Numerical Relativity in AdS, Holography and Thermalization

Christian Ecker

Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstrasse 8-10/136 1040 Vienna, (Austria)

christian.ecker@tuwien.ac.at

September 24, 2014
Introduction

- **Motivation**
 - Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
 - Thermalization happens on a small time scale ($\leq 1\text{fm}/c \approx 100\text{ns}$).
 - **Question**: What are the mechanisms responsible for the fast thermalization?

- **Complications**
 - Due to strong coupling perturbative QCD is not applicable.
 - Time dependent processes are problematic for lattice QCD.

- **AdS/CFT approach**
 - Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
 - Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
 - QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
 - On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
- Thermalization happens on a small time scale ($\leq 1\text{fm}/c \approx 100\text{ns}$).
- **Question**: What are the mechanisms responsible for the fast thermalization?

Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

AdS/CFT approach
- Employ AdS/CFT to study dynamics of $\mathcal{N}=4$ SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
- Thermalization happens on a small time scale ($\leq 1 fm/c \approx 100 ns$).
- Question: What are the mechanisms responsible for the fast thermalization?

Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

AdS/CFT approach
- Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Introduction

- **Motivation**
 - Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
 - Thermalization happens on a small time scale ($\leq 1fm/c \approx 100ns$).
 - **Question**: What are the mechanisms responsible for the fast thermalization?

- **Complications**
 - Due to strong coupling perturbative QCD is not applicable.
 - Time dependent processes are problematic for lattice QCD.

- **AdS/CFT approach**
 - Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
 - Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
 - QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
 - On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
- Thermalization happens on a small time scale ($\lesssim 1 fm/c \approx 100 ns$).
- **Question**: What are the mechanisms responsible for the fast thermalization?

Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

AdS/CFT approach
- Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
- Thermalization happens on a small time scale ($\leq 1\text{fm}/c \approx 100\text{ns}$).
- **Question**: What are the mechanisms responsible for the fast thermalization?

Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

AdS/CFT approach
- Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
- Thermalization happens on a small time scale ($\leq 1\text{fm}/c \approx 100\text{ns}$).
- **Question**: What are the mechanisms responsible for the fast thermalization?

Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

AdS/CFT approach
- Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Introduction

■ Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
- Thermalization happens on a small time scale ($\leq 1\text{fm}/c \approx 100\text{ns}$).
- **Question**: What are the mechanisms responsible for the fast thermalization?

■ Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

■ AdS/CFT approach
- Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
- Thermalization happens on a small time scale ($\leq 1\, fm/c \approx 100\, ns$).
- **Question**: What are the mechanisms responsible for the fast thermalization?

Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

AdS/CFT approach
- Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Introduction

- **Motivation**
 - Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a strongly coupled liquid.
 - Thermalization happens on a small time scale ($\leq 1\text{fm}/c \approx 100\text{ns}$).
 - **Question**: What are the mechanisms responsible for the fast thermalization?

- **Complications**
 - Due to strong coupling perturbative QCD is not applicable.
 - Time dependent processes are problematic for lattice QCD.

- **AdS/CFT approach**
 - Employ AdS/CFT to study dynamics of $\mathcal{N} = 4$ SYM theory.
 - Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
 - QFT observables we use to study thermalization are the energy momentum tensor, two-point functions and entanglement entropy.
 - On the gravity side these observables can be computed from the metric, from geodesics and from extremal surfaces.
Anti-de Sitter spacetime and the AdS/CFT correspondence

- Anti-de Sitter spacetime
 - Solution of vacuum Einstein equations with negative Λ.
 - Boundary at $r = \infty$.

Asymptotic anti-de Sitter spacetimes
- "look" near $r = \infty$ like AdS.
- e.g.: AdS-black hole
 - BH-temperature $T_H \propto$ horizon radius r_H.

Black Hole ($r_H \propto T_H$)

Gravity Theory

Gauge Theory

AdS/CFT correspondence
- Classical gravity on AdS$_5$ ↔ strongly-coupled N=4 SYM on ∂AdS$_5$
 - At finite temperature:
 - AdS$_5$-BH ↔ strongly-coupled N=4 SYM at $T = T_H$.

Black hole formation in AdS ↔ thermalization in gauge theory.
Anti-de Sitter spacetime and the AdS/CFT correspondence

- Anti-de Sitter spacetime
 - Solution of vacuum Einstein equations with negative Λ.
 - Boundary at $r = \infty$.

- Asymptotic anti-de Sitter spacetimes
 - "look" near $r = \infty$ like AdS.
 - e.g.: AdS-black hole
 - BH-temperature $T_H \propto$ horizon radius r_H.

Black Hole ($r_H \propto T_H$)

At finite temperature: AdS$_5$-BH \leftrightarrow strongly-coupled $N=4$ SYM at $T = T_H$.

Black hole formation in AdS \leftrightarrow thermalization in gauge theory.

Christian Ecker
NR in AdS & Holography
Anti-de Sitter spacetime and the AdS/CFT correspondence

- Anti-de Sitter spacetime
 - Solution of vacuum Einstein equations with negative Λ.
 - Boundary at $r = \infty$.

- Asymptotic anti-de Sitter spacetimes
 - "look" near $r = \infty$ like AdS.
 - e.g.: AdS-black hole
 - BH-temperature $T_H \propto$ horizon radius r_H.

- AdS/CFT correspondence
 Classical gravity on $AdS_5 \leftrightarrow$ strongly-coupled $\mathcal{N} = 4$ SYM on ∂AdS_5
Anti-de Sitter spacetime and the AdS/CFT correspondence

- **Anti-de Sitter spacetime**
 - Solution of vacuum Einstein equations with negative Λ.
 - Boundary at $r = \infty$.

- **Asymptotic anti-de Sitter spacetimes**
 - "look" near $r = \infty$ like AdS.
 - e.g.: AdS-black hole
 - BH-temperature $T_H \propto$ horizon radius r_H.

- **AdS/CFT correspondence**
 Classical gravity on $AdS_5 \leftrightarrow$ strongly-coupled $\mathcal{N} = 4$ SYM on ∂AdS_5

- At finite temperature:
 AdS_5-BH \leftrightarrow strongly-coupled $\mathcal{N} = 4$ SYM at $T = T_H$.
Anti-de Sitter spacetime and the AdS/CFT correspondence

- **Anti-de Sitter spacetime**
 - Solution of vacuum Einstein equations with negative Λ.
 - Boundary at $r = \infty$.

- **Asymptotic anti-de Sitter spacetimes**
 - "look" near $r = \infty$ like AdS.
 - e.g.: AdS-black hole
 - BH-temperature $T_H \propto$ horizon radius r_H.

- **AdS/CFT correspondence**
 Classical gravity on $AdS_5 \leftrightarrow$ strongly-coupled $\mathcal{N} = 4$ SYM on ∂AdS_5

 - At finite temperature:
 AdS_5-BH \leftrightarrow strongly-coupled $\mathcal{N} = 4$ SYM at $T = T_H$.

 - Black hole formation in AdS \leftrightarrow thermalization in gauge theory.
Thermalization of $\mathcal{N} = 4$ SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

$$T_{\mu\nu} \propto \text{diag}[\epsilon, P_{\parallel}(t), P_{\perp}(t), P_{\perp}(t)]$$

}\[O(2)\]

AdS/CFT relates $T_{\mu\nu}$ to the metric of an anisotropic AdS-BH.

Line element in Eddington-Finkelstein coordinates:

$$ds^2 = 2drdt - A(r, t)dt^2 + \sum(r, t)^2(e^{-2B(r, t)}dx^2_\parallel + e^{B(r, t)}d\vec{x}^2_\perp)$$

Chesler-Yaffe method

In characteristic formulation (null-slicing) the Einstein eq. decouple to a nested system of linear ODEs.

Use spectral method to solve BVP on each null-slice.

Evolve with Runge-Kutta method between null-slices.
Thermalization of $\mathcal{N} = 4$ SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

$$T_{\mu\nu} \propto \text{diag} [\epsilon, P_\parallel(t), P_\perp(t), P_\perp(t)]_{O(2)}$$

AdS/CFT relates $T_{\mu\nu}$ to the metric of an anisotropic AdS-BH.
Thermalization of $\mathcal{N} = 4$ SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

$$T_{\mu\nu} \propto \text{diag} [\epsilon, P_\parallel(t), P_\perp(t), P_\perp(t)]$$

AdS/CFT relates $T_{\mu\nu}$ to the metric of an anisotropic AdS-BH.

Line element in Eddington-Finkelstein coordinates:

$$ds^2 = 2 dr dt - A(r, t) dt^2 + \Sigma(r, t)^2 (e^{-2B(r,t)} dx_\parallel^2 + e^{B(r,t)} dx_\perp^2)$$

Chesler-Yaffe method

In characteristic formulation (null-slicing) the Einstein eq. decouple to a nested system of linear ODEs.

Use spectral method to solve BVP on each null-slice.

Evolve with Runge-Kutta method between null-slices.
Thermalization of $\mathcal{N} = 4$ SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

$$T_{\mu\nu} \propto \text{diag}[\epsilon, P_\parallel(t), P_\perp(t), P_\perp(t)]$$

AdS/CFT relates $T_{\mu\nu}$ to the metric of an anisotropic AdS-BH.

Line element in Eddington-Finkelstein coordinates:

$$ds^2 = 2drdt - A(r, t)dt^2 + \Sigma(r, t)^2(e^{-2B(r, t)}dx_\parallel^2 + e^{B(r, t)}d\vec{x}_\perp^2)$$

Chesler-Yaffe method
Thermalization of $\mathcal{N} = 4$ SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

$$T_{\mu\nu} \propto \text{diag}[\epsilon, P_{\parallel}(t), P_{\perp}(t), P_{\perp}(t)]$$

AdS/CFT relates $T_{\mu\nu}$ to the metric of an anisotropic AdS-BH.

Line element in Eddington-Finkelstein coordinates:

$$ds^2 = 2drdt - A(r, t)dt^2 + \Sigma(r, t)^2(e^{-2B(r, t)}dx^2_{\parallel} + e^{B(r, t)}dx^2_{\perp}) + O(2)$$

Chesler-Yaffe method

- In characteristic formulation (null-slicing) the Einstein eq. decouple to a nested system of linear ODEs.
Thermalization of $\mathcal{N} = 4$ SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

$$T_{\mu\nu} \propto \text{diag}[\epsilon, P_{\parallel}(t), P_{\perp}(t), P_{\perp}(t)]$$

AdS/CFT relates $T_{\mu\nu}$ to the metric of an anisotropic AdS-BH.

Line element in Eddington-Finkelstein coordinates:

$$ds^2 = 2drdt - A(r, t)dt^2 + \Sigma(r, t)^2 \left(e^{-2B(r, t)}dx_{\parallel}^2 + e^{2B(r, t)}dx_{\perp}^2\right)$$

Chesler-Yaffe method
- In characteristic formulation (null-slicing) the Einstein eq. decouple to a nested system of linear ODEs.
- Use spectral method to solve BVP on each null-slice.
Thermalization of $\mathcal{N} = 4$ SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

$$T_{\mu\nu} \propto \text{diag}[\epsilon, P_{\parallel}(t), P_{\perp}(t), P_{\perp}(t)]$$

AdS/CFT relates $T_{\mu\nu}$ to the metric of an anisotropic AdS-BH.

Line element in Eddington-Finkelstein coordinates:

$$ds^2 = 2drdt - A(r, t)dt^2 + \Sigma(r, t)^2 (e^{-2B(r, t)} dx_{\parallel}^2 + e^{B(r, t)} d\vec{x}_{\perp}^2)$$

Chesler-Yaffe method

- In characteristic formulation (null-slicing) the Einstein eq. decouple to a nested system of linear ODEs.
- Use spectral method to solve BVP on each null-slice.
- Evolve with Runge-Kutta method between null-slices.
Numerical Solution: Anisotropy Function $B(u,t)$

\[
\begin{align*}
\dot{H} &= \pi T \\
\dot{\Sigma} |_{r_A} &= 0 \\
\frac{dr_G}{dt} &= \frac{1}{2} A(r, t)
\end{align*}
\]
EMT of the anisotropic $\mathcal{N} = 4$ SYM plasma

$T_E = 1/\pi$
$\varepsilon = 3/4$

$|\Delta P(t)/P_E| < 0.1$
$\forall t > t_{iso} \approx 2.04$

$t = 0.279$
Two-Point Functions and Entanglement Entropy

Various non-local observables in the boundary theory have holographic prescriptions in terms of extremal surfaces:

- Two-point functions: \(G(R, t) \propto e^{-mL(R, t)} \)
- Entanglement entropy: \(S_\Sigma = \frac{A_\Sigma(t)}{4G_N} \)

![Diagram of AdS space and holographic prescription](image)
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

\[\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad \text{BCs} : X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix} \]
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad BCs: X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0,$$

BCs: $X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0,$$

BCs: $X^\mu(\pm1) = \begin{pmatrix} V(\pm1) \\ Z(\pm1) \\ X(\pm1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad BCs : X^\mu(\pm 1) = \begin{pmatrix} \mp L/2 \\ t_0 \\ 0 \end{pmatrix}$$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$
\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad BCs : X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}
$$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad BCs : X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad BCs: X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0,$$

BCs: $X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad BCs: X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma_\alpha^\mu_{\alpha\beta} \dot{X}^{\alpha}(\tau) \dot{X}^{\beta}(\tau) = 0, \quad BCs : X^\mu(\pm1) = \begin{pmatrix} V(\pm1) \\ Z(\pm1) \\ X(\pm1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$
\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0,
$$

BCs: $X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$
Spacelike geodesics anchored to the boundary of the anisotropic AdS_5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

$$\ddot{X}^\mu(\tau) + \Gamma^\mu_{\alpha\beta} \dot{X}^\alpha(\tau) \dot{X}^\beta(\tau) = 0, \quad BCs : X^\mu(\pm 1) = \begin{pmatrix} V(\pm 1) \\ Z(\pm 1) \\ X(\pm 1) \end{pmatrix} = \begin{pmatrix} t_0 \\ 0 \\ \pm L/2 \end{pmatrix}$$
Conclusion

- Black hole physics (GR) can be used to study non-equilibrium dynamics of strongly coupled gauge theories (QFT).
- Within AdS/CFT various non-local observables can be computed from geodesics and extremal surfaces.
- In time dependent backgrounds there is information from behind the black hole horizon encoded in the two point functions.

Outlook

- Next we want to study entanglement entropy using extremal surfaces.
- "Numerical holography" is a rather young discipline - there is still much to discover!
Conclusion & Outlook

Conclusion

- Black hole physics (GR) can be used to study non-equilibrium dynamics of strongly coupled gauge theories (QFT).
- Within AdS/CFT various non-local observables can be computed from geodesics and extremal surfaces.
- In time dependent backgrounds there is information from behind the black hole horizon encoded in the two point functions.

Outlook

- Next we want to study entanglement entropy using extremal surfaces.
- "Numerical holography" is a rather young discipline - there is still much to discover!
Conclusion

- Black hole physics (GR) can be used to study non-equilibrium dynamics of strongly coupled gauge theories (QFT).
- Within AdS/CFT various non-local observables can be computed from geodesics and extremal surfaces.
- In time dependent backgrounds there is information from behind the black hole horizon encoded in the two point functions.

Outlook

- Next we want to study entanglement entropy using extremal surfaces.
- "Numerical holography" is a rather young discipline - there is still much to discover!
Conclusion & Outlook

Conclusion

- Black hole physics (GR) can be used to study non-equilibrium dynamics of strongly coupled gauge theories (QFT).
- Within AdS/CFT various non-local observables can be computed from geodesics and extremal surfaces.
- In time dependent backgrounds there is information from behind the black hole horizon encoded in the two point functions.

Outlook

- Next we want to study entanglement entropy using extremal surfaces.
- "Numerical holography" is a rather young discipline - there is still much to discover!
Conclusion

- Black hole physics (GR) can be used to study non-equilibrium dynamics of strongly coupled gauge theories (QFT).
- Within AdS/CFT various non-local observables can be computed from geodesics and extremal surfaces.
- In time dependent backgrounds there is information from behind the black hole horizon encoded in the two point functions.

Outlook

- Next we want to study entanglement entropy using extremal surfaces.
- "Numerical holography" is a rather young discipline - there is still much to discover!