Partners
ADEME
CLASP
Enova
Eurima
EuroACE
Glass for Europe
Opower
Rockwool
Saint-Gobain
smartB
The Research Council of Norway
UKERC
Velux

Endorsing partner
BPIE – Buildings Performance Institute Europe

ISSN 2001-7960
ISBN 978-91-980482-7-8
Published in Stockholm, Sweden 2015
©eceee and the authors 2015
On the impact of policy measures on cars’ CO₂ emissions in the EU

Amela Ajanovic
Energy Economics Group
Vienna University of Technology
Gusshaussstr. 25-27/370-2
Vienna, Austria
ajanovic@eeg.tuwien.ac.at

Reinhard Haas
Energy Economics Group
Vienna University of Technology
Gusshaussstr. 25-27/370-2,
Vienna, Austria
haas@eeg.tuwien.ac.at

Franz Wirl
Department of Economics
University of Vienna
Vienna, Austria
franz.wirl@univie.ac.at

Keywords
cars, emissions, transport policies and measures

Abstract
Reducing CO₂ emissions from cars is essential in order to curtail global temperature increases. In this paper we analyze how the following measures contribute to reducing CO₂ emissions: (i) voluntary agreements with car manufacturers; (ii) mandatory standards on specific CO₂ emissions; (iii) fuel taxes; (iv) registration taxes; (v) subsidies. Our core objectives are: (i) to provide a survey on the implementation of these policy measures for car transport in EU countries; (ii) to analyze their impact on energy consumption and CO₂ emissions, and (iii) to extract the most promising policies to reduce emissions. The approach builds on a formal framework based on the decomposition of energy into service and intensity and on conducting econometric analyses for energy consumption as well as kilometers driven. The major results and conclusions are:

- Despite the fact that there are many parameters that constitute a formal framework to explain energy consumption and CO₂ emissions, there is one key parameter which influences final CO₂ emissions and this is the service price elasticity. Our results for the service price elasticity of car driving in Europe are about -0.4 to -0.45;
- The service price elasticity impacts fuel taxes, standards as well as registration taxes;
- This result leads to the situation that a mix of policies is preferable. A combined tax-standard policy will lead to a win-win situation for the environment and car drivers. A simultaneously introduced fuel tax will compensate for the rebound effect without hurting car drivers due to service vkm driven remaining at same service price. The fuel tax should compensate the standard to an extent so that finally the service price before and after policy introduction remains the same. Yet, because registration taxes work as standards, a fuel tax must also accompany an intended introduction of registration taxes.

Introduction
The transport sector, which is primarily based on fossil energy, is the second biggest source of greenhouse gas emissions (GHG) in the EU-28, see Figure 1. The second largest part of these emissions is caused by road transport. Road transport contributes about one-fifth of the EU’s total emissions of carbon dioxide (CO₂).

This is a key reason while over the last decade different policy measures have been implemented on road transport, especially on car passenger transport. The most important implemented measures are fuel taxes, registration taxes, ownership taxes, and CO₂ standards for new cars. In spite of implemented policies emissions from road transport were continuously increasing until 2007. A slight reduction can be noticed starting from 2008 partly also due to the economic crisis, see Figure 2.

The objective of this paper, which builds on Ajanovic and Haas (2014), is to discuss advantages and problems related to the implemented policy measures. In this paper we will (i) provide a survey of policy measures in car transport in EU countries; (ii) analyse their impact on energy consumption and CO₂ emissions, and (iii) extract the most promising policies to reduce emissions.
Major developments in car transport in the EU

The largest part of the total GHG emissions from road transport is due to cars. Although the fuel efficiency of passenger cars has significantly improved in the last decade, trends towards more powerful vehicles and additional services in cars have reduced the possible benefits of fuel efficiency improvements. At the same time, the vehicle ownership level is continuously increasing in all EU countries. These developments have significant impacts on the EU’s progress in cutting overall GHG emissions.

In this section the major recent developments in car transport are documented for twelve EU countries: Austria, Denmark, Finland, France, Germany, Greece, Italy, The Netherlands, Portugal, Spain, Sweden and United Kingdom.

Firstly, car ownership trends (stock of passenger cars per capita) are shown in Figure 3 for the period 1990–2012. In all countries, the car ownership level was increasing. However, there are significant differences between EU countries (e.g. in 2011 the lowest car stock per capita was in Spain, 0.36, and highest in Italy, 0.62). In some countries such as France, Finland and Spain stock of cars per capita is stable over the last few years.

Due to the implemented policy measures in the EU, average specific energy consumption of cars has been reduced in the last decade. In 1990 average fuel intensity of passenger cars in analysed countries was between about 7.5 and 9.5 litres per 100 kilometres. Already in 2010 fuel intensity is in the range between 5.8 and 8.3 l/100 km, see Figure 4. However, the fuel intensity shown in Figure 4 is distorted because intensity has been diluted by more powerful cars leading to lower reduction of energy consumption per km driven, Ajanovic/Haas (2014a). Impact of car size on fuel intensity is analysed by Ajanovic et al. (2012).

European CO₂-emission targets for new passenger cars have significantly contributed to emission reduction in the last decade. Figure 5 shows the development of CO₂ emissions of new passenger cars for the period 1995–2012. In all analyzed countries, considerable emissions reductions have been achieved. In 1995 average emissions of new cars have been in the range of 224 (Sweden) and 175 (Spain) gCO₂/km. In 2012, the lowest emissions were seen in Portugal (117 gCO₂/km) and highest in Germany (142 gCO₂/km). The strongest decrease can be noticed after 2008, (Ajanovic/Haas 2014a).

Implemented policy measures in EU countries

In this paper we analyze the following policy measures implemented in EU countries which can contribute to reducing CO₂ emissions: (i) voluntary agreements with car manufactures; (ii) mandatory standards on specific CO₂ emissions; (iii) fuel taxes; (iv) registration taxes; (v) subsidies/incentives for electric vehicles.
Figure 3. Stock of passenger cars per capita (Data source: ODYSSEE Database).

Figure 4. Average fuel intensity of passenger cars (Data source: ODYSSEE Database).

Figure 5. Average CO₂ emissions of new passenger cars (Data source: ODYSSEE Database).
STANDARDS FOR CO₂ EMISSION OF NEW PASSENGER CARS

Unlike taxes and subsidies/initiatives which are set on the local/national, standards for CO₂ emissions of new cars are determined at the EU level, and car manufacturers must meet the standards or pay penalties for noncompliance, see EU Regulation (EC, 2009). According to the Regulation, average CO₂ emissions from cars should not exceed 130 grams CO₂ per km by 2015 and should drop further to 95 g/km by 2020. The 130 grams target will be phased in between 2012 and 2015.

At first, agreements with car manufacturers were on a voluntary basis. However, since the initial target of 140 gCO₂/km for 2008 was not met on time (the average for the whole car market for 2008 was 153.7 g/km), in 2009 the first mandatory CO₂ emission standards for cars were adopted in the EU (de Wilde and P. Kroon, 2013), see Figure 6. The target for 2015 is 130 gCO₂/km, and for 2020 95 gCO₂/km. In practice this means that each manufacturer gets an individual annual target based on the average mass of all its new cars registered in the EU in a given year. Since targets for 2015 and 2020 are mandatory, manufacturers will have to pay penalties if their average emission levels are above the target set by the limit value curve. The penalties will be based on the calculation of the number of grams per kilometre (g/km) that an average vehicle registered by the manufacturer is above the target, multiplied by the number of cars registered by the manufacturer. A premium of EUR 5 per car registered will apply to the first g/km above the target, EUR 15 for the second g/km, EUR 25 for the third g/km, and EUR 95 for each further g/km. From 2019 every g/km of exceedance will cost EUR 95 (EU, 2014).

Monitoring reports have already showed significant improvement of CO₂ emissions on new passenger cars, see Figure 7.

PASSENGER CAR TAXATION

According to ACEA (2014) there are three major categories of passenger car taxation: (i) taxes on acquisition, (ii) taxes on ownership, and (iii) taxes on motoring. In addition Value Added Tax (VAT) is also applied to all taxes in the range of 18 % to 25 % across EU countries.

A tax on acquisition is a tax paid once, by each vehicle owner, for each vehicle purchased and entered into service. This tax is also called sales tax or registration tax. The criteria for acquisition taxes are different across EU Member States. Most of the criteria are based on fuel consumption, cylinder capacity, CO₂ emissions and price.

Figure 6. Emission targets for new passenger cars in the EU up to 2020 (Ajanovic and Haas, 2014a).

Figure 7. Evolution of CO₂ emissions from new passenger cars by fuel in EU-27 (Data source: EEA, 2014).
Taxes on ownership are paid annually, regardless of how often the vehicle is used. These taxes are mostly based on CO₂ emissions, weight, cylinder capacity, power and fuel consumption. Also this tax is not applied in all countries (e.g. Czech Republic, Estonia, France, Lithuania, Poland and Slovakia).

Taxes on motoring are taxes on fuels. The different excise duties on gasoline and diesel in EU countries are shown in Figure 8.

SUBSIDIES AND TAX INCENTIVES FOR ELECTRIC VEHICLES
One possibility to reduce CO₂ emissions is to increase the use of alternative fuels and alternative automotive technologies. In recent years a major focus was put on biofuels. However, relatively moderate environmental benefits of biofuels and competition with food production, have made 1st generation biofuels less attractive than initially presumed.

In recent years interest in electric vehicles has significantly increased. This increase is due to improvements in the technology as well as purchase and tax incentives for electric vehicles which have been implemented in many EU countries.

Table 1 provides an overview of the incentives for the purchase and use of electric vehicles which are currently implemented in some EU countries.

In spite of supporting policies, at the end of 2012 the global stock of rechargeable electric cars – battery electric vehicles (BEV), range extenders (REX) and plug-in electric vehicles – was circa 180,000, representing just 0.02% of the total passenger car stock (IEA, 2013). The share of rechargeable electric vehicles in the total EVs stock is just 5%, 95% of all EVs are non-rechargeable hybrid electric vehicle (HEV) (Ajanovic, 2015).

Figure 9 shows market share of pure battery electric vehicles. In all analyzed countries the share is very low, under 1%. In 2013 the highest market share in the EU was in the Netherlands (0.83%) followed by France (0.79%). This is relatively low compared to Norway (5.75%).

The plug-in hybrid market share in 2013 was the highest in the Netherlands with 4.72%, followed by Sweden (home of the popular Volvo V60 plug-in hybrid) 0.41%, see Figure 9.

Acceptance of electric vehicles is dependent on the supporting policy measures which have been implemented but also on prices of electricity and fossil fuels. The countries with low electricity price and high gasoline price (e.g. the Netherlands) are basically more interested in electric vehicles. Figure 10 shows differences in gasoline and electricity prices across the EU.
Table 1. Incentives (ACEA, 2014).

<table>
<thead>
<tr>
<th>Country</th>
<th>Incentives</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Electric vehicles are exempt from the fuel consumption tax and from the monthly vehicle tax.</td>
</tr>
<tr>
<td>DE</td>
<td>Electric vehicles are exempt from the annual circulation tax for a period of ten years from the date of their first registration.</td>
</tr>
<tr>
<td>FI</td>
<td>Electric vehicles pay the minimum rate (5%) of the CO2 based registration tax.</td>
</tr>
<tr>
<td>FR</td>
<td>Hybrid vehicles emitting 110 g/km or less of CO2 benefit from a premium of €3,300. Electric vehicles are exempt from the company car tax. Hybrid vehicles emitting less than 110 g/km are exempt during the first two years after registration.</td>
</tr>
<tr>
<td>DK</td>
<td>Electric vehicles weighing less than 2,000 kg are exempt from the registration tax. This exemption does not apply to hybrid vehicles.</td>
</tr>
<tr>
<td>GR</td>
<td>Electric and hybrid vehicles are exempt from the registration tax, the luxury tax and the luxury living tax. Electric passenger cars and hybrid passenger cars with an engine up to 1,929 cc, are exempt from the circulation tax. Hybrid cars with a higher engine capacity pay 50% of the normal circulation tax rate.</td>
</tr>
<tr>
<td>IT</td>
<td>Electric vehicles are exempt from the ownership tax for a period of five years from the date of their first registration. After this five-year period, they benefit from a 75% reduction of the tax rate applied to equivalent petrol vehicles in many regions.</td>
</tr>
<tr>
<td>NL</td>
<td>Electric vehicles are exempt from the registration tax. Other vehicles including hybrid vehicles are also exempt from the registration tax if they emit maximum 85 g/km (diesel) or 88 g/km (petrol) of CO2 respectively.</td>
</tr>
<tr>
<td>PT</td>
<td>Electric vehicles are exempt from the registration tax ISV and from the annual circulation tax. Hybrid vehicles benefit from a 50% reduction of the registration tax.</td>
</tr>
<tr>
<td>ES</td>
<td>None</td>
</tr>
<tr>
<td>SE</td>
<td>Five year exemption from paying annual circulation tax: Electric vehicles with an energy consumption of 37 kWh per 100 km or less are exempt from the annual circulation tax for a period of five years from the first registration. The same five year exemption applies to electric hybrid and plug-in hybrid vehicles that fulfill the new green car definition applied for new registrations from 1 January 2013. Moreover, for both electric cars and plug-in hybrids the electrical energy consumption per 100 km must not exceed 37 kWh to be regarded as a green car. Reduction of company car taxation: For electric and plug-in hybrid vehicles, the taxable value of the car for the purposes of calculating the benefit in kind of a company car under personal income tax is reduced by 40% compared with the corresponding or comparable petrol or diesel car. The maximum reduction of the taxable value is SEK 16,000 per year. Super green car premium new cars: A so called subsidy “Super green car premium” of SEK 40,000 is available for the purchase of new cars with CO2 emissions of maximum 50 g/km. The premium is applied both for the purchase by private persons and companies. For companies purchasing a super green car, the premium is calculated as 35% of the price difference between the super green car and a corresponding petrol/diesel car, with a maximum of SEK 40,000. The premium will be paid for a total of maximum 5,000 cars.</td>
</tr>
<tr>
<td>UK</td>
<td>Purchasers of electric vehicles and plug-in hybrid vehicles with CO2 emissions below 75 g/km receive a premium of £5,000 (maximum) or 25% of the value of a new car or £8,000 (maximum) or 20% of the value of a new LCV meeting eligibility criteria (for example, minimum range 70 miles for electric vehicles, 10 miles electric range for plug-in hybrid vehicles). Electric vehicles are exempt from the annual circulation tax. This tax is based on CO2 emissions and all vehicles with emissions below 100 g/km are exempt from it. Electric cars are exempt from company car tax until April 2015 and electric vans are exempt from the van benefit charge until that date too. Electric vehicles and other vehicles emitting less than 95 g/km of CO2 can claim a 100% first-year allowance for depreciation.</td>
</tr>
</tbody>
</table>
Impact of policy measures on reduction of CO$_2$ emissions

To analyse the impact of various policies on overall CO$_2$ emissions, a formal framework based on technical relations between CO$_2$ emissions, energy and service demand is used. It builds on work by Wirl (1992), Walker/Wirl (1993), Haas (2009) and Ajanovic/Haas (2014b).

The basic presumption is that consumers do not demand energy or technology per se, but energy services (S), in this case mobility – vehicle kilometres driven (vkm). They enjoy utility from consuming a particular service, which is in general provided by combining different inputs of energy, technology, human and physical capital, and environment (including natural resources). Given the fact that human and physical capital is largely accumulated in the technical efficiency of the technologies used, conversion technologies as well as infrastructure, the energy service (vkm) can be defined in a technical way as a function of the energy input (E) needed to provide energy service and the efficiency (η) of the technology which facilitates the required services, see Wirl (1993). Based on contributions by Walker/Wirl (1993) and Haas et al (2009) vkm in a technical definition is:

$$vkm = f(E, \eta(T))$$ \hspace{1cm} (1)

where E is energy, and $\eta(T)$ is the efficiency of the technology. More precisely Eq. (1) defines that the service mobility (vkm) is provided by the input of energy and technology. If there are no congestion limits Eq. (2) can be simplified as:

$$vkm = E \cdot \eta(T)$$ \hspace{1cm} (2)
Instead of efficiency $\eta(T)$, its inverse, fuel intensity (FI) is often used. Total energy used which is mostly dependent on fuel intensity of cars and number of kilometres driven per year (vkm) can then be written as:

$$E = \text{vkm} \cdot \text{FI}$$

(3)

Emissions from passenger cars depend, in principle, on total energy used in cars as well as on the type of energy used. Different fuels (e.g. gasoline, diesel, biofuels, etc.) have different specific CO\textsubscript{2} emissions coefficients. The average specific CO\textsubscript{2} emissions coefficient (f_{CO_2}) can be improved with better quality fossil fuels, higher share of biofuels with better ecological performance, more electricity from renewable energy sources, etc. CO\textsubscript{2} emissions (CO\textsubscript{2}) from passenger cars can be described as:

$$\text{CO}_2 = E \cdot f_{\text{CO}_2} = \text{vkm} \cdot \text{FI} \cdot f_{\text{CO}_2} = \text{vkm} \cdot \text{CO}_2 \cdot \text{SP}$$

(4)

where CO\textsubscript{2,SP} is specific CO\textsubscript{2} emissions in kg CO\textsubscript{2}/km.

To understand how policies work we have to know how consumers make decisions. In principle, consumers try to maximize the benefits they enjoy from the consumption of a specific service or good and to minimize the monetary and other efforts related to the consumption of this good or service, see Wirl (1992) and Walker/Wirl (1993).

Consumer decisions can be affected by policy measures, e.g. fuel tax (τ_f), efficiency standards (η) and registration tax (τ_r). Basically, consumers strive for service demand, and service demand depends on energy service price (P_s), income (Y), investment costs (IC) and quality (q) from other possible attributes (x):

$$S = f(P_s, Y, IC, q(x))$$

(5)

However, the impact of quality $q(x)$ is neglected in this paper. In the short-term service demand – in this case vkm – can be described as:

$$\text{vkm} = f(P_s, Y)$$

(6)

with

$$P_s = P_f \cdot \text{FI}$$

(7)

This service price can be changed with policies:

- by raising the fuel tax τ_f which increases P_f and consequently P_s;
- by reducing fuel intensity by means of a standard (FI*) which decreases P_f;

$$P_f^* = (P_f + \tau_f) \cdot \text{FI}$$

(8)

The level of short-term service demand with respect to kilometres driven depends on available income (Y)1 and the service price of a km driven (P_s). In other words we assume that once a car is purchased there are no other attributes for driving more or less than lower or higher energy service prices and income. The impacts on vkm driven is analysed in Ajanovic/Haas (2012) by applying a cointegration approach to the following model:

$$\ln \text{vkm}_t = C + \alpha_1 \ln P_s + \beta \ln Y_t$$

(9)

Where C is intercept, vkm is service demand (e.g. vehicle km driven in year t), P_s is weighted average price of service (calculated by means of weighted fuel prices), and Y is real private final consumption expenditures.

The most interesting coefficients are the energy service price elasticities – α_1 – because they contain information on the impact of both price and efficiency.

Empirical analyses of the magnitude of price elasticities have been conducted in many papers, e.g. Dahl (2012), Dargay (1993) and Goodwin et al. (2004). Investigations conducted by the authors of this paper – see e.g. Ajanovic/Haas 2010, 2011 and 2012 – have resulted in long-term service price elasticities of about (-0.4) to (-0.45). Related to the above reflections this leads to the following interpretations: the increase in fuel prices due to a fuel tax of 1 % would result in energy savings of about 0.4 % to 0.45 %. With a standard which decreases CO\textsubscript{2} emissions by 1 % the savings would be between 0.55 % and 0.6 %. About the same effect would result from a CO\textsubscript{2}-dependent registration tax.

The principle of how changes in prices, due to taxes, affect energy consumption is depicted in Figure 11. For a fuel tax the reduction in energy consumption ΔE, results from higher service price P_s remaining on the same efficiency level of the technology used – curve η_0.

Due to the implementation of mandatory CO\textsubscript{2} emissions standards, cars are expected to become more energy efficient – to consume less fuel per km driven.

Also a CO\textsubscript{2} based registration tax leads to the purchase of more energy efficient cars with lower specific CO\textsubscript{2} emissions per km driven. The higher the registration tax, the lower are the specific CO\textsubscript{2} emissions of the average car sold. For every required emission standard, a corresponding registration tax ($\tau_{R, CO2}$) could be implemented to meet this standard and vice versa. It should be noted that the relationship between a registration tax and the specific CO\textsubscript{2} emissions will also depend on the elasticity of investment costs (γ).

A high registration tax will lead to the purchase of cars with lower specific CO\textsubscript{2} emissions. Cars with lower specific CO\textsubscript{2} emissions have lower fuel intensity. If we introduce specific CO\textsubscript{2} emissions the corresponding fuel intensity (FI*) will affect service price P_s:

$$P_s^* = (P_f + \tau_f) \cdot \text{FI}^*$$

(10)

Where FI^* is a function of specific CO\textsubscript{2} emissions: $\text{FI}^* = f(\text{CO}_2, \text{SP}^*)$.

Since $\text{FI}^* = f(\text{CO}_2, \text{SP}^*)$ and $\text{CO}_2, \text{SP}^* = f(\tau_{R, CO2})$ this leads to the following reflections:

$$P_s^* = P_f (\tau_f, \tau_{R, CO2})$$

(11)

Therefore, the service price does not just depend on the fuel tax τ_f, but also on the registration tax $\tau_{R, CO2}$.

Finally, from Eq. (6) we obtain:

1. Note, that further on in the empirical analyses of this paper we use Private Consumption Expenditures (PCE) as a proxy for income.
Using the definition of the service price elasticity, the difference in vkm driven caused by the rebound effect is calculated as:

\[\Delta \text{vkm}_\text{REB} = \alpha_{\text{vkm}, P_s} \text{vkm}_2 \Delta (P_s, FI) \]

where \(\alpha_{\text{vkm}} \) is the elasticity of vehicle kilometres driven with respect to service price \(P_s \).

Using previous equations and the fundamental definition described in Greene (1997), the elasticity of energy consumption with respect to a change in fuel intensity is derived, (for detail see Ajanovic/Haas, 2012):

\[\gamma_{E,FI} = 1 + \alpha_{\text{vkm}, P_s} \]

From Eq. (16) it can be seen that the elasticity of energy consumption with respect to a change in fuel intensity (\(\gamma_{E,FI} \)) is one plus the elasticity of the energy service (in our case vkm) with respect to service price \(P_s \).

Figure 13 depicts the effect of a fuel tax versus a standard depending on the service price elasticity. For example, if a tax in the magnitude of 100% is introduced and the price elasticity is (-0.3) then the energy saving effect is 30%. If a standard in the magnitude of 100% is introduced and the price elasticity is e.g. (-0.3) then the energy saving effect is 70% and the rebound effect due to more km driven is 30%.

The preference for taxes versus standards depends solely on the magnitude of the service price elasticity \(\alpha_{\text{vkm}} \). However, the best result could be reached with a combination of taxes and standards.

If \(\alpha_{\text{vkm}} \) is small (e.g. -0.1) the fuel tax effect is almost negligible. In this case a standard is clearly preferable with an empirical saving effect of about 90% of the theoretically calculated 100%.

The rebound effect is one of the most critically discussed issues with respect to the implementation of standards for fuel intensity or corresponding CO\(_2\) emissions as well as registration taxes. Fuel cost savings usually lead to the changes in driving behavior, e.g. cars are used more frequently and/or on longer distances. The behavioral response to the introduction of a new, more efficient technology or other measures implemented to reduce energy use is called the direct rebound effect.

In the case that a standard for maximal fuel intensity (FI*) is introduced, theoretical savings due to a standard are reduced due to the rebound effect, so that practical energy saving is lower:

\[\Delta E_{\text{save}} = \Delta E_{\text{th}} - \Delta E_{\text{REB}} \]

with:

\[\Delta E_{\text{REB}} = FT (\text{vkm}_2 - \text{vkm}_1) \]
electric vehicles are exempted from registration tax, value added tax, annual car tax, road toll and congestion charges. Additionally, drivers of electric vehicles have access to bus lines and free parking spaces (Malvik et al., 2013). Moreover, a good public charging network is provided, with about 10,000 charging stations (LeSage, 2013).

Conclusions
The major conclusions from this analysis are:

1. Despite the fact that there are many parameters that constitute a formal framework to explain energy consumption and CO₂ emissions, there is only one key parameter which influences final CO₂ emissions and this is the service price elasticity. Our results for the service price elasticity of car driving in Europe are about -0.4 to -0.45.

2. The service price elasticity impacts fuel taxes, standards as well as registration taxes.

3. The major reason is that fuel taxes and standards are linked via the service price elasticity and are not independent. The magnitude of the service price elasticity defines which instrument is more effective – the tax or standard.

4. Another finding is that the introduction of a registration tax is in principle the same as the introduction of a standard and leads to the same rebound problems. The registration taxes may cover a specific part of the standards’ component.

5. The intended introduction of standards as announced by the EU will not lead to the theoretically possible energy savings and CO₂-reduction. The major reason is that the rebound effect due to more km driven and larger cars will take back part of the theoretically calculated savings.

6. This result leads to the situation that a mix of policies is preferable. A combined tax-standard policy will lead to a win-win situation for the environment and car drivers. A simultaneously introduced fuel tax will compensate for the rebound effect without hurting car drivers due to service vkm driven remaining at the same service price. The fuel tax should compensate the standard to an extent so that finally the service price before and after policy introduction remains the same. Yet, because registration taxes work as standards, a fuel tax must also accompany an intended introduction of registration taxes.

References
Ajanovic A., R. Haas, 2012. "The role of efficiency improvements vs. price effects for modeling passenger car

