td>8,0554</td>
<td>9,32E-03</td>
<td>16,1107</td>
</tr>
<tr>
<td>(p_2)</td>
<td>Pa</td>
<td>167250</td>
<td>16,6667</td>
<td>9,97E-05</td>
<td>33,3333</td>
</tr>
<tr>
<td>(p_3)</td>
<td>Pa</td>
<td>160350</td>
<td>16,6667</td>
<td>1,04E-04</td>
<td>33,3333</td>
</tr>
<tr>
<td>(\Delta p_{\text{04}})</td>
<td>Pa</td>
<td>23,82</td>
<td>0,0000</td>
<td>0,00E+00</td>
<td>0,0000</td>
</tr>
<tr>
<td>(T_2)</td>
<td>K</td>
<td>369,15</td>
<td>0,0000</td>
<td>0,00E-00</td>
<td>0,0000</td>
</tr>
<tr>
<td>(T_4)</td>
<td>K</td>
<td>886,95</td>
<td>0,0183</td>
<td>2,06E-05</td>
<td>0,0365</td>
</tr>
<tr>
<td>(\tau)</td>
<td>s</td>
<td>142,2</td>
<td>0,1333</td>
<td>9,38E-04</td>
<td>0,2667</td>
</tr>
<tr>
<td>(M)</td>
<td>Nm</td>
<td>51,33</td>
<td>0,1302</td>
<td>2,54E-03</td>
<td>0,2603</td>
</tr>
</tbody>
</table>

Die Temperatur \(t_4 \) ist selbst schon mit einer Ergebnismessunsicherheit behaftet, da sie sich aus den Messwerten der vier Temperaturfühler zusammensetzt. Sie wird nach Gleichung (42) berechnet, die sich wie folgt herleitet:

\[
t_4 = \frac{t_{4,1} + t_{4,2} + t_{4,3} + t_{4,4}}{4} \tag{39}
\]
Für die Größen, die mit einem Δ gekennzeichnet sind, wird die Standardunsicherheit eingesetzt.

Messabweichung Leistung ΔP_{eff}

Die Messabweichung der Leistung ist eine Einzelmessunsicherheit und ist in Abbildung 10 dargestellt.

Abbildung 10: Abweichung Leistung in [kW]

Der Ausreißer im 2. Betriebspunkt ist in den höheren Schwankungen des Drehmoments begründet.

Ergebnismessunsicherheit:

Nun werden auch noch für die Werte, die nicht direkt gemessen werden konnten die kombinierten Messunsicherheiten berechnet. Das sind: m_L, T_3, b_B, η_{VS}, η_{BK}, η_{TS} und η_{eff}.

Die Herleitungen für die einzelnen Ergebnismessunsicherheiten folgen nun und immer anschließend an die Herleitung werden die Ergebnisse der jeweiligen Berechnung angegeben.

Messabweichung Luftmassenstrom Δm_L

Die Ergebnismessunsicherheit vom Luftmassenstrom Δm_L berechnet sich nach der DIN EN ISO 5167-2 [18]. Hier werden die Fehler, die bei der Blendenmessung auftreten berücksichtigt. Diese Norm geht folgendermaßen vor: Es wird in Kapitel 5.3.3.1 der Fehler des Durchflusskoeffizienten C bestimmt. Hierfür gilt die Annahme, dass die Reynoldszahl, der Durchmesser D und das Durchmesserverhältnis β nicht mit einem zufälligen Fehler behaftet sind. Dann wird nach dem Durchmesserverhältnis auf drei Bereiche aufgeteilt: Im ersten Bereich befinden sich β-Werte von 0,1 bis 0,2. Der Zweite reicht von 0,2 bis 0,6 und von 0,6 bis 0,75 reicht schliessendlich der Dritte. Bei

\[
S_{t,4} = \sqrt{\left(\frac{\partial t_{4}}{\partial t_{4,1}} \Delta t_{4,1} \right)^2 + \left(\frac{\partial t_{4}}{\partial t_{4,2}} \Delta t_{4,2} \right)^2 + \left(\frac{\partial t_{4}}{\partial t_{4,3}} \Delta t_{4,3} \right)^2 + \left(\frac{\partial t_{4}}{\partial t_{4,4}} \Delta t_{4,4} \right)^2}
\]

(40)

\[
\frac{\partial t_{4}}{\partial t_{4-i}} = \frac{1}{4}
\]

(41)

\[
S_{t,4} = \sqrt{\left(\frac{\Delta t_{4,1}}{4} \right)^2 + \left(\frac{\Delta t_{4,2}}{4} \right)^2 + \left(\frac{\Delta t_{4,3}}{4} \right)^2 + \left(\frac{\Delta t_{4,4}}{4} \right)^2}
\]

(42)
diesem Versuch ist \(\beta = \frac{d}{D} = 0,571 \) und man liegt daher im zweiten Abschnitt. Dann wird der relative Fehler des Durchmessers als 0,5 % angenommen.

Darüber hinaus muss noch eine relative Unsicherheit von 0,5 % dazu addiert werden, wenn der Durchmesser \(D \) kleiner als 71,12 mm ist. Das trifft hier nicht zu, denn der Durchmesser \(D \) der Blende ist 245 mm groß.

Eine weitere relative Unsicherheit von 0,5 % muss addiert werden, wenn \(\beta \) größer als 0,5 ist und die Reynoldszahl kleiner als 10000 ist. Dies trifft beides zu. Daher wird dies getan.

Deshalb ergibt sich für den Durchflusskoeffizienten \(C \) die Unsicherheit zu

\[
A_1 := 0,5\% + 0,5\% = 0,01
\]

(43) aus \[18\]

Für die Expansionszahl \(\varepsilon \) wird die relative Unsicherheit mit Gleichung (44) ermittelt. Dazu müssen \(\beta, \frac{\Delta p_{BI}}{p_0}, \kappa \) fehlerfrei sein.

\[
A_2 = 3,5 \cdot \frac{\Delta p_{BI} \%}{\kappa \cdot p_0} \quad (44) \quad \text{aus \[18\]}
\]

Die Größen \(A_3 \) und \(A_4 \) bezeichnen Koeffizienten, die dazu dienen die relativen Abweichungen der Durchmesser \(d \) und \(D \), die mit \(B_1 \) und \(B_2 \) berücksichtigt werden in die richtige Größenordnung zu bringen. Hier wird angenommen, dass kein Fehler bei den Durchmessern bekannt ist. Daher ergibt sich hier keine Messabweichung.

\(A_5 \) berücksichtigt den Fehler aus der Differenzdruckmessung und \(A_6 \) den Fehler, der bei Bestimmung der Dichte gemacht wird, der hier 0 ist. \(A_5 \) wird aus Gleichung (45) bestimmt.

\[
A_5 = \frac{s_{p_{m}}} {\Delta p_{m}} \quad (45) \quad \text{aus \[20\]}
\]

\[
\Delta m = m_e \cdot \sqrt{A_1^2 + A_2^2 + A_3^2 + A_4^2 + B_1^2 + B_2^2 + \frac{1}{4} \cdot (A_5^2 + A_6^2)} \quad (46) \quad \text{aus \[20\]}
\]

Die Koeffizienten errechnen sich zu den Werten aus Tabelle 15. Das Ergebnis dieser Berechnung findet sich in der letzten Zeile dieser Tabelle.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>-</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>(A_2)</td>
<td>-</td>
<td>0,00015259</td>
<td>0,00015507</td>
<td>0,00015085</td>
<td>0,00014267</td>
</tr>
<tr>
<td>(A_5)</td>
<td>-</td>
<td>0,003</td>
<td>0,003</td>
<td>0,002</td>
<td>0,003</td>
</tr>
<tr>
<td>(\Delta m_L)</td>
<td>kg/s</td>
<td>0,00355</td>
<td>0,00358</td>
<td>0,00352</td>
<td>0,00344</td>
</tr>
</tbody>
</table>

In Abbildung 11 ist der absolute Fehler des Luftmassenstroms grafisch dargestellt. Er variiert von Betriebspunkt zu Betriebspunkt nur sehr wenig.
Messabweichung Turbineneintrittstemperatur ΔT_3

Zur Herleitung der Ergebnismessunsicherheit der Turbineneintrittstemperatur wird von der Berechnungsgleichung für diese Temperatur ausgegangen (47).

\[T_3 = \frac{P_{\text{eff}} + \frac{(c_{p1} + c_{p2})}{2} \cdot (T_2 - T_1) \cdot m_{L} + P_R}{\left(\frac{\rho n}{T + m_{L}} \cdot \left(\frac{c_{p2} + c_{p3}}{2}\right)\right)} + T_4 \]

(47)

Mithilfe des GAUSS'schen Fortpflanzungsgesetzes aus Gleichung (38) folgt Gleichung (48):

\[\Delta T_3 = 2 \cdot \left(2 \cdot \left(2 \cdot \frac{d}{dT_3} \cdot T_3 \cdot \Delta m_L\right) + \frac{d}{dT_4} \cdot T_4 \cdot S_{44}\right) \]

(48)

Die Pfeile in den folgenden Herleitungen entsprechen Gleichheitszeichen. Die einzelnen Ableitungen der Funktion der Temperatur T_3 sind nun anschließend aufgelistet:

\[\frac{d}{dT_3} T_3 = \frac{1}{\left(\frac{m_L + \rho n}{\tau} \cdot \left(\frac{c_{p1} + c_{p2}}{2}\right)\right)} \]

(49)

\[\frac{d}{dT_1} T_1 = -\frac{m_L \cdot \left(\frac{c_{p1} + c_{p2}}{2}\right)}{\left(\frac{m_L + \rho n}{\tau} \cdot \left(\frac{c_{p1} + c_{p2}}{2}\right)\right)} \]

(50)

\[\frac{d}{dT_2} T_2 = \frac{m_L \cdot \left(\frac{c_{p1} + c_{p2}}{2}\right)}{\left(\frac{m_L + \rho n}{\tau} \cdot \left(\frac{c_{p1} + c_{p2}}{2}\right)\right)} \]

(51)

\[\frac{d}{d\tau} T_3 = \frac{\rho n \cdot \left(P_{\text{eff}} - m_L \cdot (T_1 - T_2) \cdot \left(\frac{c_{p1} + c_{p2}}{2}\right)\right)}{\left(\frac{m_L + \rho n}{\tau} \cdot \left(\frac{c_{p1} + c_{p2}}{2}\right)\right)} \]

(52)
\[
\frac{d}{dm_{\text{L}}} T_3 = -\frac{P_R + P_{\text{eff}} - m_{\text{L}} \cdot (T_1 - T_2) \left(\frac{c_{\text{p1}} + c_{\text{p2}}}{2}\right)}{m_{\text{L}} + \rho_B} \cdot \left(\frac{c_{\text{p1}} + c_{\text{p2}}}{2}\right) \cdot \left(\frac{T_1 - T_2}{2}\right) + \frac{P_R + P_{\text{eff}} - m_{\text{L}} \cdot (T_1 - T_2) \left(\frac{c_{\text{p3}} + c_{\text{p4}}}{2}\right)}{m_{\text{L}} + \rho_B} \cdot \left(\frac{c_{\text{p3}} + c_{\text{p4}}}{2}\right) \cdot \left(\frac{T_1 - T_2}{2}\right)
\]
(53)

Die negativen Vorzeichen haben keine Auswirkung da in (48) eingesetzt quadratisch summiert wird. Das ergibt dann die Gleichung (54).

\[
\Delta T_3 = \sqrt{\left(\frac{P_R + P_{\text{eff}} - m_{\text{L}} \cdot (T_1 - T_2) \left(\frac{c_{\text{p1}} + c_{\text{p2}}}{2}\right)}{m_{\text{L}} + \rho_B} \cdot \left(\frac{c_{\text{p1}} + c_{\text{p2}}}{2}\right) \cdot \left(\frac{T_1 - T_2}{2}\right) + \left(\frac{c_{\text{p3}} + c_{\text{p4}}}{2}\right) \cdot \left(\frac{T_1 - T_2}{2}\right)
\right)^2}
\]
(54)

In der Tabelle 16 sind die benötigten Größen und die Ergebnisse für die kombinierte Standardunsicherheit der Turbineneintrittstemperatur für die vier Betriebspunkte gegeben.

Tabelle 16: Messunsicherheit Turbineneintrittstemperatur

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta m_{\text{L}})</td>
<td>kg/s</td>
<td>0,00355</td>
<td>0,00358</td>
<td>0,00352</td>
<td>0,00344</td>
</tr>
<tr>
<td>(P_R)</td>
<td>W</td>
<td>1350</td>
<td>1330</td>
<td>1340</td>
<td>1350</td>
</tr>
<tr>
<td>(P_{\text{eff}})</td>
<td>W</td>
<td>3780</td>
<td>6224</td>
<td>8269</td>
<td>10736</td>
</tr>
<tr>
<td>(m_{\text{L}})</td>
<td>kg/s</td>
<td>0,35</td>
<td>0,35</td>
<td>0,35</td>
<td>0,34</td>
</tr>
<tr>
<td>(T_1)</td>
<td>K</td>
<td>291,55</td>
<td>291,55</td>
<td>291,55</td>
<td>291,55</td>
</tr>
<tr>
<td>(T_2)</td>
<td>K</td>
<td>361,35</td>
<td>361,35</td>
<td>366,80</td>
<td>369,15</td>
</tr>
<tr>
<td>(c_{\text{p1}})</td>
<td>J/kgK</td>
<td>1011,50</td>
<td>1011,50</td>
<td>1011,50</td>
<td>1011,50</td>
</tr>
<tr>
<td>(c_{\text{p2}})</td>
<td>J/kgK</td>
<td>1017,00</td>
<td>1017,00</td>
<td>1017,50</td>
<td>1017,50</td>
</tr>
<tr>
<td>(c_{\text{p3}})</td>
<td>J/kgK</td>
<td>1116,00</td>
<td>1128,00</td>
<td>1134,50</td>
<td>1150,00</td>
</tr>
<tr>
<td>(c_{\text{p4}})</td>
<td>J/kgK</td>
<td>1099,00</td>
<td>1104,00</td>
<td>1116,00</td>
<td>1128,50</td>
</tr>
<tr>
<td>(\rho_B)</td>
<td>kg/l</td>
<td>0,875</td>
<td>0,875</td>
<td>0,875</td>
<td>0,875</td>
</tr>
<tr>
<td>(\tau)</td>
<td>s</td>
<td>175,2</td>
<td>163,2</td>
<td>154,2</td>
<td>142,2</td>
</tr>
<tr>
<td>(sP_{\text{eff}})</td>
<td>W</td>
<td>8,02</td>
<td>62,49</td>
<td>28,77</td>
<td>11,37</td>
</tr>
<tr>
<td>(sT_1)</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(sT_2)</td>
<td>K</td>
<td>0,0289</td>
<td>0,0333</td>
<td>0,0167</td>
<td>0,0000</td>
</tr>
<tr>
<td>(sT_4)</td>
<td>K</td>
<td>4,17E-02</td>
<td>1,01E-01</td>
<td>7,31E-01</td>
<td>1,83E-02</td>
</tr>
<tr>
<td>(s\tau)</td>
<td>s</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
</tr>
<tr>
<td>(\Delta T_3)</td>
<td>K</td>
<td>1,32E-01</td>
<td>2,59E-01</td>
<td>7,69E-01</td>
<td>2,94E-01</td>
</tr>
</tbody>
</table>
In Abbildung 12 sind die berechneten Werte aus Tabelle 16 grafisch dargestellt. Daraus ist ersichtlich, dass der Fehler im dritten Betriebspunkt außergewöhnlich groß ist.

Messabweichung spezifischer Brennstoffverbrauch Δb_B

Unter Verwendung von (38) und (33) ergibt sich für den spezifischen Brennstoffverbrauch die Gleichung (55) und die Gleichung (56).

$$
\Delta M_B := \sqrt{\left(\frac{d}{dt} b_H \right)^2 + sp_{eff}^2 \left(\frac{d}{d P_{eff}} b_H \right)^2}
$$

(55)

$$
\Delta b_B \rightarrow \sqrt{\frac{\rho_B^2 \cdot s_t^2}{\tau^4 \cdot P_{eff}} + \frac{\rho_B^2 \cdot s_{P_{eff}}^2}{\tau^2 \cdot P_{eff}^4}}
$$

(56)

Das Ergebnis und die relevanten Größen sind in Tabelle 17 notiert.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{eff}</td>
<td>W</td>
<td>3780</td>
<td>6224</td>
<td>8269</td>
<td>10736</td>
</tr>
<tr>
<td>ρ_B</td>
<td>kg/l</td>
<td>0,875</td>
<td>0,875</td>
<td>0,875</td>
<td>0,875</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
<td>175,2</td>
<td>163,2</td>
<td>154,2</td>
<td>142,2</td>
</tr>
<tr>
<td>sP_{eff}</td>
<td>W</td>
<td>8,02</td>
<td>62,49</td>
<td>166,67</td>
<td>11,37</td>
</tr>
<tr>
<td>$s\tau$</td>
<td>s</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
</tr>
<tr>
<td>Δb_B</td>
<td>kg/Ws</td>
<td>2,98E-09</td>
<td>8,08E-09</td>
<td>1,38E-08</td>
<td>8,11E-10</td>
</tr>
<tr>
<td>Δb_B</td>
<td>kg/kWh</td>
<td>1,07E-02</td>
<td>2,91E-02</td>
<td>4,98E-02</td>
<td>2,92E-03</td>
</tr>
</tbody>
</table>
Man sieht in Abbildung 13, dass der Messfehler im vierten Betriebspunkt sehr klein ist, im Vergleich zu den anderen.

Abbildung 13: Abweichung spezifischer Brennstoffverbrauch in [kg/kWh]

Messabweichung isentroper Verdichterwirkungsgrad $\Delta \eta_{VS}$

Durch Einsetzen der Gleichungen (18), (19) und (20) in die Gleichung (21) für den Wirkungsgrad bekommt man (57).

\[
\eta_{VS} = \frac{H_{V0}}{H_V} = \frac{T_1 - T_1^*}{T_1 - T_2^*} \left(\frac{P_2}{P_1} \right)^\kappa
\]

(57)

Durch Ableiten und Einsetzen ergibt sich schließlich (59), deren Ergebnisse und benötigte Größen in Tabelle 18 angeführt sind. Die grafische Darstellung der Fehler findet sich in Abbildung 14.

\[
\Delta \eta_{VS} = \sqrt{\left(\frac{\delta T_1^*}{T_1^*} \right)^2 + \left(\frac{\delta T_2^*}{T_2^*} \right)^2 + \left(\frac{\delta P_2}{P_2} \right)^2 + \left(\frac{\delta P_1}{P_1} \right)^2}
\]

(58)

\[
\Delta \eta_{VS} = \sqrt{\left(\frac{T_1 - T_1^*}{T_1 - T_2^*} \right)^2 \left(\frac{P_2}{P_1} \right)^\kappa + \left(\frac{T_1^* - T_2^*}{T_1^* - T_2} \right)^2 + \left(\frac{P_2}{P_1} \right)^\kappa}
\]

(59)
Tabelle 18: Messunsicherheit isentroper Verdichterwirkungsgrad

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>Pa</td>
<td>99820</td>
<td>99805</td>
<td>99830</td>
<td>99896</td>
</tr>
<tr>
<td>(p_2)</td>
<td>Pa</td>
<td>161900</td>
<td>161900</td>
<td>166500</td>
<td>167250</td>
</tr>
<tr>
<td>(\Pi)</td>
<td>-</td>
<td>1,62192</td>
<td>1,62216</td>
<td>1,66783</td>
<td>1,67424</td>
</tr>
<tr>
<td>(T_1)</td>
<td>K</td>
<td>291,550</td>
<td>291,550</td>
<td>291,550</td>
<td>291,550</td>
</tr>
<tr>
<td>(T_2)</td>
<td>K</td>
<td>361,350</td>
<td>361,350</td>
<td>366,800</td>
<td>369,150</td>
</tr>
<tr>
<td>(sp_1)</td>
<td>Pa</td>
<td>2,9</td>
<td>4,2</td>
<td>2,9</td>
<td>8,1</td>
</tr>
<tr>
<td>(sp_2)</td>
<td>Pa</td>
<td>66,67</td>
<td>0,00</td>
<td>0,00</td>
<td>16,67</td>
</tr>
<tr>
<td>(sT_1)</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(sT_2)</td>
<td>K</td>
<td>0,0289</td>
<td>0,0333</td>
<td>0,0167</td>
<td>0,0000</td>
</tr>
<tr>
<td>(\Delta \eta_{Vs})</td>
<td>-</td>
<td>5,66E-04</td>
<td>6,43E-05</td>
<td>3,91E-05</td>
<td>1,59E-04</td>
</tr>
</tbody>
</table>

Abbildung 14: Abweichung Verdichterwirkungsgrad

Messabweichung isentroper Turbinenwirkungsgrad \(\Delta \eta_{TS} \)

Für den Turbinenwirkungsgrad wird (28) und (29) in den Ausdruck (30) eingesetzt:

\[
\eta_{Vs} = \frac{H_T}{H_{Ps}} = \frac{P_{H' + P_{eff}} - m_d \cdot (T_1 - T_2) \cdot \left(\frac{c_{pT} + cpH'}{2} \right)}{m_d \cdot \left(\frac{c_{pT} + cpH'}{2} \right) \cdot \left(T_3 - T_2 \cdot \frac{P_{H'}}{P_2} \right)}
\]

(60)
Unter Benutzung der Fehlerfortpflanzungsformel (38) ergibt sich wieder:

\[
\eta_{TS} = \sqrt{\frac{\Delta m_i}{(\frac{d}{dm_i} \Delta \eta_{TS})^2 + \Delta P_{ref}^2 \left(\frac{d}{dP_{ref}} \Delta \eta_{TS}\right)^2 + \Delta T_3^2 \left(\frac{d}{dT_3} \Delta \eta_{TS}\right)^2}}
\]

\[
\frac{n_T^2}{(\frac{d}{dT_1} \Delta \eta_{TS})^2 + \frac{n_T^2}{(\frac{d}{dT_2} \Delta \eta_{TS})^2} + \frac{n_T^2}{(\frac{d}{dT_3} \Delta \eta_{TS})^2}}
\]

\[
(61)
\]

Der erste Term unter der Wurzel ergibt sich zu Gleichung (62).

\[
\Delta m_i \cdot \left(\frac{P_{n} + P_{ref} - m_L \cdot (T_1 - T_2) \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^2 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}} \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{P_{n} + P_{ref} - m_L \cdot (T_1 - T_2) \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^2 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{P_{n} + P_{ref} - m_L \cdot (T_1 - T_2) \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^2 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{P_{n} + P_{ref} - m_L \cdot (T_1 - T_2) \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^2 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

Für den Term mit der Unsicherheit der Leistung und der Turbineneintrittstemperatur ergeben sich (63) und (64).

\[
m_L \cdot \eta_T^2 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^3
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^2 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^3 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^2 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^3 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^2 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^3 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

Für die Teile mit den Temperaturen um den Verdichter erhält man die Ausdrücke (65) und (66).

\[
\Delta T_3 \cdot \left(\frac{P_{n} + P_{ref} - m_L \cdot (T_1 - T_2) \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^2
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^2 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^3 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^2 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^3 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^2 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^3 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

Der Term mit der Durchflussdauer ergibt (67).

\[
\rho_n \cdot \frac{n_T^2}{(\frac{d}{dT_3} \Delta \eta_{TS})^2 + \frac{n_T^2}{(\frac{d}{dT_3} \Delta \eta_{TS})^2} + \frac{n_T^2}{(\frac{d}{dT_3} \Delta \eta_{TS})^2}}
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^4 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^4 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]

\[
\left(\frac{m_L + \frac{P_{n}}{r}}{r} \right)^4 \cdot \left(\frac{c_{pA}}{2} \cdot \frac{c_{pB}}{2}\right)^4 \cdot \left(\frac{T_3 - T_3 \left(\frac{c_{pA}}{2} + \frac{c_{pB}}{2}\right)}{m_L + \frac{P_{n}}{r}} \right)^{2 \cdot \text{Aum}}
\]
Die Terme mit den Standardunsicherheiten der Drücke \(p_3 \) und \(p_4 \) ergeben

\[
\frac{4 \cdot T_3^2 \cdot \Delta m_L^2 \cdot R_{\text{RG}}^2 \cdot \left(\frac{p_3}{p_3} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{T_3}{T_3} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{p_4}{p_4} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{T_3}{T_3} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{p_4}{p_4} \right)^{4 \cdot n_{\text{Haw}}}}{p_3 \cdot \left(m_L + \frac{\rho g}{\tau} \right) \cdot \left(\frac{c_{p3}}{2} + \frac{c_{p4}}{2} \right) \cdot \left(\frac{c_{p3} + c_{p4}}{2} \right) \cdot \left(\frac{T_3 - T_3}{p_3} \right)}
\]

(68)

und

\[
\frac{4 \cdot T_3^2 \cdot \Delta m_L^2 \cdot R_{\text{RG}}^2 \cdot \left(\frac{p_3}{p_3} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{T_3}{T_3} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{p_4}{p_4} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{T_3}{T_3} \right)^{4 \cdot n_{\text{Haw}}} \cdot \left(\frac{p_4}{p_4} \right)^{4 \cdot n_{\text{Haw}}}}{p_3 \cdot \left(m_L + \frac{\rho g}{\tau} \right) \cdot \left(\frac{c_{p3}}{2} + \frac{c_{p4}}{2} \right) \cdot \left(\frac{c_{p3} + c_{p4}}{2} \right) \cdot \left(\frac{T_3 - T_3}{p_3} \right)}
\]

(69)

Tabelle 19: Ergebnismessunsicherheit isentroper Turbinenwirkungsgrad

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta m_L)</td>
<td>kg/s</td>
<td>0,003549</td>
<td>0,003577</td>
<td>0,003518</td>
<td>0,003436</td>
</tr>
<tr>
<td>(P_R)</td>
<td>W</td>
<td>1350,00</td>
<td>1330,00</td>
<td>1340,00</td>
<td>1350,00</td>
</tr>
<tr>
<td>(P_{\text{eff}})</td>
<td>W</td>
<td>3780,00</td>
<td>6224,00</td>
<td>8269,00</td>
<td>10736,00</td>
</tr>
<tr>
<td>(m_L)</td>
<td>kg/s</td>
<td>0,35</td>
<td>0,35</td>
<td>0,35</td>
<td>0,34</td>
</tr>
<tr>
<td>(T_1)</td>
<td>K</td>
<td>291,55</td>
<td>291,55</td>
<td>291,55</td>
<td>291,55</td>
</tr>
<tr>
<td>(T_2)</td>
<td>K</td>
<td>361,350</td>
<td>361,350</td>
<td>366,800</td>
<td>369,150</td>
</tr>
<tr>
<td>(c_{p1})</td>
<td>J/kgK</td>
<td>1011,500</td>
<td>1011,500</td>
<td>1011,500</td>
<td>1011,500</td>
</tr>
<tr>
<td>(c_{p2})</td>
<td>J/kgK</td>
<td>1017,000</td>
<td>1017,000</td>
<td>1017,500</td>
<td>1017,500</td>
</tr>
<tr>
<td>(c_{p3})</td>
<td>J/kgK</td>
<td>1116,000</td>
<td>1128,000</td>
<td>1134,500</td>
<td>1150,000</td>
</tr>
<tr>
<td>(c_{p4})</td>
<td>J/kgK</td>
<td>1099,000</td>
<td>1104,000</td>
<td>1116,000</td>
<td>1128,500</td>
</tr>
<tr>
<td>(\rho B)</td>
<td>kg/l</td>
<td>0,875</td>
<td>0,875</td>
<td>0,875</td>
<td>0,875</td>
</tr>
<tr>
<td>(\tau)</td>
<td>s</td>
<td>175,2</td>
<td>163,2</td>
<td>154,2</td>
<td>142,2</td>
</tr>
<tr>
<td>(T_3)</td>
<td>K</td>
<td>835,7</td>
<td>882,9</td>
<td>916,7</td>
<td>985,5</td>
</tr>
<tr>
<td>(p_3)</td>
<td>Pa</td>
<td>154350,0</td>
<td>154350,0</td>
<td>159200,0</td>
<td>160350,0</td>
</tr>
<tr>
<td>(p_4)</td>
<td>Pa</td>
<td>100795,5</td>
<td>100812,6</td>
<td>100809,9</td>
<td>100783,9</td>
</tr>
<tr>
<td>(sP_{\text{eff}})</td>
<td>W</td>
<td>8,02</td>
<td>62,49</td>
<td>28,77</td>
<td>11,37</td>
</tr>
<tr>
<td>(sT_1)</td>
<td>K</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>(sT_2)</td>
<td>K</td>
<td>0,0289</td>
<td>0,0333</td>
<td>0,0167</td>
<td>0,0000</td>
</tr>
<tr>
<td>(\Delta T_3)</td>
<td>K</td>
<td>0,132</td>
<td>0,259</td>
<td>0,769</td>
<td>0,294</td>
</tr>
<tr>
<td>(R_{\text{RG}})</td>
<td>J/kgK</td>
<td>288</td>
<td>288</td>
<td>288</td>
<td>288</td>
</tr>
<tr>
<td>(sp_3)</td>
<td>Pa</td>
<td>83</td>
<td>17</td>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>(sp_4)</td>
<td>Pa</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta \eta_{Ts})</td>
<td>-</td>
<td>1,76E-03</td>
<td>2,62E-03</td>
<td>2,50E-03</td>
<td>2,70E-03</td>
</tr>
</tbody>
</table>
In der letzten Zeile der Tabelle 19 sind die Zahlenwerte dieser Rechnung angeführt. In Abbildung 15 sind die Abweichungen vom Mittelwert des isentropen Turbinenwirkungsgrad aufgezeichnet.

Messabweichung Gesamtwirkungsgrad $\Delta \eta_{eff}$

Der Fehler des effektiven Wirkungsgrads berechnet sich ganz einfach zu:

$$\Delta \eta_{eff} = \eta_{eff} \sqrt{\left(\frac{\Delta \eta_{eff}}{\eta_{eff}}\right)^2 + \left(\frac{\tau}{\tau}\right)^2}$$ \hspace{1cm} (70) \hspace{1cm} [6], S.8 \hspace{1cm} (28)

In Zahlenwerten ergibt das die Eintragungen in Tabelle 20. Grafisch dargestellt findet man die Ergebnisse in Abbildung 16.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{eff}</td>
<td>-</td>
<td>0,018</td>
<td>0,027</td>
<td>0,034</td>
<td>0,041</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>W</td>
<td>3780,00</td>
<td>6224,00</td>
<td>8269,00</td>
<td>10736,00</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
<td>175,2</td>
<td>163,2</td>
<td>154,2</td>
<td>142,2</td>
</tr>
<tr>
<td>sP_{eff}</td>
<td>W</td>
<td>8,02</td>
<td>62,49</td>
<td>28,77</td>
<td>11,37</td>
</tr>
<tr>
<td>st</td>
<td>s</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
</tr>
<tr>
<td>$\Delta \eta_{eff}$</td>
<td>-</td>
<td>3,99E-05</td>
<td>4,50E-04</td>
<td>1,22E-04</td>
<td>5,78E-05</td>
</tr>
</tbody>
</table>
Messabweichung Brennkammerwirkungsgrad $\Delta \eta_{BK}$
Um den Fehler des Brennkammerwirkungsgrades zu errechnen, werden vorerst in die Ausgangsgleichung alle bekannten Zusammenhänge eingesetzt wie man der Gleichung (71) entnehmen kann.

\[
\eta_{BK} = \frac{c_{p0} \cdot T_3 - c_{p0} \cdot T_2}{c_{p0a} \cdot T_{2ak} - c_{p0a} \cdot T_2} \rightarrow T_2 \cdot c_{p2} - T_3 \cdot c_{p3} \frac{H_u \cdot \rho_d}{T_2 + \frac{H_u \cdot \rho_d}{\tau \cdot (m_L + \rho_d) \cdot \left(\frac{c_{p2} + c_{p3a}}{2}\right)}}
\]

(71)

Dann wird das Fortpflanzungsgesetz angewandt und erhält daraus Gleichung (72).

\[
\Delta \eta_{BK} = \left(\frac{d}{d T_2} \eta_{BK}\right)^2 + \Delta T_3^2 \left(\frac{d}{d T_3} \eta_{BK}\right)^2 + \alpha_2^2 \left(\frac{d}{d \tau} \eta_{BK}\right)^2 + \Delta m_L^2 \left(\frac{d}{d m_L} \eta_{BK}\right)^2
\]

(72)

Nun werden die einzelnen Ableitungen mit den Standardabweichungen multipliziert. Für das erste Quadrat mit der Standardunsicherheit der Temperatur ergibt sich Gleichung (73).

\[
\alpha_2^2 \left(\frac{d}{d T_2} \eta_{BK}\right)^2 = \frac{c_{p2}}{T_2 + \frac{H_u \cdot \rho_d}{\tau \cdot (m_L + \rho_d) \cdot \left(\frac{c_{p2} + c_{p3a}}{2}\right)}} \left(\frac{c_{p2} - c_{p3a}}{(T_2 + \frac{H_u \cdot \rho_d}{\tau \cdot (m_L + \rho_d) \cdot \left(\frac{c_{p2} + c_{p3a}}{2}\right)}})\right)^2
\]

(73)

Für den zweiten Term mit der Turbineneintrittstemperatur ergibt sich Gleichung (74).

\[
\alpha_2^2 \left(\frac{d}{d \tau} \eta_{BK}\right)^2 = \frac{c_{p3a}^2 \cdot \Delta T_3^2}{\left(\frac{T_2 + \frac{H_u \cdot \rho_d}{\tau \cdot (m_L + \rho_d) \cdot \left(\frac{c_{p2} + c_{p3a}}{2}\right)}}\right)^2}
\]

(74)

Für den dritten Term wird der Wirkungsgrad nach der Zeit τ abgeleitet und mit ihrer Standardunsicherheit multipliziert. Daraus erhält man Gleichung (75).
Messung

\[
\left(T_2 \cdot c_{plunk} - c_{pl} \right)^2 \left(T_2 + \frac{H_U \cdot \rho_U}{\frac{T}{m_L + \frac{\rho_B}{r}}} \right)^2 \left(T_2 + \frac{H_U \cdot \rho_B}{\frac{T}{m_L + \frac{\rho_B}{r}}} \right)^2 \left(\frac{T_2 + \frac{H_U \cdot \rho_B}{\frac{T}{m_L + \frac{\rho_B}{r}}} \left(c_{pl} + \frac{c_{plunk}}{2} \right)}{2} \right)^2
\]

(75)

Und für den letzten Term unter der Wurzel in Gleichung (72) bekommt man die Gleichung (76) als Ergebnis.

\[
\left(T_2 \cdot c_{plunk} - c_{pl} \right)^2 \left(T_2 + \frac{H_U \cdot \rho_B}{\frac{T}{m_L + \frac{\rho_B}{r}}} \right)^2 \left(\frac{T_2 + \frac{H_U \cdot \rho_B}{\frac{T}{m_L + \frac{\rho_B}{r}}} \left(c_{pl} + \frac{c_{plunk}}{2} \right)}{2} \right)^2
\]

(76)

Werden nun die Zahlenwerte aus Tabelle 21 in die Gleichungen (72) bis (76) eingesetzt, ergeben sich in den einzelnen Betriebspunkten die Fehler, wie sie in Abbildung 17 eingezeichnet sind.

Tabelle 21: Ergebnismessunsicherheit Brennkammerwirkungsgrad

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_2)</td>
<td>K</td>
<td>361,350</td>
<td>361,350</td>
<td>366,800</td>
<td>369,150</td>
</tr>
<tr>
<td>(sT_2)</td>
<td>K</td>
<td>2,89E-02</td>
<td>3,33E-02</td>
<td>1,67E-02</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>(c_{pl})</td>
<td>J/kgK</td>
<td>1017,0</td>
<td>1017,0</td>
<td>1017,5</td>
<td>1017,5</td>
</tr>
<tr>
<td>(c_{pl3})</td>
<td>J/kgK</td>
<td>1116,0</td>
<td>1128,0</td>
<td>1134,5</td>
<td>1150,0</td>
</tr>
<tr>
<td>(c_{pl3h})</td>
<td>J/kgK</td>
<td>1134,0</td>
<td>1142,0</td>
<td>1152,0</td>
<td>1165,0</td>
</tr>
<tr>
<td>(H_U)</td>
<td>J/kgK</td>
<td>42700000</td>
<td>42700000</td>
<td>42700000</td>
<td>42700000</td>
</tr>
<tr>
<td>(\rho_B)</td>
<td>kg/l</td>
<td>0,8750</td>
<td>0,8750</td>
<td>0,8750</td>
<td>0,8750</td>
</tr>
<tr>
<td>(\tau)</td>
<td>s</td>
<td>175,2</td>
<td>163,2</td>
<td>154,2</td>
<td>142,2</td>
</tr>
<tr>
<td>(s_t)</td>
<td>s</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
<td>0,1333</td>
</tr>
<tr>
<td>(m_L)</td>
<td>kg/s</td>
<td>0,3517</td>
<td>0,3545</td>
<td>0,3497</td>
<td>0,3401</td>
</tr>
<tr>
<td>(\Delta m_L)</td>
<td>kg/s</td>
<td>0,0035</td>
<td>0,0036</td>
<td>0,0035</td>
<td>0,0034</td>
</tr>
<tr>
<td>(T_3)</td>
<td>K</td>
<td>835,6643</td>
<td>882,9092</td>
<td>916,7308</td>
<td>985,4667</td>
</tr>
<tr>
<td>(\Delta T_3)</td>
<td>K</td>
<td>0,1316</td>
<td>0,2594</td>
<td>0,7695</td>
<td>0,2939</td>
</tr>
<tr>
<td>(\Delta \eta_{BK})</td>
<td>-</td>
<td>0,0078</td>
<td>0,0081</td>
<td>0,0080</td>
<td>0,0081</td>
</tr>
</tbody>
</table>
4.5.5. Berechnung der Sensitivitäten

Um den Einfluss einer Größe auf den Fehler eines Ergebnisses erkennen zu können, bedient man sich der sogenannten Sensitivitäten. Die absolute Sensitivität ist jener Term im Fehlerfortpflanzungsgesetz, der in Gleichung (77) durch einen grünen Rahmen markiert ist.

\[
\Delta y = \pm \sqrt{\sum_{i=1}^{n} \left(\frac{\partial y}{\partial x_i} \Delta x_i \right)^2}
\]

(77)

Um den relativen Einfluss zu betrachten, berechnet man die relative Sensitivität. Sie erhält man durch Multiplikation mit der Größe und Division durch den Mittelwert des Ergebnisses aus der absoluten Sensitivität. Die gestrichenen Größen (\(\hat{\theta}'\)) bezeichnen die relativen Sensitivitäten.

Bei Sensitivitäten werden nur jene Größen berücksichtigt, die auch Quellen für zufällige Fehler sind. Daher sind keine Ableitungen nach Stoffwerten und ähnlichem in den nachfolgenden Gleichungen zu finden.

Die einzelnen Vorzeichen der Sensitivitäten sind belanglos, da sie in die Berechnung des Fehlers nur dem Betrag nach eingehen. Ist die relative Sensitivität gleich eins, dann ist die prozentuelle Änderung der Abweichung bei Eingangsgröße und Ergebnisgröße gleich.

Zur Vereinfachung der Gleichungen werden folgende Bezeichnungen gewählt: Die Zahl ist eine Abkürzung für die zu berechnende Größe und der Index gibt an, von welcher Messgröße der Einfluss betrachtet wird.

<table>
<thead>
<tr>
<th>Zahl</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>effektive Leistung (P_{\text{eff}})</td>
</tr>
<tr>
<td>2</td>
<td>Gesamtwirkungsgrad (\eta_{\text{eff}})</td>
</tr>
<tr>
<td>3</td>
<td>Luftmassenstrom (\Delta \dot{m}_L)</td>
</tr>
<tr>
<td>4</td>
<td>Turbineneintrittstemperatur (T_s)</td>
</tr>
<tr>
<td>5</td>
<td>spezifischer Brennstoffverbrauch (b_p)</td>
</tr>
<tr>
<td>6</td>
<td>isentroper Verdichterwirkungsgrad (\eta_{\text{V,s}})</td>
</tr>
<tr>
<td>7</td>
<td>isentroper Turbinenwirkungsgrad (\eta_{\text{T,s}})</td>
</tr>
<tr>
<td>8</td>
<td>Brennkammerwirkungsgrad (\eta_{\text{BK}})</td>
</tr>
</tbody>
</table>
Die Sensitivitäten des Luftmassenstroms werden hier nicht weiter behandelt, da der Fehler nicht nach dem GAUSS'schen Fortpflanzungsgesetz berechnet wird. Die Herleitung der Sensitivitäten für die einzelnen Größen folgt im Anschluss:

Der Gesamtwirkungsgrad η_{eff}
Der Gesamtwirkungsgrad η_{eff} ist eine Funktion der Zeit τ und der effektiven Leistung P_{eff}. Es wird folglich der Einfluss dieser beiden Größen berechnet.

\[
\Theta_2 := \frac{d}{d\tau} \eta_{\text{eff}} \rightarrow \frac{P_{\text{eff}}}{\rho \tau H_U} \quad (78)
\]

Um den Einfluss von τ zu untersuchen, wird für die absolute Sensitivität der effektive Wirkungsgrad nach τ abgeleitet (78).

\[
\Theta_2 := \left(\frac{d}{d\tau} \frac{\tau}{\eta_{\text{eff}}} \right) \rightarrow 1 \quad (79)
\]

\[
\Theta_2 \rightarrow \frac{d}{dP_{\text{eff}}} \eta_{\text{eff}} \rightarrow \frac{\tau}{\rho \beta H_U} \quad (80)
\]

\[
\Theta_2' \rightarrow \frac{d}{dP_{\text{eff}}} \eta_{\text{eff}} \rightarrow \frac{P_{\text{eff}}}{\eta_{\text{eff}}} \rightarrow 1 \quad (81)
\]

Turbineneintrittstemperatur T_3
Die Turbineneintrittstemperatur T_3 ist abhängig von der effektiven Leistung P_{eff}, der Turbinenaustrittstemperatur T_4, dem Luftmassenstrom \dot{m}_L und der Zeit τ.

\[
\Theta_{4_{\text{eff}}} := \frac{d}{dP_{\text{eff}}} T_3 \rightarrow \frac{1}{c_{\text{pm}34} \left(\dot{m}_L + \rho \beta \right) \tau} \quad (82)
\]

\[
\Theta_{4'_{\text{eff}}} := \frac{d}{dP_{\text{eff}}} T_3 \rightarrow \frac{P_{\text{eff}}}{\eta_{\text{eff}}} \quad (83)
\]

\[
\Theta_{4''_{\text{eff}}} := \frac{d}{dP_{\text{eff}}} T_3 \rightarrow \frac{P_{\text{eff}}}{\eta_{\text{eff}}} \quad (84)
\]

\[
\Theta_{T_4} := \frac{d}{dT_4} T_4 \rightarrow 1 \quad (85)
\]

\[
\Theta_{T_4} := \frac{d}{dT_4} T_4 \rightarrow \frac{T_4}{\dot{m}_L + \rho \beta \tau} \quad (86)
\]

\[
\Theta_{m_L} := \frac{d}{d\dot{m}_L} T_3 \quad (87)
\]

\[
\Theta_{m_L} := \frac{d}{d\dot{m}_L} \frac{P_{\text{eff}}}{\dot{m}_L} \rightarrow \frac{P_{\text{eff}}}{\eta_{\text{eff}}} \quad (88)
\]
Der spezifische Brennstoffverbrauch ist eine Funktion der Zeit τ und der Leistung P_{eff}.

$$\Theta_5 = \frac{d}{d\tau} \frac{b_0}{\tau^2 \cdot P_{eff}}$$

$$\Theta_5' = \left(\frac{d}{d\tau} \frac{b_0}{P_{eff}} \right) \cdot \frac{\tau}{b_0} \rightarrow -1$$

$$\Theta_5_{P_{eff}} = \frac{d}{dP_{eff}} \frac{b_0}{P_{eff}} \rightarrow -\frac{b_0}{\tau^2 \cdot P_{eff}^2}$$

$$\Theta_5'_{P_{eff}} = \left(\frac{d}{dP_{eff}} \frac{b_0}{P_{eff}} \right) \cdot \frac{P_{eff}}{b_0} \rightarrow -1$$

isentroper Verdichterwirkungsgrad η_{Vs}

Er ist eine Funktion der Temperatur und des Druckes am Verdichtereintritt, ebenso wie vom Verdichteraustrittsdruck.

$$\Theta_6_{T_1} = \frac{d}{dT_1} \frac{\eta_{Vs}}{T_1 - T_2} \cdot \frac{T_1 - T_1^* \left(\frac{p_2}{p_1} \right)^{\kappa}}{T_1 - T_2} \rightarrow -1 \cdot \frac{T_1 - T_1^* \left(\frac{p_2}{p_1} \right)^{\kappa}}{\left(T_1 - T_2 \right)^{\kappa - 1}}$$

$$\Theta_6'_{T_1} = \left(\frac{d}{dT_1} \frac{\eta_{Vs}}{T_1 - T_2} \right) \cdot \frac{T_1 - T_1^* \left(\frac{p_2}{p_1} \right)^{\kappa}}{T_1 - T_2} \rightarrow -1 \cdot \frac{T_1 - T_1^* \left(\frac{p_2}{p_1} \right)^{\kappa}}{\left(T_1 - T_2 \right)^{\kappa - 1}}$$

$$\Theta_6_{p_1} = \frac{d}{dp_1} \frac{\eta_{Vs}}{p_2 \cdot T_1^* \left(\frac{p_2}{p_1} \right)^{\kappa} \cdot (\kappa - 1)}$$

$$\Theta_6'_{p_1} = \left(\frac{d}{dp_1} \frac{\eta_{Vs}}{p_2 \cdot T_1^* \left(\frac{p_2}{p_1} \right)^{\kappa} \cdot (\kappa - 1)} \right) \cdot \frac{p_1}{p_2} \rightarrow -1 \cdot \frac{p_1}{p_2}$$
\[
\Theta G'_{p1} := \left(\frac{d}{dp_1} \eta V_s \right) \rightarrow \frac{p_2 \cdot T_1 \cdot \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \cdot (\kappa-1)}{\kappa \cdot p_1 \cdot \left(T_1 - T_1 \cdot \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \right)} \tag{100}
\]

\[
\Theta G'_{p2} := \left(\frac{d}{dp_2} \eta V_s \right) \rightarrow \frac{p_2 \cdot T_1 \cdot \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \cdot (\kappa-1)}{\kappa \cdot p_1 \cdot \left(T_1 - T_1 \cdot \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \right)} \tag{101}
\]

\[
\Theta G'_{p2} := \left(\frac{d}{dp_2} \eta V_s \right) \rightarrow \frac{p_2 \cdot T_1 \cdot \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \cdot (\kappa-1)}{\kappa \cdot p_1 \cdot \left(T_1 - T_1 \cdot \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \right)} \tag{102}
\]

isentroper Turbinenwirkungsgrad \(\eta Ts \)

Aus der Verdichtereintrittstemperatur \(T_1 \), der Austrittstemperatur \(T_2 \), der Leistung \(P_{eff} \), dem Luftmassenstrom \(m_1 \), der Zeit \(\tau \), der Turbinenaustrittstemperatur \(T_4 \), dem Turbineneintritts- und Austrittsdruck \(p_3 \), \(p_4 \) errechnet sich der isentrope Turbinenwirkungsgrad \(\eta Ts \). Daher ergeben sich mit diesen acht Werten je acht absolute und acht relative Sensitivitäten.
\[
\Theta T_{\text{p,eff}} = \frac{d}{dP_{\text{eff}}} \eta_{T_{\text{p}}}
\]

\[
\begin{align*}
\text{c}_{\text{puc,4}} \left(m_{L} + \frac{P_{L}}{\tau} \right) \left(T_{4} + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \right) & + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \\
\text{c}_{\text{puc,4}} \left(m_{L} + \frac{P_{L}}{\tau} \right) & + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \\
\end{align*}
\]

\[
(105)
\]

\[
\Theta T_{\text{m,eff}} = \frac{d}{d\eta_{T_{\text{m}}}} \eta_{T_{\text{m}}}
\]

\[
\begin{align*}
\text{c}_{\text{puc,4}} \left(m_{L} + \frac{P_{L}}{\tau} \right) \left(T_{4} + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \right) & + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \\
\text{c}_{\text{puc,4}} \left(m_{L} + \frac{P_{L}}{\tau} \right) & + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \\
\end{align*}
\]

\[
(106)
\]

\[
\Theta T_{\text{e}} = \frac{d}{d\eta_{T_{\text{e}}}} \eta_{T_{\text{e}}}
\]

\[
\begin{align*}
\text{c}_{\text{puc,4}} \left(m_{L} + \frac{P_{L}}{\tau} \right) \left(T_{4} + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \right) & + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \\
\text{c}_{\text{puc,4}} \left(m_{L} + \frac{P_{L}}{\tau} \right) & + \frac{P_{L} + P_{\text{eff}} - m_{L} \cdot c_{\text{puc,2}} \cdot (T_{1} - T_{2})}{c_{\text{puc,4}} + \frac{P_{L}}{\tau}} \\
\end{align*}
\]

\[
(107)
\]
Auf die Herleitung der relativen Sensitivitäten des isentropen Turbinenwirkungsgrades wird verzichtet, da die Gleichungen sich nicht sehr von den oben angegebenen unterscheiden und umfangreicher sind.

Brennkammerwirkungsgrad η_{BK}
Der Brennkammerwirkungsgrad η_{BK} ist eine Funktion der Verdichteraustrittstemperatur T_2, der Turbinenausstrittstemperatur T_4, der Leistung P_{eff}, des Luftmassenstroms m_L und der Zeit τ in der ein Liter Brennstoff verbraucht wird.

\[
\Theta T_2 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dT_2} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta T_4 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dT_4} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_4 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_4} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_3 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_3} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_4 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_4} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_3 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_3} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_4 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_4} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

Auf die Herleitung der relativen Sensitivitäten des isentropen Turbinenwirkungsgrades wird verzichtet, da die Gleichungen sich nicht sehr von den oben angegebenen unterscheiden und umfangreicher sind.

Brennkammerwirkungsgrad η_{BK}
Der Brennkammerwirkungsgrad η_{BK} ist eine Funktion der Verdichteraustrittstemperatur T_2, der Turbinenausstrittstemperatur T_4, der Leistung P_{eff}, des Luftmassenstroms m_L und der Zeit τ in der ein Liter Brennstoff verbraucht wird.

\[
\Theta T_2 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dT_2} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta T_4 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dT_4} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_4 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_4} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_3 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_3} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_4 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_4} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]

\[
\Theta p_3 = d \eta_{BK} \rightarrow
\left(\frac{\eta_{BK}}{\eta_{BK}} \right) = \frac{d}{dp_3} \left(\frac{\eta_{BK}}{\eta_{BK}} \right)
\]
Auch hier für den Brennkammerwirkungsgrad wird auf die Herleitung der relativen Sensitivitäten verzichtet.

\[
\Theta_{S_{T_4}} = \frac{d}{dT_4} \frac{\eta_{HK}}{\eta_{HK}} \to \frac{c_{p_3}}{c_{p_3 \text{th}} \cdot \left(T_2 + \frac{H_{U^*} \cdot \rho_B}{\tau \cdot c_{p_3 \text{th}} \cdot \left(m_L + \frac{\rho_B}{\tau} \right)} \right)} - T_2 \cdot c_{p_2} \tag{113}
\]

\[
\Theta_{S_{P_{eff}}} = \frac{d}{dP_{eff}} \frac{\eta_{HK}}{\eta_{HK}} \to \frac{c_{p_3}}{c_{p_3 \text{th}} \cdot \left(T_3 + \frac{H_{U^*} \cdot \rho_B}{\tau \cdot c_{p_3 \text{th}} \cdot \left(m_L + \frac{\rho_B}{\tau} \right)} \right)} - T_3 \cdot c_{p_2} \tag{114}
\]

\[
\Theta_{S_{m_L}} = \frac{d}{dm_L} \frac{\eta_{HK}}{\eta_{HK}} \to \frac{H_{U^*} \cdot \rho_B \cdot c_{p_3 \text{th}} \cdot \left(T_2 + \frac{P_R + P_{eff} - m_L \cdot c_{p_3 \text{th}} \cdot \left(T_1 - T_2 \right)}{\tau \cdot c_{p_3 \text{th}} \cdot \left(m_L + \frac{\rho_B}{\tau} \right)} \right)}{T_2 \cdot c_{p_2}} \tag{115}
\]

\[
\Theta_{S_{r}} = \frac{d}{d\tau} \frac{\eta_{HK}}{\eta_{HK}} \to \frac{c_{p_3 \text{th}} \cdot \left(T_3 + \frac{H_{U^*} \cdot \rho_B}{\tau \cdot c_{p_3 \text{th}} \cdot \left(m_L + \frac{\rho_B}{\tau} \right)} \right)}{\tau^2 \cdot c_{p_3 \text{th}} \cdot \left(m_L + \frac{\rho_B}{\tau} \right)} - T_3 \cdot c_{p_3} \cdot \left(\frac{P_R + P_{eff} - m_L \cdot c_{p_3 \text{th}} \cdot \left(T_1 - T_3 \right)}{\tau \cdot c_{p_3 \text{th}} \cdot \left(m_L + \frac{\rho_B}{\tau} \right)} \right) \frac{H_{U^*} \cdot \rho_B^{\frac{3}{2}}}{\tau^2 \cdot c_{p_3 \text{th}} \cdot \left(m_L + \frac{\rho_B}{\tau} \right)^2} \tag{116}
\]
Die Tabelle 22 gibt einen Überblick auf den Einfluss der Fehler der einzelnen Messgrößen auf den Fehler des gewünschten Ergebnisses.

<table>
<thead>
<tr>
<th>relative und absolute Sensitivitäten im Überblick</th>
<th>BP1</th>
<th></th>
<th></th>
<th>BP3</th>
<th></th>
<th></th>
<th>BP4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>Einheit</td>
</tr>
<tr>
<td>Gesamtwirkungsgrad η_{eff}</td>
<td>1,012E-07</td>
<td>1</td>
<td>1,012E-07</td>
<td>1</td>
<td>1,012E-07</td>
<td>1</td>
<td>1,012E-07</td>
<td>1</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>0,000004689</td>
<td>1</td>
<td>4,689E-06</td>
<td>1</td>
<td>4,689E-06</td>
<td>1</td>
<td>4,689E-06</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turbineneintrittstemperatur T_3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{eff}</td>
<td>0,003</td>
</tr>
<tr>
<td>T_3</td>
<td>1</td>
</tr>
<tr>
<td>m_L</td>
<td>-34,031</td>
</tr>
<tr>
<td>τ</td>
<td>0,000006089</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>spezifischer Brennstoffverbrauch b_B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>-2,715E-08</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>-0,000001258</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>isentroper Verdichterwirkungsgrad η_{Vs}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>0,011</td>
</tr>
<tr>
<td>p_1</td>
<td>-0,00001373</td>
</tr>
<tr>
<td>p_2</td>
<td>2,214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>isentroper Turbinenwirkungsgrad η_{Tts}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>-0,009</td>
</tr>
<tr>
<td>T_2</td>
<td>0,009</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>0,00002626</td>
</tr>
<tr>
<td>m_L</td>
<td>-0,352</td>
</tr>
<tr>
<td>τ</td>
<td>6,304E-08</td>
</tr>
<tr>
<td>T_4</td>
<td>-0,001</td>
</tr>
<tr>
<td>p_3</td>
<td>-0,00001245</td>
</tr>
<tr>
<td>p_4</td>
<td>0,00001906</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brennkammerwirkungsgrad η_{BK}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_2</td>
<td>-0,0002032</td>
</tr>
<tr>
<td>T_4</td>
<td>0,002</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>0,00004016</td>
</tr>
<tr>
<td>m_L</td>
<td>2,006</td>
</tr>
<tr>
<td>τ</td>
<td>0,00004136</td>
</tr>
</tbody>
</table>

Die Überschrift gibt an, um welches Ergebnis es sich handelt und die Beschriftung am Zeilenanfang gibt an, welche Größe sich verändert. So wird zum Beispiel bei Betrachtung des Gesamtwirkungsgrades η_{eff} durch eine Änderung der Leistung um 1 W dieser um 4,689x10⁻⁴ %-Punkte verschoben. Ändert sie sich um 1 kW beträgt die

<table>
<thead>
<tr>
<th>Einflussgröße</th>
<th>Änderung der Eingangsgröße</th>
<th>Änderung der Ergebnisgröße</th>
<th>Wirkungsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennstoffmassenstrom</td>
<td>1 %</td>
<td>0.92 %</td>
<td></td>
</tr>
<tr>
<td>Leistung</td>
<td>1 %</td>
<td>0.95 %</td>
<td></td>
</tr>
</tbody>
</table>

Hier sieht man, dass sich die Ergebnisse der in Tabelle 22 angegebenen Sensitivitätsanalyse mit der in Tabelle 23 decken. Der Unterschied, warum in [21] die Veränderung bei beiden Werten nicht 1 % ist wie oben, resultiert daraus, dass dort mehr Faktoren als Eingänge berücksichtigt wurden, wie zum Beispiel die Umgebungstemperatur und die Luftfeuchtigkeit.

In Tabelle 22 erkennt man eine sehr geringe Abhängigkeit der Sensitivitäten vom Betriebspunkt. Die Größen mit veränderlichen Sensitivitäten sind in der Tabelle 22 mit brauner Schriftfarbe zu sehen.
5. Zusammenfassung und Ausblick

5.1. Zusammenfassung der Messunsicherheiten

In Tabelle 24 ist die Zusammenfassung aller Fehlerberechnungsergebnisse zu sehen. Als letzte Teiltabelle werden noch die Berechnungsergebnisse nach [1] angegeben mit dem berechneten erweiterten Fehler mit einem Niveau von 95 % Wahrscheinlichkeit.

Die Messwerte können dargestellt werden, indem man den Mittelwert anführt und dann ± den erweiterten Fehler anschreibt, oder das Ganze mit der kombinierten Standardunsicherheit angibt. Das ergibt dann den Bereich, in dem sich der wahre Wert mit hoher Wahrscheinlichkeit (je nach Vertrauensniveau) befindet.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_L</td>
<td>kg/s</td>
<td>0,352</td>
<td>0,355</td>
<td>0,350</td>
<td>0,340</td>
</tr>
<tr>
<td>T_3</td>
<td>K</td>
<td>835,66</td>
<td>882,91</td>
<td>916,73</td>
<td>985,47</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>kW</td>
<td>3,78</td>
<td>6,224</td>
<td>8,269</td>
<td>10,736</td>
</tr>
<tr>
<td>b_B</td>
<td>kg/kWh</td>
<td>4,76</td>
<td>3,10</td>
<td>2,47</td>
<td>2,06</td>
</tr>
<tr>
<td>η_{Vs}</td>
<td>-</td>
<td>0,619</td>
<td>0,621</td>
<td>0,657</td>
<td>0,596</td>
</tr>
<tr>
<td>η_{Ts}</td>
<td>-</td>
<td>0,866</td>
<td>0,868</td>
<td>0,848</td>
<td>0,901</td>
</tr>
<tr>
<td>η_{eff}</td>
<td>-</td>
<td>0,018</td>
<td>0,027</td>
<td>0,034</td>
<td>0,041</td>
</tr>
<tr>
<td>η_{BK}</td>
<td>-</td>
<td>0,840</td>
<td>0,874</td>
<td>0,863</td>
<td>0,875</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm_L</td>
<td>kg/s</td>
<td>0,00355</td>
<td>0,00358</td>
<td>0,00352</td>
<td>0,00344</td>
</tr>
<tr>
<td>ΔT_3</td>
<td>K</td>
<td>0,13155</td>
<td>0,25937</td>
<td>0,76947</td>
<td>0,29395</td>
</tr>
<tr>
<td>ΔP_{eff}</td>
<td>kW</td>
<td>0,00802</td>
<td>0,06249</td>
<td>0,02877</td>
<td>0,01137</td>
</tr>
<tr>
<td>Δb_B</td>
<td>kg/kWh</td>
<td>1,07E-02</td>
<td>2,91E-02</td>
<td>4,98E-02</td>
<td>2,92E-03</td>
</tr>
<tr>
<td>$\Delta \eta_{Vs}$</td>
<td>-</td>
<td>5,66E-04</td>
<td>6,43E-05</td>
<td>3,91E-05</td>
<td>1,59E-04</td>
</tr>
<tr>
<td>$\Delta \eta_{Ts}$</td>
<td>-</td>
<td>1,76E-03</td>
<td>2,62E-03</td>
<td>2,50E-03</td>
<td>2,70E-03</td>
</tr>
<tr>
<td>$\Delta \eta_{eff}$</td>
<td>-</td>
<td>3,99E-05</td>
<td>4,50E-04</td>
<td>1,22E-04</td>
<td>5,78E-05</td>
</tr>
<tr>
<td>$\Delta \eta_{BK}$</td>
<td>-</td>
<td>7,80E-03</td>
<td>8,14E-03</td>
<td>8,04E-03</td>
<td>8,15E-03</td>
</tr>
</tbody>
</table>
Zusammenfassung und Ausblick

relative Ergebnismessunsicherheit

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm/Δm_L</td>
<td>%</td>
<td>1,009</td>
<td>1,009</td>
<td>1,006</td>
<td>1,011</td>
</tr>
<tr>
<td>Δr/Δr_T</td>
<td>%</td>
<td>0,016</td>
<td>0,029</td>
<td>0,084</td>
<td>0,030</td>
</tr>
<tr>
<td>ΔP/ΔP_eff</td>
<td>%</td>
<td>0,212</td>
<td>1,004</td>
<td>0,348</td>
<td>0,106</td>
</tr>
<tr>
<td>Δb/Δb_B</td>
<td>%</td>
<td>0,225</td>
<td>0,938</td>
<td>2,017</td>
<td>0,141</td>
</tr>
<tr>
<td>Δη_Vs/Δη_vs</td>
<td>%</td>
<td>0,0915</td>
<td>0,0104</td>
<td>0,0060</td>
<td>0,0268</td>
</tr>
<tr>
<td>Δη_Ts/Δη Ts</td>
<td>%</td>
<td>0,2038</td>
<td>0,3013</td>
<td>0,2943</td>
<td>0,3000</td>
</tr>
<tr>
<td>Δη_eff/Δη eff</td>
<td>%</td>
<td>0,225</td>
<td>1,655</td>
<td>0,359</td>
<td>0,141</td>
</tr>
<tr>
<td>Δη_BK/Δη BK</td>
<td>%</td>
<td>0,929</td>
<td>0,932</td>
<td>0,932</td>
<td>0,931</td>
</tr>
</tbody>
</table>

erweiterter Unsicherheitsbereich

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm_L</td>
<td>kg/s</td>
<td>0,00224</td>
<td>0,00226</td>
<td>0,00223</td>
<td>0,00217</td>
</tr>
<tr>
<td>ΔT_3</td>
<td>K</td>
<td>0,08320</td>
<td>0,16404</td>
<td>0,48665</td>
<td>0,18591</td>
</tr>
<tr>
<td>ΔP_eff</td>
<td>kW</td>
<td>0,00507</td>
<td>0,03952</td>
<td>0,01820</td>
<td>0,00719</td>
</tr>
<tr>
<td>Δb_B</td>
<td>kg/kWh</td>
<td>6,78E-03</td>
<td>1,84E-02</td>
<td>3,15E-02</td>
<td>1,85E-03</td>
</tr>
<tr>
<td>Δη_Vs</td>
<td>-</td>
<td>0,00036</td>
<td>0,00004</td>
<td>0,00002</td>
<td>0,00010</td>
</tr>
<tr>
<td>Δη_Ts</td>
<td>-</td>
<td>1,12E-03</td>
<td>1,65E-03</td>
<td>1,58E-03</td>
<td>1,71E-03</td>
</tr>
<tr>
<td>Δη_eff</td>
<td>-</td>
<td>2,53E-05</td>
<td>2,85E-04</td>
<td>7,74E-05</td>
<td>3,66E-05</td>
</tr>
<tr>
<td>Δη_BK</td>
<td>-</td>
<td>4,93E-03</td>
<td>5,15E-03</td>
<td>5,09-03</td>
<td>5,15E-03</td>
</tr>
</tbody>
</table>

Um noch eine bildhaftere Vorstellung von diesen Werten zu bekommen folgen hier die relativen Messunsicherheiten grafisch dargestellt in Diagrammen. In Abbildung 18 sind die Messunsicherheiten der direkt gemessenen Größen auf die vier Betriebspunkte aufgeteilt. Der Abbildung 19 kann man die kombinierten Standardunsicherheiten entnehmen. Beim Vergleich dieser beiden Abbildungen merkt man, dass die Größen M, P_{eff} und η_{eff} gleiche Tendenzen bei den Fehlern aufweisen.
Zusammenfassung und Ausblick

Abbildung 18: relative Einzelmessunsicherheiten im Vergleich

Abbildung 19: relative Messunsicherheiten im Vergleich
Zusammenfassung und Ausblick

Aus der Abbildung 19 kann man folgende Schlüsse ziehen:

- Die größten Messunsicherheiten treten im Mittel bei der Blendenmessung auf und beim Brennkammerwirkungsgrad.
- Die Unsicherheit des Brennkammerwirkungsgrades wird mit steigender Leistung größer, aber die Fehler sind ähnlich und er befinde sich bei ungefähr 0,93%.

Zur genaueren Analyse wird nun auf einzelne berechnete Größen gezielt eingegangen. In den folgenden Diagrammen wurden manche Abweichungen mit einem Faktor multipliziert um einen Vergleich in einem Diagramm zu ermöglichen.

Abbildung 20: Verhalten Gesamtwirkungsgrad - absoluter Fehler

Aus Abbildung 20 kann eindeutig schließen, dass der Ausreißer im Betriebspunkt 2 durch die große Abweichung der Leistung entsteht. Aus den einzelnen Messergebnissen weiß man, dass dieser vom großen Fehler des Drehmoments herrührt.

Abbildung 21: Verhalten isentroper Turbinenwirkungsgrad - absoluter Fehler
Für das Verhalten des isentropen Wirkungsgrads der Turbine können aus der Abbildung 21 leider keine Schlüsse gezogen werden. Hier muss die Sensitivitätsanalyse Aufklärung bringen.

Abbildung 22: Verhalten Turbineneintrittstemperatur

Abbildung 23: Verhalten spezifischer Brennstoffverbrauch

Der Abbildung 23 ist entnehmbar, dass die Abweichung der Leistung Auswirkungen auf den spezifischen Verbrauch hat.

5.2. Zusammenfassung der Sensitivitäten

Bei der Sensitivitätsanalyse erkennt man die wichtigsten Werte anhand der Größe der Beträge der relativen Sensitivitäten. Umso größer der Betrag ist, desto einflussreicher ist die betrachtete Größe.
5.2.1. Brennkammerwirkungsgrad η_{BK}

Tabelle 25: Sensitivität Brennkammer im Detail

<table>
<thead>
<tr>
<th></th>
<th>BP1</th>
<th></th>
<th>BP2</th>
<th></th>
<th>BP3</th>
<th></th>
<th>BP4</th>
<th></th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
</tr>
<tr>
<td>T_2</td>
<td>-0,0002032</td>
<td>-0,092</td>
<td>-0,000206</td>
<td>-0,092</td>
<td>-0,0002162</td>
<td>-0,096</td>
<td>-0,0002262</td>
<td>-0,099</td>
<td></td>
</tr>
<tr>
<td>T_4</td>
<td>0,002</td>
<td>1,5</td>
<td>0,002</td>
<td>1,492</td>
<td>0,002</td>
<td>1,488</td>
<td>0,002</td>
<td>1,478</td>
<td></td>
</tr>
<tr>
<td>P_{eff}</td>
<td>0,000004016</td>
<td>0,019</td>
<td>4,01E-06</td>
<td>0,019</td>
<td>0,00000398</td>
<td>0,018</td>
<td>3,953E-06</td>
<td>0,018</td>
<td></td>
</tr>
<tr>
<td>m_L</td>
<td>2,006</td>
<td>0,878</td>
<td>2,026</td>
<td>0,876</td>
<td>2,026</td>
<td>0,87</td>
<td>2,043</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>0,000004136</td>
<td>0,904</td>
<td>4,176E-06</td>
<td>0,901</td>
<td>4,175E-06</td>
<td>0,899</td>
<td>4,0208E-06</td>
<td>0,895</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2. Gesamtwirkungsgrad η_{eff}

Tabelle 26: Sensitivität Gesamtwirkungsgrad im Detail

<table>
<thead>
<tr>
<th></th>
<th>BP1</th>
<th></th>
<th>BP2</th>
<th></th>
<th>BP3</th>
<th></th>
<th>BP4</th>
<th></th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
</tr>
<tr>
<td>τ</td>
<td>1,012E-07</td>
<td>1</td>
<td>1,012E-07</td>
<td>1</td>
<td>1,012E-07</td>
<td>1</td>
<td>1,012E-07</td>
<td>1</td>
<td>m³/s</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>0,000004689</td>
<td>1</td>
<td>4,689E-06</td>
<td>1</td>
<td>4,689E-06</td>
<td>1</td>
<td>4,689E-06</td>
<td>1</td>
<td>1/W</td>
</tr>
</tbody>
</table>

Anhand dieser Sensitivitätsanalyse in Tabelle 26 bemerkt man, dass beide Größen einen gleich starken Einfluss auf den Fehler des Ergebnisses haben. Wenn sich nun der Fehler der effektiven Leistung um ein Prozent verändert, dann wird sich auch die kombinierte Standardunsicherheit des effektiven Wirkungsgrades um 1 % verändern. Genauso groß ist die Veränderung durch Schwankungen von τ.

5.2.3. isentroper Turbinenwirkungsgrad η_{Ts}

Tabelle 27: Sensitivität Turbine im Detail

<table>
<thead>
<tr>
<th></th>
<th>BP1</th>
<th></th>
<th>BP2</th>
<th></th>
<th>BP3</th>
<th></th>
<th>BP4</th>
<th></th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
<td>relativ</td>
<td>absolut</td>
</tr>
<tr>
<td>T_1</td>
<td>-0,009</td>
<td>-3,147</td>
<td>-0,009</td>
<td>-3,149</td>
<td>-0,009</td>
<td>-3,153</td>
<td>-0,009</td>
<td>-3,155</td>
<td></td>
</tr>
<tr>
<td>T_2</td>
<td>0,009</td>
<td>3,901</td>
<td>0,009</td>
<td>3,903</td>
<td>0,009</td>
<td>3,908</td>
<td>0,009</td>
<td>3,911</td>
<td></td>
</tr>
<tr>
<td>P_{eff}</td>
<td>0,00002626</td>
<td>0,115</td>
<td>0,00002629</td>
<td>0,115</td>
<td>0,00002635</td>
<td>0,115</td>
<td>0,00002635</td>
<td>0,115</td>
<td></td>
</tr>
<tr>
<td>m_L</td>
<td>-0,352</td>
<td>-0,143</td>
<td>-0,353</td>
<td>-0,143</td>
<td>-0,354</td>
<td>-0,143</td>
<td>-0,354</td>
<td>-0,143</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>6,304E-08</td>
<td>0,013</td>
<td>6,31E-08</td>
<td>0,013</td>
<td>6,327E-08</td>
<td>0,013</td>
<td>6,327E-08</td>
<td>0,013</td>
<td></td>
</tr>
<tr>
<td>T_4</td>
<td>-0,001</td>
<td>-0,909</td>
<td>-0,001</td>
<td>-0,91</td>
<td>-0,001</td>
<td>-0,91</td>
<td>-0,001</td>
<td>-0,911</td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td>0,00001245</td>
<td>-2,219</td>
<td>0,00001246</td>
<td>-2,22</td>
<td>-0,00001247</td>
<td>-2,221</td>
<td>-0,00001248</td>
<td>-2,22</td>
<td></td>
</tr>
<tr>
<td>p_4</td>
<td>0,00001906</td>
<td>2,219</td>
<td>0,00001908</td>
<td>2,22</td>
<td>0,00001909</td>
<td>2,221</td>
<td>0,00001912</td>
<td>2,222</td>
<td>1/Pa</td>
</tr>
</tbody>
</table>
Anhand der relativen Messunsicherheiten allein kann in Kapitel 5.1 keine Aussage über den Turbinenwirkungsgrad gemacht werden. Mithilfe der Sensitivitäten in Tabelle 27 erkennt man aber, dass die Temperaturen am Eingang und am Verdichteraustritt den größten Einfluss haben. Wenn man die Messgenauigkeit der Verdichteraustrittstemperatur \(T_2 \) um 1\% verbessert, wird der Fehler des Turbinenwirkungsgrades um 3,9\% kleiner. D.h. eine Veränderung um 1 K bewirkt im Ergebnis eine um ca. 1/100., also um einen Prozentpunkt des Wirkungsgrades. Weiters hat auch die Turbinenaustrittstemperatur einen erheblichen Einfluss. Verändert man deren Genauigkeit um 1\% resultiert daraus eine Veränderung in der Ergebnismessunsicherheit von 0,909\%. Der negative Wert in der Tabelle 27 hat dabei allerdings keine Auswirkung. Eine Vergrößerung des Fehlers führt trotzdem zu einer Vergrößerung der Abweichung im Ergebnis. Außerdem bedeutet das, wenn man den Turbineneintrittsdruckfehler um 1 mbar verkleinert wird auch der Turbinenwirkungsgrad um ca. 1/1000 genauer.

5.2.4. isentroper Verdichterwirkungsgrad \(\eta_{Vs} \)

Bei den Versuchen gibt es im 1. und im 4. Betriebspunkt einen herausstechenden Fehler. Dieser entsteht durch den hohen Fehler des Verdichteraustrittsdrucks \(\Delta p_2 \).

5.2.5. spezifischer Brennstoffverbrauch \(b_\theta \)

Der Fehler des spezifischen Brennstoffverbrauchs \(\Delta b_\theta \) kommt nach Tabelle 29 größtenteils aus der Abweichung der gemessenen Leistung an der Wirbelstrombremse. Man sieht in Abbildung 23, dass der Fehler im Vergleich zur Messunsicherheit der Leistung viel kleiner ist. Das ist auch aus Tabelle 29 ablesbar: Wenn sich die Leistung um 1 W verändert, dann verändert das den spezifischen Verbrauch um 1,258\cdot10^{-6}.
5.2.6. Turbineneintrittstemperatur T_3

Tabelle 30: Sensitivität Turbineneintrittstemperatur im Detail

<table>
<thead>
<tr>
<th>BP1</th>
<th></th>
<th>BP2</th>
<th></th>
<th>BP3</th>
<th></th>
<th>BP4</th>
<th></th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{eff}</td>
<td>absolut</td>
<td>0,003</td>
<td>relativ</td>
<td>0,011</td>
<td>absolut</td>
<td>0,002</td>
<td>relativ</td>
<td>0,011</td>
</tr>
<tr>
<td>T_4</td>
<td>1</td>
<td>0,909</td>
<td>1</td>
<td>0,91</td>
<td>1</td>
<td>0,911</td>
<td>1</td>
<td>0,911</td>
</tr>
<tr>
<td>m_L</td>
<td>-34,031</td>
<td>-0,014</td>
<td>-33,772</td>
<td>-0,014</td>
<td>-33,423</td>
<td>-0,014</td>
<td>-33,082</td>
<td>-0,014</td>
</tr>
<tr>
<td>τ</td>
<td>0,000006089</td>
<td>0,001</td>
<td>6,042E-06</td>
<td>0,001</td>
<td>0,00000592</td>
<td>0,001</td>
<td>0,00000592</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Bei Vergleich der Tabelle 30 mit Abbildung 22 wird klar, dass die einflussreichste Größe hier die Turbinenaustrittstemperatur darstellt. 1 K Veränderung der Eingangsgröße bewirkt direkt 1 K Veränderung bei der Ausgangsgröße. Alle anderen Größen spielen in Bezug auf den Fehler nur eine untergeordnete Rolle.

5.3. Ausblick auf weitere Arbeiten

Die Verbesserung der Leistungsmessung hätte auch eine positive Wirkung auf die Messung des Wirkungsgrades und des spezifischen Brennstoffverbrauchs zur Folge. Das Problem der Leistungsmessung liegt allerdings bei der Leistungsstärke der Wirbelstrombremse. Sie ist für die ROVER 1S/60 mit deren maximal abgegebenen Leistung von 45 kW zu stark. Die Wirbelstrombremse ist ausgelegt für maximal 150 kW. Bei leistungsschwächeren Wirbelstrombremsen steigen die Anschaffungskosten mit abfallender Leistung an.

Um den isentropen Turbinenwirkungsgrad genauer messen zu können, müsste man die Bestimmung der Verdichteraustrittstemperatur, oder wenn man weiter gehen will, die Druckmessungen vor und nach der Turbine verbessern. Wobei die genauen physikalischen Vorgänge bei der Differenzdruckmessung am Turbinenaustritt noch geklärt werden müssen.

Zur Senkung der Messunsicherheit bei der Turbineneintrittstemperatur muss die Genauigkeit bei der Temperaturmessung nach der Turbine verbessert werden.

Weitere mögliche Verbesserungen des Prüfstandes könnten mit der Automatisierung der Messung erreicht werden, und in weiterer Folge, wenn die Messwerte in ein Programm eingebunden werden, könnte man direkt während der Messung alle Größen berechnen lassen. Darüber hinaus könnte man die Betriebspunkte gleich im Kennfeld anzeigen lassen.

Es wäre dann möglich, nicht nur im stationären Betrieb zu messen, sondern auch instationäre Vorgänge, wie zum Beispiel eine Anfahrrampe messtechnisch zu erfassen. Hier könnte man dann direkt verfolgen, wie ein Anfahren im Kennfeld wirkt. Man könnte den Studenten damit zeigen, dass es hier zu einer Näherung an die Pumpgrenze kommt.

Ein weiterer Ansatzpunkt wäre die Gestaltung eines virtuellen Prüfstandes. Da es während der Laborübung bei Betrieb der Turbine nicht mehr möglich ist Erklärungen abzugeben, wäre es von Vorteil, wenn man einen
6. Anhang

6.1. Abbildungen

Abbildung 24: spezifische Wärmekapazität [15], S.21
Abbildung 25: Verlustleistung der Rover 1S/60 als Funktion der Drehzahl [15]
Literaturangaben