Introduction & Background

Photocured dimethacrylate networks are widely employed in dental medicine, decorative coatings and 3D-lithography. Some of their biggest drawbacks are the limited material properties (roughness, shrinkage) and incomplete conversion. By adding a chain transfer agent (CTA), e.g., thiols[1,2] or preferably allyl sulfones[3], more homogeneous networks with tunable and improved properties are accessible[4,5]. We synthesized mono- and difunctional allyl sulfones and present their high potential in regulating methacrylate networks.

Free-Radical Polymerization
- good photoreactivity, fast curing
- convenient low energy processing
- good storage stability
- no control, incomplete conversion
- inhomogeneous and brittle networks

Thiol-ene chemistry[2]
- low oxygen inhibition
- fast and complete reaction
- bad storage stability
- strong odor

Addition-Fragmentation Chain Transfer (AFCT)[2]
- good photoreactivity
- excellent storage stability
- tunable and homogeneous networks
- hardly any studies on networks

Synthesis of β-Allyl Sulfones

Monomers & Formulations

Mechanistic Studies

AFCT Mechanism

Results & Discussion

Photo-DSC & Swelling Experiments

Conclusion

Benefits of β-allyl sulfone chain transfer agents:
- straightforward synthesis from methacrylates
- good storage stability of the formulations
- good coreactivity with methacrylates
- sufficient photoreactivity and higher conversion
- tunable and sharpened glass transition
- high gel fraction and tunable swelling

References & Acknowledgements

We gratefully acknowledge financial support from the Austrian Research Funding (FFG) within the framework of the project ‘addmanu.at’.