CONTENTS

Welcome Message 1
Organizers & Committees 2

Session Information
Meeting Room Venue Floor Plan 4
Program Overview 5
Pre-Conference Workshop 7
Keynote Speakers 8
“Meet-the-Editors” Panel Session 10
Presenter Guide - Oral 12
Presenter Guide - Poster 13

Session Schedules 15
Abstracts ... 36
Author Index ... 99

Services
Conference Information and Services ... 103
Getting to Suntec Convention Centre ... 104
Transportation in Singapore 105
Around Singapore 106

IEEM 2015 Program Overview

SUN - 6 DEC
• Pre-Conference Tour 1: Gardens by the Bay
• Conference Registration
• Pre-Conference Workshop
• Welcome Reception
• Pre-Conference Tour 2: Singapore Night Tour

MON - 7 DEC
• Conference Registration
• Official Opening
• Keynote Presentations
• “Meet-the-Editors” Panel Session
• Technical Sessions

TUE – 8 DEC
• Conference Registration
• Technical Sessions
• Official Closing
• Conference Dinner
 - Universal Studios Singapore

WED – 9 DEC
• Technical Visit: Marina Barrage & Singapore Maritime Gallery
• Campus Visit: Singapore University of Technology & Design
Session Schedules, Abstracts & Author Index
Productivity Improvement in Logistical Work Systems of the Genuine Parts Supply Chain
Peter Kuhlang¹, Alexander Sunk²
¹German MTM Association, Germany
²Vienna University of Technology/Fraunhofer Austria Research GmbH, Austria

A Pricing Strategy to Align Supply Chain Interests for Product Recall
Hongyan Dai, Nan Yang, Nina Yan
Central University of Finance and Economics, China

SCM Logistics Scorecard: A Simplified Benchmarking Tool for Supply Chain Operational Performance
Sadami Suzuki
Tokyo Institute of Technology, Japan

Supply Chain Management in Service Industry: A Process Capabilities Perspective
Sakun Boon-itt¹, Chee Yew Wong², Christina Wong³
¹Thammasat Business School, Thailand
²Lands University Business School, United Kingdom
³Hong Kong Polytechnic University, Hong Kong SAR

Solving the One-Shot Decision Theory Based Newsvendor Models
Xide Zhu, Peijun Guo
Yokohama National University, Japan

SD Modelling of Healthcare SC in Rural Parts of Uttarakhand, India
Dinesh Kumar, Dinesh Kumar
Indian Institute of Technology Roorkee, India

A Mixed-Integer Programming Model for the Production-Inventory-Distribution Routing Problem
Noha Mostafa, Amr Eltawil
Egypt-Japan University for Science and Technology, Egypt

Information Security Evaluation of System based on Bayesian Network
Zhiqiang Cai, Jiabing Zhao, Yang Li, Shubin Si, Mengni Ni
Northwestern Polytechnical University, China

A Risk Management Methodology for R&D Project Risk Based on AHP and Fuzzy Comprehensive Evaluation
Wenbo Jiang, Huaqi Chai
North Western Polytechnical University, China

An Analysis of Floor Roughness & Slip Resistance of Floors
Wei Ting Mai¹, Kai-Way Li², Chung-Chung Chen³
¹Chung Hua University, Taiwan
²Chung Hua University, Taiwan
³National Taiwan University, Taiwan

Critical Antecedents for Construction Organizational Learning Concerning Safety Knowledge from Success and Accidents
Liangying Zhang, Haiyan Guo, Xiaoyan Huo
Tianjin University, China

Effects of Footwear Sample Area on the Friction Coefficient on the Floor
Hung-Kai Tsai¹, Kai-Way Li², Chung-Chung Chen³
¹Chung Hua University, Taiwan
²Hong Wu University, Taiwan

Safety, Security & Risk Management 1
7/12/2015 14:00 - 15:30
Room: MR330
Chairs: Zhiqiang Cai
Fuzing Yuan

Abstracts: see page 47

Million Solar Urja Lamp Programme: A Supply Chain Experience
Nikhil Sawal, Jayendran Venkateswaran
Venkateswaran, Chetan Singh Solanki, N.C. Narayanan
Indian Institute of Technology Bombay, India

Facility Location Problem with Data Uncertainty for Quality Rice Development
Wichitsawat Sukasawat Na Ayudhya
King Mongkut’s Institute of Technology, Thailand

Novel Approach to Optimize Milk-Run Delivery: A Case Study
Thi Hong Dang Nguyen, Thienn-My Dao
École de Technologie Supérieure, Canada

Pornwasin Sirisawat¹, Tossapol Kiatcharoenpol², Nindlawon Choomrit³, Pilada Waraphansri⁴
¹King Mongkut’s Institute of Technology Ladkrabang, Thailand
²Srinakharinwirot University, Thailand
³Ibn Zohr University, Morocco
⁴Hassan II University, Morocco

The Complexity of Electronic Data Interchange (EDI) Compliance for Automotive Supply Chain
Jardini Bahija¹, Elkyal Malika², Amri Mostapha³
¹Ibn Zohr University, Morocco
²Hassan II University, Morocco
³University of Casablanca, Morocco

Allocation and Proportion Decision in Multi-Tier Supply Network
Avinash Bagul, Indrajit Mukherjee
Indian Institute of Technology Bombay, India

Supply Chain Management 2
7/12/2015 16:00 - 17:30
Room: MR330
Chairs: Jayendran Venkateswaran
Harekrishna Misra

Abstracts: see page 48

A Study of a Reverse Logistics Network: A Case Study of the Computer Parts Industry in Thailand
Nikhil Sawal, Jayendran Venkateswaran
Venkateswaran, Chetan Singh Solanki, N.C. Narayanan
Indian Institute of Technology Bombay, India
Productivity Improvement in Logistical Work Systems of the Genuine Parts Supply Chain
Peter Kuhlang1, Alexander Sunk2
1German MTM Association, Germany
2Vienna University of Technology/Fraunhofer Austria Research GmbH, Austria

The novelty of the model is that it deals with multiple products, allows split deliveries, adopts a heterogeneous fleet of vehicles, and puts a limit on the duration of the route performed by each vehicle. The stock out occurs due to enormous shortage of folic acid tabs was observed at various stages leaving a large population unserved. The stock out of medicine at all the downstream stages hospital, schools and community health centers. The results show the importance of maintaining a safety stock. The current work may support the elimination of stock out of medicine at all the downstream stages.

A Pricing Strategy to Align Supply Chain Interests for Product Recall
Hongyan Dai, Nan Yang, Nina Yan
Central University of Finance and Economics, China

The theoretical results are given and a numerical example is used to show the effectiveness of the proposed methods.

Supply Chain Management in Service Industry: A Process Capabilities Perspective
Sakun Boon-Itt1, Chee Yew Wong2, Christina Wong3
1Thammasat Business School, Thailand
2Leeds University Business School, United Kingdom
3Hong Kong Polytechnic University, Hong Kong SAR

This paper presents the system dynamic modelling and simulation of uncertain lead time and demand. Therefore the model is developed leaving a large population unserved. The stock out occurs due to enormous shortage of folic acid tabs was observed at various stages.

A Mixed-Integer Programming Model for the Production-Inventory-Distribution Routing Problem
Noha Mostafa, Amr Eltawil
Egypt-Japan University for Science and Technology, Egypt

In this paper, a mixed-integer programming model is proposed to solve the Production-Inventory-Distribution-Routing Problem (PIDRP), with the objective of minimizing the total cost while satisfying the required levels of demand and service. A generic problem description and mathematical model formulation are proposed to address the PIDRP. The novelty of the model is that it deals with multiple products, allows split deliveries, adopts a heterogeneous fleet of vehicles, and puts a limit on the duration of the route performed by each vehicle. The proposed model is successfully validated and tested using small-sized instances from literature.
Productivity improvement in logistical work systems of the genuine parts supply chain

P. Kuhlang1,2, A. Sunk2

1MTM-Institute, German MTM-Association, Zeuthen, Germany (instut@dmtm.com)

2Vienna University of Technology and Fraunhofer Austria Research GmbH, Vienna, Austria (alexander.sunk@fraunhofer.at)

Abstract - Within the entire value stream of spare part supply, packing is one of the main issues in the distribution system and its productivity is mainly affected by a particularly high proportion of manual work. Considering the total value stream of supplying original spare parts, picking and packaging are two of the most important activities in the distribution system and they are mainly performed by intensive manual tasks. As practice shows, the methods Value Stream Design and Methods-Time Measurement (MTM) have proven to be suitable for improvement work and consequently for increasing productivity especially in work systems with manual work. This paper shows how the process building block system “MTM logistics data” contributes to planning and specifying parameters of target-conditions of value streams. It also presents a methodical approach to support practical improvement work in logistical value streams and within their work systems.

Keywords - Logistics, value stream, methods-time measurement (MTM), MTM Logistics

I. MOTIVATION AND INTRODUCTION

Considering the total value stream of supplying original spare parts, packaging is one of the most important activities in the distribution system as well as in the supply chain [1]. Picking is defined as moving of customer specific original spare parts out of a package into a cartonage (i.e. cardboard package), for e.g. the purpose of arranging the customers order. It starts after picking (ordered spare parts) and ends with ready set cartonages of customer ordered parts and quantities ready for delivery [2]. Several authors point out the intensive manual work structure in picking as well as in packing, because handling and moving of both original spare parts and cartonages is difficult to standardize due to their variability and thus hardly automatable [1].

At packing, especially value adding and non-value adding manual activities affect productivity and must therefore be systematically planned and improved [2, 3]. Caused by this effect, cost pressure for companies in high-wage countries gets even stronger besides globalization, the challenging competitive situation and the current reindustrialization. Thus, especially for packing of original spare parts, new and higher requirements arise for productivity management of companies. So, systematic application and further development of modern improvement methods and improvement procedures are necessary to meet these requirements [4]. The methods Value Stream Design and Methods-Time Measurement (MTM) have proven to be suitable for improvement work and consequently for increasing productivity; e.g. for identifying and reducing waste activities as well as evaluation of indicators [5, 6]. This paper points out how the packing value stream in the supply of original spare parts gets developed towards an ideal-state by defining performance-enhancing and learn-enhancing target-conditions. It also shows how the MTM system of process building blocks contributes to planning and specifying selected parameters of target-conditions or standards and to support the improvement work on logistical value streams. Therefore, necessary fundamentals are described in the following subsection.

II FUNDAMENTALS OF VALUE STREAM MAPPING

Productivity is the yield of the production factors “workforce”, “machine” and “material”. This yield is represented by the ratio “performance divided by factor input”. When calculating productivity, output (performance) is represented by a specific quantity, e.g. produced goods. Input is quantified by the use of production factors; e.g. the figure for workforce productivity by number of workers or time units [7, 8, 9]. Upon closer examination of factors influencing the productivity, it becomes obvious that for human and machinery resources especially the dimensions “work method design”, “level of performance provided” and “degree of utilization of resources” affect productivity [10]. Anyway, work method(s) design is the most important dimension for influencing productivity [10, 6, 11]. Manual work methods can be described and specified by MTM-method descriptions and the resulting basic time as well as implemented and improved in future steps.

A. MTM-method Descriptions for Designing Logistical Processes

MTM is the abbreviation for Methods-Time Measurement, meaning that the time required to execute a particular activity depends on the method performed for this activity. It is a modern instrument to describe, structure, design and plan work systems by means of defined process building blocks. MTM exhibits an internationally valid performance standard for manual tasks. Hence, this well-grounded time determination based on an international performance level is often called
as 'International Prototype Metre of human work' [12].
For modeling logistic processes, the application of the
MTM system has a long tradition and has in recent years
also gained in importance due to increasing logistics
costs. The increased costs are caused on the one hand by
high technical, organizational and staffing requirements,
which are today on a cross-company logistics and on the
other hand due to insufficient accuracy in the
consideration of logistical processes. Here, the application
of MTM systems – in specific the MTM Logistics –
contributes significantly to design and rationalization of
logistical processes, e.g. when planning and designing
logistical processes like picking, packing, testing,
transporting. These activities, which may show different
complexity, are so the so-called logistics Standard
Operations [13].

C. Using Value Stream Mapping at Practical
Improvement Work

The paradigm of striving for an ideal-state – it can be
considered as a vision – is the basis of the improvement
of a value stream and its processes. The ideal-state describes
the condition of a value stream with zero losses so that
added value is generated at minimum costs [14]. This
ideal-state is used as a navigation link ("true north") or
orientation guide and represented by characteristics like
100% added value, continuous one-piece-flow, zero
defects and lack of impairment for employees [15]. The
ideal-state gives direction for deriving and defining
several target-conditions for a value stream [15, 16].
According to Toyota’s point of view, the next target-
condition to be accomplished when striving for ideal-state
can be interpreted as a new standard [4]. Hempen
describes a modern approach for defining target-
conditions, which is a difficult issue in practice. Here,
they are defined by parameters which are categorized as
follows: (C1) calculated indicators, (C2) general process
information, (C3) process pattern & process indicator and
(C4) performance indicator [17]. The parameters for
specifying and defining target-conditions are based on
performance-enhancing and learn-enhancing target setting
characteristics. On the one hand, performance-enhancing
characteristics are e.g. challenging, realistic and oriented
to superior objectives. On the other hand, learn-enhancing
characteristics are e.g. solution-open, clearly appraisable
as well as influenceable on a daily base [17, 18].

Following Rother’s approach the target-condition
parameters or standards get obtained by continuous
(short-cyclic, incremental) improvement measures that are
supported by the improvement and coaching kata. In
addition to this approach, the parameters of a target-
condition are also accomplishable by discontinuous
improvements (innovation leaps) [4, 14]. When
evaluating logistical processes or logistical value streams,
the following practical relevant challenges arise from the
fundamentals of defining and specifying as well as
accomplishing learn-enhancing and performance-
enhancing target-conditions.

III. IDENTIFICATION OF CHALLENGES IN
PRACTICAL IMPROVEMENT WORK APPLYING
TARGET-CONDITIONS

The definition of performance-enhancing and learn-
enhancing target-conditions respectively their parameters
is a great challenge in the improvement work in a specific
value stream; e.g. the current-condition is not assessable
detailed enough due to several reasons and therefore the
full potential may be unknown. In this paper, the scientific
gap in practical improvement work applying target-
conditions gets presented and discussed by showing in
practice, how learn-enhancing and performance-
enhancing target-conditions as a new standard can be
defined, specified and implemented. Focus is regarded to
how new standards of selected parameters can be
specified with MTM system of process building blocks,
which has not been treated in applied and scientific
literature in this point of view so far.

The approach of applying target-conditions
systematically is presented in a practical case of
application. Hereby, the value stream of packing original
spare parts out of a package (e.g. metal box, metal cage,
small parts bin) into a cartonage is considered. It is also
shown how the MTM system of process building blocks
(MTM-UAS and MTM Logistics) is used for the
specification of standards or parameters of target-
conditions.

IV. IMPROVEMENT WORK APPLYING TARGET-
CONDITIONS PRESENTED IN THE EXAMPLE OF
THE PACKING VALUE STREAM

Practical improvement work at the packing value
stream is presented based on selected parameters of the
current-condition and the target-condition 1: (1) “work
system”, (2) “work method” with (3) “basic time” and (4)
“productivity”. The planned improvement measures and
indicators are described at each parameter and
subsequently summarized in a table. However, a
preliminary description of the analyzed and defined
packing value stream in current-condition is prefixed.

A. Describing the Considered Packing Value Stream

The original spare parts in packages (here: metal
boxes) arrive from two different sources in the considered
value stream; an automated pallet transport system and an
internal milk-run system. Forklift drivers take the metal
boxes to different allocation areas with respect to
customer assignment. From there, the forklift drivers take
the metal boxes to the packing area when specific
customers need to be processed. The packing area is
divided into several packing groups – the actual work
systems for packing. Here, packers move the picked
original spare parts from the metal boxes into the
cartonages and fulfill the value-adding operations in this
value stream.
The basis for all calculations and concepts for defining target-conditions is the so-called representative cartonage. Thereby, all quantities and varieties of the product spectrum of original spare parts (dimensions, bulkiness, weight, etc.) are – together with the metal boxes, metal cages, small parts bins – considered sufficiently accurate for packing a single cartonage. The supply of metal boxes with parts to be packed in the work systems is a push supply. Service level relevant packing issues may default, so rush packing jobs are necessary which detract continuous packing of incoming metal boxes, metal cages or small parts bins from the two sources negatively. In addition to the value-adding activities in the work systems, the packers do also have to perform support activities like preparing or completing a cartonage and handling packing material. After completing cartonages in the work systems, the forklift drivers take them to a tying machine. Thereafter, the customer ready cartonages are taken by the forklift drivers to an allocation area for loading containers.

B. Ideal-state and Derived Effects on Parameters of Target-conditions of Packing Value Stream

Based on comprehensive analysis of the current-condition and the orientation to ideal-state, several standards of parameters are defined based on selected characteristics of the ideal-state. Table 1 presents characteristics of ideal-state in first column. In second column, parameters are listed which define standards for performance-enhancing and learn-enhancing target-conditions derived from ideal-state.

<table>
<thead>
<tr>
<th>SELECTED CHARACTERISTICS OF IDEAL-STATE</th>
<th>SELECTED PARAMETERS DEFINING STANDARDS OF TARGET-CONDITIONS (PERFORMANCE- AND LEARN-ENHANCING)</th>
</tr>
</thead>
</table>
| - continuous one-piece-flow | • value stream
• work system (C2)
• layout and material flow
• productivity (C4)
• area utilisation
• shift model
• lead time |
| - 100% added value | • work method (C3)
 ○ MTM-method description
 ○ basic time
 ○ number of workers
 ○ productivity (C4)
• value stream
• work system
• layout and material flow |

To point out the improvements between current-condition and target-condition, the following two parameters of Table 1 are selected: “work system” as a general process information and “work method” as a process pattern. Thereby, the practical realization of the defined performance-enhancing and learn-enhancing target-condition 1 is documented as well as the link between ideal-state and target-condition. Finally, the effects of the continuous and discontinuous improvement measures at the packing value stream are reported by the third parameter “productivity” (performance indicator).

C. Parameter Work System

The parameter “work system” is oriented to the characteristics “continuous one-piece-flow” of the ideal-state. This parameter is categorized as (2) “general process information” for defining standards of performance-enhancing and learn-enhancing target-conditions. Fig. 3 shows the work system in current-condition where packers are packing. Here, they have to choose between 16 customer specific metal boxes in each work system to choose for packing parts into cartonages. The sizes of areas are: 16.0m x 6.0m for each work system; 1.2m x 0.8m for a metal box; up to 2.2m x 1.4m for cartonages. In this configuration of metal boxes and cartonage in the work systems, FIFO-packing (first-in-first-out) is not applicable because packers cannot reproduce the sequence of incoming metal boxes. As a result, the packers choose the metal boxes for packing with respect to subjective criteria. Hence, the above mentioned rush packing jobs are necessary and this leads to low service levels.

![Fig. 3: Work system in current-condition](image)

As a new standard for the working systems of packing, the new layout design of packages (metal boxes, etc.) and cartonages is planned and implemented. Therefore, the improvement of the parameter “work system” in target-condition 1 is an innovation leap, because redesign of the work systems is done within a short period of time. Here, the new “4:2-packing principle” is introduced. This implies that all parts from four incoming metal boxes are packed into one but not more than two cartonages available in the work system at the same time. Reasons for that are based on different filling levels of metal boxes and the attributes of versatility of the original spare parts. The packers get a replicable FIFO-principle, because the parts of the four delivered metal boxes must be packed into cartonages in order to get new metal boxes delivered into the work system again.

D. Parameter Work Method

In the underlying packing value stream, the work method (see Table 1) represents all necessary activities for packing parts into cartonages; the activities are based...
on type, frequency, weights, bulkiness as well as on handling distances of the original spare parts. The process pattern (C3) is represented by the MTM-method description and its result, the basic time \(t_g \) (process indicator, C3). Thus, the work method describes all necessary activities for packing the so-called representative cartonage with original spare parts and with respect to the packing adjustment. This parameter is influenced by the parameter work system and derived from the characteristics “100% added value” of ideal-state. This leads to improvements of value-adding activities, reductions of support activities and elimination of waste. Subsequently, the influences of characteristics of ideal-state on the MTM-method description and its result (basic time) are presented.

MTM Logistics is applied to describe and quantify forklift movements (see Fig. 6).

D. Parameter Productivity

Productivity is the main indicator of performance when considering the underlying packing value stream (see Table 1). Amongst others, it is dependent on both parameters “work system” and “work method”. The parameter productivity is categorized as a “performance indicator” (C4) of a target-condition. When calculating productivity for packing the representative cartonage, parameters such as work system, work method and particularly the resulting basic time \(t_g \) are crucial characteristics of the input factors. The input size is the number of different inbound packages delivered to the work systems; the output size is represented by the amount of inbound package – including all its different packed spare parts – into outbound cartonages. Besides, the target value for productivity for the packing value stream is related to the amount of inbound packages because this value cannot be influenced, e.g. different transport modes, variable filling degrees of cartonages by worker, etc.

![Fig. 4: Work system in target-condition 1](image)

![Fig. 6: MTM-method description for forklift movements to provide the package for packing a representative cartonage as standard in target-condition 1](image)

Here, workforce productivity is calculated as follows: number of packed metal boxes divided by total number of workers per shift. In current-condition at point of time to, each worker is packing parts of 5.55 inbound packages into cartonages per defined time unit in average. This means a basic time \(t_g \) of 18.35 min per representative cartonage. In target-condition 1 at point of time t1, a rise by 20% of incoming metal boxes is expected. Additionally with the planned improvement measures for target-condition 1 which have been specified and quantified by MTM-method descriptions in advance, an average productivity of 7.56 inbound packages per employee per time unit is planned. Hence, the targeted basic time of 15.87 min per representative cartonage is planned and specified.

Table 2: SUMMARY OF PROCESS INDICATORS AND PERFORMANCE INDICATORS

<table>
<thead>
<tr>
<th>STANDARD MEASURED VARIABLE</th>
<th>CURRENT-CONDITION</th>
<th>TARGET-COND. 1 CALCUL.</th>
<th>TARGET-COND. 1 REACHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming metal boxes per time unit</td>
<td>5.55</td>
<td>7.56</td>
<td>7.94</td>
</tr>
<tr>
<td>Productivity [%] based on metal boxes</td>
<td>100</td>
<td>136</td>
<td>143</td>
</tr>
<tr>
<td>Basic time (t_g) [min] per resp.cartonage</td>
<td>18.35</td>
<td>15.87</td>
<td>13.69</td>
</tr>
</tbody>
</table>
With respect to the actual improved parameters, the actual productivity is 7.94 inbound packages per defined time unit. To sum up, the workforce productivity rises by +43% compared to current-condition; basic time tg decreased to 13.69 min per representative cartonage. Anyway, process indicators (C3) and performance indicators (C4) of the parameters are summarized in Table 2.

V. CONCLUSION AND OUTLOOK

This paper shows how the MTM system of process building blocks contributes to planning and specifying selected parameters of target-conditions or standards and to support the improvement work on logistical work systems in value streams. Furthermore, the scientific gap in practical improvement work applying target-conditions got presented and discussed by showing how target-conditions derived from the ideal-state can be planned, specified and implemented. Hereby, special focus was regarded to how new standards of selected parameters can be specified and described with the MTM system of process building blocks.

This specific case of application proved that increasing productivity is the result of combining continuous improvements and innovation leaps. Either way, practical improvement work at a value stream applying target-conditions can be used at logistics problems. In further publications using additional parameters, e.g. overall layout, value stream, lead time or area utilization it will be shown, how other improvement measures of target-condition 2 have been planned and implemented in the packing value stream. The improvement work applying target-conditions is currently used in production logistics processes in the assembly of electrical components on and gets further developed. The experiences gained in this practical improvement work are currently transferred to other areas and plants/sites of the original equipment manufacturer. Further research has to address the necessary generalization, transferability and specification of possible ideal-state characteristics. The following question will be discussed: how can the characteristics be associated with the product development process?

REFERENCES