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Abstract. The object-oriented model description of
physical or mechanical systems leads to differential-
algebraic equations. In general the numerical solution of
such equation systems is very complex, numerically
extensive or may even be impossible. Therefore it is
important to find methods for solving given equation
system, this leads to the so-called index reduction and
regularization methods. This paper gives a short over-
view of common methods of index reduction. Additional-
ly a classification of these different approaches is made.
Afterwards each approach is presented in detail and the
advantages and disadvantages of the different methods
are discussed. In order to compare the different index
reduction methods, the methods described above are
demonstrated by various examples. For the comparabil-
ity of the different methods the obtained numerical
solutions and the deviation from the constraint equa-
tions are displayed graphically. Therefore the distinct
approaches can be compared with regard to their nu-
merical solutions. The two examples are mechanical
systems with differential index three. The equations of
motion of a pendulum on a circular path in Cartesian
coordinates and the motion of the double pendulum in
Cartesian coordinates, which shows a chaotic behaviour,
are used as case studies.

Introduction

An object-oriented acausal model description for physi-
cal or mechanical systems, such as Modelica or
MATLAB/Simscape, leads to differential-algebraic equ-
ations with non-trivial differential index.

The numerical solution of these equations with
methods for ordinary differential equations is generally
very complex and therefore numerically extensive or
may even be impossible. This problem leads to the so-
called index reduction or regularisation methods. These
methods transform the given differential-algebraic equa-
tion into a differential-algebraic equation with lower
differential index or into an ordinary differential equa-
tion. Due to the large differences (structure, properties,
etc.) of differential-algebraic equations, in the literature
there can be found a number of different approaches and
methods for the reduction of the differential index and
the regularisation. Some of these approaches will be
compared in this paper and evaluated by means of case
studies. These approaches can be split into three topics,
see [1]:

¢ index reduction using differentiation
e stabilization by projections
e methods based on local state space transformations

Each of these topics is discussed in detail in Section 2.

1 Basic Definitions

In this section some basic definitions, which are used in
the following, are presented. A differential-algebraic
equation (DAE), see [2], is given by an implicit equa-
tion,

F(t,x,x) =0, (1

with F:I X D, X D, - R" (n € N), where [ is a real
interval, x denotes the derivative of x with respect to t
and D,, D, are open subsets of R"™. A differential-
algebraic equation consists of differential as well as
algebraic variables and equations.
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The algebraic equations of the given differential-
algebraic equation have the form
g(x) =0 2
where g is a function g: R™ - R¥ and k < n, and are
called constraints or constraint equations.
Equation (1) has differential index m € N, if m is
the minimal number of derivatives such that from the

system
N o dF(tx®) d™MF(tx%) _
F(t,x,x) =0, — =0 0 3)

an ordinary differential equation system can be extract-
ed via algebraic manipulations, see [1]. After these
algebraic calculations the given system can be trans-
formed into an ordinary differential equation x =
@(t,x) with ¢:1 X D,, = R™. In the following the dif-
ferential index is also called only index.

2 Regularisation Methods

In the following six regularization approaches are dis-
cussed, see [1].

2.1 Differentiation and substitution of the
constraint

A first idea for the reduction of the index is to differen-
tiate the constraint equations and substitute the con-
straint equations by its derivatives. This procedure is
repeated until the differential-algebraic equation has
differential index 1. For example, let a DAE with differ-
ential index 3 be given, the constraint equations are
substituted by the second derivative with respect to the
time, i.e. the new constraint equation is

g(x) = 0. 4)
The resulting system has index 1. A problem of this
method is that due to the derivation there is a loss of
information. Therefore the necessary initial values for
the integration are unknown. This fact causes a numeri-
cal “drift-off”, i.e. the numerical solution departs from
the solution manifold.

2.2 Baumgarte-Method
Another approach using differentiation is the Baum-
garte-Method, see [3]. This method substitutes the con-
straint equation (2) by a linear combination of g, g and
g, i.e. instead of (2) the equation

g+2ag+p2g=0 ()
is used. This approach is motivated by the special form
of the new constraint equation.
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The shape of equation (5), i.e. the appearance of g
and g, ensures that there is no loss of information like in
the approach explained above.

The parameters « and B in equation (5) have to be
chosen such that the ordinary differential equation (5) is
asymptotically stable. Therefore the zeros of the charac-
teristic polynomial

A2+ 2al + B2 (6)
of the ordinary differential equation have to be
computed, which results in

/112 = —a i 0(2 - ﬁz. (7)

Therefore follows a > 0. A problem of this approach is
the choice of the two parameters.

2.3 Pantelides Algorithm

The procedure of the Pantelides-Algorithm has a fixed
routine for every constraint equation. This algorithm is
given by the following steps, see [4].

e The constraint equation has to be differentiated.

e The differentiated constraint has to be added to the
system of equations. If there is an algebraic variable
in the constraint equation, then the derivative of this
variable becomes a so-called dummy derivative, for
example the derivative of the algebraic variable y is
written as dy, which is called dummy derivative.

e An integrator which has a connection to the con-
straint equation and the derivative of the constraint
respectively is eliminated, i.e. for example x is elim-
inated and instead of X a new variable called dx is
used.

¢ By differentiation of the constraint it can occur that a
new variable is generated, i.e. for example through
differentiation y, which is an algebraic variable, be-
comes dy and there is an equation where y can be
computed in the system (otherwise the constraint
equation would not be a constraint equation).

e Therefore the equation of which y can be computed
also has to be differentiated.

e The procedure of the last two points has to be repeat-
ed until no new variables are created.

A problem of this method is that during the procedure of
the algorithm a lot of variables and equations may be
created. Therefore the system of the resulting equations
is getting large and can be unclear. Compared with the
other methods which are discussed in this paper, this is
the only approach where it is not necessary to compute
the differential index.
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2.4 Orthogonal Projection method

General assumptions:

o A DAE with differential index k > 1 is given.

e The algebraic variables can be expressed by the
(k — 1)t" derivative of the constraint equation with
respect to t.

The solution manifold M is given by the constraint
equation and the first till the (k — 2)™ derivative of the
constraint equation with respect to t, i.e.

M={xeR:gk)=0%0=0 i€ ®
where I = {1, ...,k — 2}.

The idea of the orthogonal projection method is to
project orthogonally onto the solution manifold M, if
the numerical solution does not fulfil the constraints.

For one step the procedure of this method is given as
follows, see [6]:

o Vi1 = @(y,), where @ is a numerical integrator.
e V,.1 is the orthogonal projection of ¥,,,, onto the
solution manifold M.

In Figure 1 one step of this approach is shown.

Yn+1

Figure 1: Schematic illustration of the orthogonal
projection method.

The problem of this method is to find the orthogonal
projection. Another fact is, that the numeric integration
has to be stopped after each step for checking whether
the numerical solution fulfils the constraint equations
and if it is not fulfilled, the orthogonal projection has to
be applied.

2.5 Symmetric projection method

The idea of the symmetric projection method is to per-
turb y,, so that it is not on the solution manifold M and
then apply a symmetric one-step-method. The distance
of the new value (computed with the symmetric one-
step-method) to the manifold corresponds to the abso-
lute value of the perturbation.

For the general assumptions see section 2.4. The so-
lution manifold is given by equation (8).

A one-step-method @;, (with step size h) is symmet-
ric if &, = &_, 7",

For one step the procedure of this method is: (see [7])

~ ag ~

© Jn=yn + 5w where §(y,) = 0.

® Vui1 = ©,(Jh), where @, is a symmetric one-step-
method.

~ ag ~
* Ynr1 = Jnrr + 5, 1 where G(pea) = 0.

It is important that in the first and in the third step the
same [ is used. Therefore the calculations described
above have to be implemented with an iteration. The
function § consists of the constraint equations and of
the derivatives of the constraint equations, which are
used for describing the solution manifold.

In Figure 2 a schematic presentation of one step of
this approach is shown.

Yn

‘o
y?l
Figure 2. Schematic illustration of the symmetric
projection method.

The disadvantage of this method is that the calculation
has to be iterative and therefore the solution time is
getting bigger in contrast to the methods where an ode-
solver of MATLAB is used.

2.6 Methods based on local state space
transformation

For the general assumptions see Section 2.4. The solu-
tion manifold is also given by (8).

The general idea of this approach is instead of solv-
ing the system on the whole state space only to solve it
on a manifold, which is realized with an appropriate
local coordinate transformation .

For one step the procedure of this method is, see [6]:

e z, is calculated with Yi(z,,) = y.
® Z,11 = P(z,), where @ is a numerical integrator.

* U(Znt1) = Vi1
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The local coordinatisation can be changed in every
step. If there is a global coordinatisation, this method
leads to a simple equation system. The difficulty of this
approach is to find a suitable local or global coordinati-
sation.

3 Case Study ‘Pendulum’

The first example is the motion of a pendulum in Carte-
sian coordinates, which is shown in Figure 3.

Figure 3: Schematic illustration of the motion of a
pendulum in Cartesian coordinates.

The equations of motion of the pendulum are given by
the following equations, see [5],

X = vy 9)
y=1v (10)
v, = —Fx (11)
vy =g—Fy (12)
x2+y?2=1, (13)

where g is the gravitational acceleration and F is the
force. Equation (13) is the constraint equation. The DAE
(9)-(13) has differential index three, which can be seen
from the third derivative with respect to t of equ. (13).

All simulations are realized with MATLAB R2012b.
The first approach leads to the numerical ‘drift-off”.
Therefore this approach is not suitable for the simula-
tion of the given DAE. This can be seen in Figure 4,
where the result of the simulation with the ode-solver
odel5s is shown.

The orthogonal projection method uses an explicit
Euler method for the integration. The numerical solu-
tion of this method is not correct due to the increasing
speed, which is shown in Figure 5.
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Figure 4: Result of the simulation using differentiation
and substitution of the constraint.
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Figure 5: Speed of the numerical solution obtained with
the orthogonal projection method.

The Baumgarte-Method leads to a system of ordinary
differential equations, which is solved with the ode-
solver ode45.

The Pantelides-Algorithm leads to four equation sys-

tems because of equation (13), which are used for four
different regions of the unit circle. For solving these
four equation systems the ode-solver ode151 is used.

The symmetric projection method is solved iterative-
ly, where the trapezoidal rule, which is a symmetric
one-step-method, is used. In contrast to the orthogonal
projection method, this method does not show increas-
ing speed.
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Figure 6: Result of the phase space trajectory.

The state space transformation is solved using polar
coordinates for the coordinatisation. This coordinatisa-
tion is global, which is a great advantage of this method.
This method leads to a two-dimensional system of ordi-
nary differential equations, which is solved with ode45s.

The numerical solutions obtained with the Baum-
garte-Method, Pantelides-Algorithm, symmetric projec-
tion method and the state space transformation result in
quite similar results with respect to the phase space
trajectory. Therefore only one of these solutions is
shown graphically, see Figure 6. While the phase space
trajectory looks similar, the deviations of the numerical
solutions obtained with the different methods show big
differences.

The state space transformation has the smallest devi-
ation from the numerical solution to the circular path
and is easy to implement. Therefore this method would
be the recommended approach for the given DAE.

4 Case Study ‘Double Pendulum’

The second case study treats a double pendulum. The
equations of motion of the pendulum are given by the
following equations,

X1 = Uy, (14)
V1= Uy, (15)
Xy = Uy, (16)
V2 = vy, (17)
1'7x1 = —Fx; — F(x; — x3) (18)
f’yl =g —-—Fy1—FQ1—y2) (19)
Uy, = —F, (%2 — x1) (20)
Dy, =9—F0,—y1) (21)
x2+yt=1 (22)

(1 = %)%+ (1 —y2)2 =1 (23)

Where g is the gravitational acceleration and F;and
F, are forces. Equations (22) and (23) are the constraint
equations. The DAE (14)-(23) has differential index
three, which can be seen from the third derivative with
respect to t of equations (22) and (23). Like before all
simulations are realized with MATLAB R2012b.

The approach using differentiation and substitution
of the constraint is, like for the first case study, not
suitable for the numerical simulation of the given DAE.

The orthogonal projection method has unbounded
speed, which leads to ‘wrong’ positions on the solution
manifold. Therefore this method cannot lead to reasona-
ble results.

The Baumgarte-Method leads to very different re-
sults for different values of the parameters. In Figure 7
one result with the Baumgarte-Method is shown, where
the red line is the numerical solution of the second pen-
dulum until 10 seconds and from 10 till 100 seconds the
numerical solution of this pendulum is shown in black.

-05

0.5H

¥, ¢coordinate

1.5F

-2 =15 -1 -0.5 0 0.5 1 1.5 2
x.— coordinate

2
Figure 7: Result of the pendulum (x,, y,) with the Baum-
garte-Method with ¢ = 100 and g = 1000.

The simulation of the Pantelides-Algorithm leads to a
problem. The ode-solver has problems to solve the
equations, which leads to too small step sizes. Therefore
the ode-solver ode15i has to be stopped and restarted
with new values. Furthermore there are sixteen different
equation systems which are a little complex to imple-
ment.

The symmetric projection method again has a long
simulation time because of the iterative calculation, but
with this approach the speed is bounded in contrast to

the orthogonal projection method.
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Figure 8: Result of the pendulum (x,, y,) with the state
space transformation.

Using the state space transformation the given DAE can
be transformed into a system of four ordinary differen-
tial equations with the use of a coordinatisation using
cosine and sine. Simulating this approach using ode45
or ode23t for example leads to different results, which
can be explained by the chaotic behaviour of the double
pendulum, see [8]. In Figure 8 the result for the second
pendulum with the state space transformation is shown.
Comparing Figure 7 and Figure 8 it is obvious that the
numerical solution using Baumgarte-Method and state
space transformation is not equal. Still one can observe
that until 10 seconds the results of most of the ap-
proaches are similar, but from 10 till 100 seconds the
numerical solutions show big differences.

In general it is a fact that for this case study one
cannot say whether a simulation result is the “right” or
the “best” because there exists no analytical solution
and the double pendulum shows a chaotic behaviour.

5 Conclusion and Outlook

After analysing the presented methods with the two
examples some facts can be observed.

The method using differentiation and substitution of
the constraint equations and the orthogonal projection
method do not lead to suitable results. Using the first
method leads to the numerical ‘drift-off”. The second
method does not show the numerical ‘drift-off’, which
means that the numerical solution stays on the solution
manifold, but due to the increasing speed the positions
are not correct.

e The Baumgarte-Method results in small deviations to
the constraint equations for a suitable choice for the
two parameters.
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e The implementation of the Pantelides-Algorithm is a
little complex because of the many equations and un-
knowns and for the second case study the ode-solver
had to be stopped an restarted because of too small
step sizes.
e The symmetric projection method has a long simula-
tion time because there is iteration, but the results
stay close to the solution manifold.
o The last method is the state space transformation,
which can be done global for the two used case stud-
ies. This is a very important fact, because therefore
the resulting equations where the most simple.
For further research it would be interesting to study
DAEs with a differential index unequal to three and
analyse the use of the methods for such DAEs. Further-
more an improvement with respect to the implementa-
tion for the Pantelides-Algorithm would be to write an
own solver.For the simulation of the orthogonal projec-
tion method it would be interesting to use another nu-
merical integration method for investigating whether the
speed is increasing too.

Another further study would be to test the state
space transformation for DAEs where no global trans-
formation can be used.
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