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Weiss-Weinstein Bounds for Various Priors
Florian Xaver∗, Christoph F. Mecklenbräuker, Peter Gerstoft, and Gerald Matz

Abstract—We address analytic solutions of the Weiss-Weinstein
bound (WWB), which lower bounds the mean squared error
of Bayesian inferrers. The bound supports discrete, absolutely
continuous, and singular continuous probability distributions,
the latter corresponding to joint estimation and detection. We
present new analytical solutions for truncated Gaussian, Laplace,
categorical, uniform, and Bernoulli distributions. We focus on
sparse signals modeled by a Laplace prior as used in Bayesian
LASSO methods, priors of truncated Gaussian densities, and
uninformative priors. In general, finding the tightest WWB of
a model is a non-convex optimization problem. Hence, we show
numerical examples of known and new WWBs to gain additional
insight.

Index Terms—Weiss-Weinstein lower bound, Bayesian infer-
ence, mean squared error, LASSO, categorical, uniform, Laplace,
truncated Gaussian

I. INTRODUCTION

In this paper we address discrete-time stochastic models
in a Bayesian context. Random parameters are inferred from
random observations. Estimation and detection (classification)
are types of inference for continuous and discrete random
parameters. They are designed by minimizing an expected loss
function. If the loss function is the mean squared error, then
the optimization result is the minimum mean squared error
(MMSE) inferrer. Hence, the mean squared error of an inferrer
is a performance indicator.

The study of lower bounds on the mean squared error of
a Bayesian estimator [1]–[4] entails various bounds [5]–[8].
The most prominent bound is the Bayesian Cramér-Rao bound
(CRB) for linear models, where the prior and the likelihood
function are Gaussian. In this case, the mean squared error of
the MMSE estimator coincides with the CRB.

We are interested in Bayesian lower bounds for the inference
of parameters, which are jointly applicable to discrete and
continuous random state variables. Additionally, the bound
shall be valid for probability densities with finite support. It
turns out that the regularity conditions for the applicability of
the Bayesian CRB are too restrictive for discrete parameters
[9], [10]. We want bounds with relaxed regularity conditions,
which are applicable to discrete parameters, especially to dis-
crete parameters that stems from quantized continuous states.
This requirement guides us to the Weiss-Weinstein bounds
(WWB) [5], [7], [11], [12] and their sequential versions [10],
[13]–[15].

∗Florian Xaver florian@xaver.me, Gerald Matz
gmatz@nt.tuwien.ac.at, and Christoph Mecklenbräuker
cfm@nt.tuwien.ac.at are with the Institute of Telecommunications,
Vienna University of Technology, Gusshausstrasse 25/E389, 1040 Vienna,
Austria. Peter Gerstoft gerstoft@ucsd.edu is with Scripps Institution
of Oceanography, University of California, San Diego, 9500 Gilman Dr, La
Jolla, CA 92093-0238 , California.

The WWB is parametrized by a test point. The optimal
test point provides the tightest WWB. For linear models and
sample spaces RN , the WWB depends on the Bhattacharyya
coefficient (BC) [10]. If the sample space is a subset of
R
N , then this leads to a generalized Bhattacharyya coefficient

(GBC). Using analytic solutions of the (G)BC for popular
distributions, numerical computations give insight into the
(G)BC and WWB.

We open with a summary of WWBs in Section II, adding
singular-continuous distributions that are inducing joint esti-
mation and detection (e.g. in [15]). In Section III we present
the BC stemming from Gaussian distributions and derive the
GBC from categorical, Bernoulli, Laplace, uniform, and trun-
cated Gaussian distributions. The newly derived WWBs are
used as priors in Sections V to VII. A Laplacian prior induces
sparsity and leads to the Bayesian least absolute shrinkage
and selection operator (LASSO). The truncated Gaussian prior
introduces a finite support as in practical problems, whereas a
uniform prior is uninformative, and links to frequentist models.

II. WEISS-WEINSTEIN BOUNDS

Consider the probability space (RN ,B, Px) with the N -
dimensional sample space RN , the induced Borel algebra B,
and the probability measure Px(B) = P (x ∈ B) [16], [17].

Due to Lebesgue decomposition, a probability distribution
may consists of an absolutely continuous, a singular (discrete),
and a singular continuous part, i.e.

Px = c1P
c
x + c2P

d
x + c3P

s
x , c1 + c2 + c3 = 1 .

Thus, the expectation of a measurable vector-valued function
g(x) is

Ex (g(x)) :=

∫
RN

g(x)dPx(x) = c1

∫
RN

g(x)fx(x)dx

+ c2
∑

x∈C⊂RN
g(x)px(x) + c3

∫
x∈RN

g(x)dP s
x

with the probability density function (PDF) fx(x) =
dP c

x (x)/dλc(x) and the probability mass function (PMF)
px(x) = dP d

x (x)/dλd
C(x). If P s

x = Pα1
x × . . . × PαNx ,

αi ∈ {c, d}, is a product measure, then a hybrid density vx(x)
exists as a product of PDFs and PMFs. We call all three types
simply probability density (PD) [18].

In what follows, we use the notation λx for probability
measures whenever we assume the existence of a PD for the
random variable x. To simplify notation, we write E (·) :=
Ex,y (·), f(x) := fx(x), p(x) := px(x), and v(x) := vx(x).

For the Bayesian estimate x̂(y), the parameters x ∈ RN
are inferred from measurements y ∈ RM . In what follows,
we consider the affine measurement equation

y = Cx+ v , x ∼ v(x) , v ∼ v(v) ,
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with measurement matrix C : RN 7→ R
M and random noise

v ∈ R
N . The resulting estimation error of estimate x̂ is

defined by e := x̂(y) − x. The mean squared error of the
inferrer is lower bounded by the Weiss-Weinstein matrix W
parametrized by a test-point matrix H = [h1, . . . ,hN ]. The
test point ha, a = 1, . . . , N , pertains to element [x]a. For the
bound, we insert si = sj = 1/2 and (38) into (39)-(41) of [5]
and reformulate it. Hence, the mean-squared-error matrix is
bounded as (left-hand side minus right-hand side is positive
semi-definite.)

E
(
eeT

)
<W (H) := HJ−1HT , (1)

where J = J(H) depends on H with typical element

[J ]a,b :=
%(−ha,hb)− %(ha,hb)

ρv(Cha,0)ρx(ha,0)ρv(Chb,0)ρx(hb,0)
, (2)

with the symmetrized version of the generalized non-metric
Bayesian Bhattacharyya coefficient

%(ha,hb) := [ρv(Cha,Chb)ρx(ha,hb)

+ρv(−Cha,−Chb)ρx(−ha,−hb)] , (3)

and the non-symmetric Bhattacharyya coefficient (GBC)

ρv(ha,hb) =

∫
V

√
vv(v + ha)vv(v − hb)dλv , (4)

where V = {v : vv(v) > 0}. The GBC ρx is similar. Due to
the product measure λv, the integral in (4) is an abbreviation of
sums and Lebesgue integrals. The multiplications of the GBCs
in (2) and (3) are due to linearity and statistical independence.
Eq. (3) simplifies for symmetric PDs. For infinite support of
vv(v), (4) becomes the BC [19]–[21]

ρv(ha,hb) =

∫ ∞
−∞

√
vv(v + ha)vv(v − hb)dλv . (5)

Observe that if we substite v′ := v − hb in (4), then the
GBC is still dependent on ha and hb. We will see that the
BC of the Gaussian and Laplace distributions depend only on
the sum h := ha+hb and that PDs with finite support induce
box constrains on the test-point vector h [10].

III. ANALYTIC SOLUTIONS

In what follows, we derive analytic solutions of
the BC of several distributions. Observe from (4) that
if vv(v) = vv1(v1) . . . vvN (vN ), then ρv(ha,hb) =
ρv1(ha,1, hb,1) . . . ρvN (ha,N , hb,N ). Thus, we consider univari-
ate PDs whenever the elements of the parameter vector are
assumed to be statistically independent.

A. Categorical Distribution

Categorical distributions are defined by a probability mass
function. If the categorical distribution stems from the equidis-
tant quantization (discretization) of a continuous distribution,
`∆v ∈ RN , ` ∈ L ⊂ Z, we can use (1) to (4). In this case,
the mean squared error makes sense. Inserting its density

p(v) =
∑
`∈L

p`1v=`∆v

with probability masses p` and indicator function 1·, into (4)
gives

ρC
v (ha, hb) =

∑
v∈L∆v

[∑
`∈L

p`1v+ha=`∆v

∑
`∈L

p`1v−hb=`∆v

]1/2

.

Observe that the GBC depends on ha and hb. The Bernoulli
distribution p01v=0 + p11v=∆v

and the discrete uniform
distribution Unif {r, s} with p` = p and |ha±hb| ≤ s− r+ 1
are examples of categorical distributions.

Next, we address absolutely continuous distributions.

B. Uniform Distribution

Let us insert the continuous uniform distribution Unif {r, s},

f(v) =
1

s− r
1r≤v≤s ,

into (4), i.e.

1

s− r

∫ s

r

1r≤v+ha≤s1r≤v−hb≤sdv .

We distinguish four cases:
∫ s−ha
r

1r+hb≤v≤s+hbdv , ha ≥ 0, hb ≥ 0 ,∫ s
r−ha 1r+hb≤v≤s+hbdv , ha ≤ 0, hb ≤ 0 ,∫ s−ha
r

1r+hb≤v≤s+hbdv , ha > 0, hb < 0 ,∫ s
r−ha 1r+hb≤v≤s+hbdv , ha < 0, hb > 0 .

Merging the first two and splitting the last two, the GBC
becomes1

ρcU
v (ha, hb) =



1− |h|
s−r , ha ≥ 0, hb ≥ 0 or ha ≤ 0, hb ≤ 0 ,

1− ha
s−r , ha > 0, hb < 0, ha > −hb ,

1 + hb
s−r , ha > 0, hb < 0, ha ≤ −hb ,

1 + ha
s−r , ha < 0, hb > 0, ha > −hb ,

1− hb
s−r , ha < 0, hb > 0, ha ≤ −hb ,

0 , else .

with |ha ± hb| < s− r.

C. Laplace Distribution

The Laplace distribution La {b, µx} is a sparse prior. In-
serting Laplace’s density f(v) = 1

2be
− |v−µv|b into (5) and

substituting w = v − µv and h = ha + hb gives

1

2b

∫ ∞
−∞

e−
1
2b (|w+h|+|w|)dw .

If h > 0, then the integral splits into three terms,

w > 0 , w + h > 0 :
1

2b

∫ ∞
0

e−
w/b−h/2bdw =

1

2
e−

h/2b ,

w < 0 , w + h < 0 :
1

2b

∫ −h
−∞

e
w/b−h/2bdw =

1

2
e−

h/2b ,

w < 0 , w + h > 0 :
1

2b

∫ 0

−h
e−

h/2bdw =
h

2b
e−

h/2b .

1This is a revised version of BC in [10], which contains only the first case.
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Due to symmetry, for h ≤ 0, there are three similar cases. The
composition of the terms provides the BC

ρL
v (ha, hb) = ρL

v (h) =

{(
1 + h

2b

)
e−h/2b , h > 0 ,(

1− h
2b

)
eh/2b , h ≤ 0 .

D. (Truncated) Gaussian Distribution

The density of Gaussian distribution N {µv,Cv} is

v(v) :=
1

(2π)N/2 (detCv)
1/2
e
− 1

2‖v−µv‖
2

C
−1
v .

with the mean µv , the covariance matrix Cv, and the weighted
norm ‖h‖C−1

v
:= (hTC−1

v h)1/2. Then the Bayesian BC [10]
is given by

ρG
v (hb,hb) = ρG

v (h) := e
− 1

8‖h‖
2

C
−1
v .

The truncated Gaussian N {µv,Cv, r, s} is a Gaussian
distribution limited to the support [r, s], i.e., the density is
given by

f(v) =
1

c
e
− 1

2‖v−µv‖
2

C
−1
v 1r≤v≤s .

with appropiate normalization factor c. Inserting f(v) into (4),
substituting v′ = v − µv, and use normalization factor c, we
get

1

c

∫ s−µv

r−µv

e
− 1

4

(
2‖v′‖2

C
−1
v

+2v′TC−1
v ha+‖ha‖2

C
−1
v

)

× e
− 1

4

(
−2v′TC−1

v hb+‖hb‖2
C
−1
v

)
× 1r−ha≤v≤s−ha1r+hb≤v≤s+hbdv

′ .

Next, we substitute v′′ = v′ + ha/2− hb/2 and obtain

ρtG
v (ha,hb) =

1

c
ρG
v (ha,hb)×

∫ s−µv+ha/2−hb/2

r−µv+ha/2−hb/2

e
− 1

2‖v′′‖2C−1
v

× 1r≤v′′+ha/2+hb/2≤s1r≤v′′−ha/2−hb/2≤sdv
′′ .

The two cases ha ≥ 0,hb ≥ 0 and ha ≤ 0,hb ≤ 0 lead to

ρG
v (ha,hb)

c

∫ s−µv−|ha|/2−|hb|/2

r−µv+|ha|/2+|hb|/2

e
− 1

2‖v′′‖2C−1
v dv′′ .

If ha ≤ 0,hb > 0, then ρtG
v (ha,hb) is

1

c
ρG
v

∫ s−µv−|ha|/2−|hb|/2

r−µv+|ha|/2−|hb|/2
e
− 1

2‖v′′‖2C−1
v dv′′

for ha + hb ≤ 0 and

1

c
ρG
v

∫ s−µv+|ha|/2−|hb|/2

r−µv+|ha|/2+|hb|/2

e
− 1

2‖v′′‖2C−1
v dv′′

for ha + hb > 0. If ha > 0,hb ≤ 0, then ρtG
v (ha,hb) is

1

c
ρG
v

∫ s−µv+|ha|/2+|hb|/2

r−µv+|ha|/2−|hb|/2
e
− 1

2‖v′′‖2C−1
v dv′′
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Figure 1. Weiss-Weinstein bound vs. test point for equal prior and noise
distributions. ha = hb for univariate distributions.

for ha + hb ≤ 0 and

1

c
ρG
v

∫ s−µv−|ha|/2−|hb|/2

r−µv+|ha|/2−|hb|/2
e
− 1

2‖v′′‖2C−1
v dv′′

for ha+hb > 0. Due to the finite support, |ha±hb| ≤ s−r.
This integral and Factor c in general can only be numerically
evaluated.

IV. NUMERICAL EXAMPLES

In the sequel, we use the scalar measurement model with
C = 1. Test matrix H shrinks to a scalar, i.e. ha = hb in (2).
Fig. 1 plots WWBs for Laplace La {1, 0}, Gaussian N {0, 2},
uniform Unif {−1, 1}, and truncated Gaussian N {0, 2,−3, 3}
prior and measurement distributions.

In general, the WWB is non-concave regarding the test point
and no general solution for the optimal test point h exists.
The existence of an analytic solution of the tightest bound
depends on the BC of the particular distributions. However,
due to symmetry, for unimodal densities only h ≥ 0 is needed
and the BC is quasi-concave. The optimal test point is small.

In case of Gaussian distributions, the optimal test point tends
to ha → 0. The WWB approaches the CRB, cf. [10] for a
proof. The tightest WWB in the Gaussian case coincides with
the CRB and is reached by an optimal estimator.

Fig. 1 also shows the WWB of the categorical distribution
{0.5, 0.2, 0.1, 0.2}, the Bernoulli distribution {0.5, 0.5}, and
the discrete uniform distribution Unif {−3, 3} for ∆v = 1.

The shape of WWB of discrete distributions follow that
of continuous distributions. In case of Bernoulli distributions,
there are only two possible test points ha = hb = ±∆v = ±1.
According to [10], the WWBs of continuous distributions and
their quantized discrete versions are equal for the same test
points. Comparing the WWB of the discrete uniform distri-
bution with the bound of the continuous uniform distribution,
we observe how a smaller support lowers the Weiss-Weinstein
bound.
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Figure 2. WWB for a Laplace prior and
Gaussian likelihood compared to pure Lapla-
cian and pure Gaussian distributions.
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Figure 3. WWB for truncated Gaussian
densities of support [r, s] vs. test point. The
Gaussian curve is for comparison (dotted).
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Figure 4. WWB for a uniform prior and
Gaussian likelihood function compared to pure
uniform and pure Gaussian case.

V. SPARSE SIGNALS – LAPLACE PRIOR

The least absolute shrinkage and selection operator
(LASSO) is a prominent estimation method for sparse
signals x [22]. LASSO minimizes the squared error
minx ‖y −Cx‖22, where vectors x,y are deterministic. As-
suming a sparse signal x, it makes sense to constrain the `1-
norm ‖x‖1 =

∑
n |xn| < b ∈ R+. The associated Lagrangian

becomes

min
x
‖y −Cx‖22 + b′ ‖x‖1 , b′ ∈ R+.

In the Bayesian context x and y are random. Then the min-
imization is interpreted as the maximization of the posterior
distribution, if the likelihood function is Gaussian and the prior
is Laplacian.

In Fig. 2, we show the WWB for the scalar linear measure-
ment model for pure Laplace distributions x, v ∼ La {0, 2},
pure Gaussian distributions x, v ∼ N {0, 2} and Laplace prior /
Gaussian noise x ∼ La {0, 2} , v ∼ N {0, 2}. Observe that the
WWB of the mixed case lies in-between the pure examples.
In the limit h→ 0, the bound is greater than zero.

VI. THE TRUNCATED GAUSSIAN DENSITY

Real-world applications that are modeled by a Gaussian
prior, are usually box constrained. This leads to the truncated
Gaussian distribution. Let x, v ∼ N {0, 2, r, s}. Fig. 3 shows
the WW for different [r, s]. The Gaussian case (r → −∞ and
s→∞) is our reference.

Compare the curves with that of continuous uniform distri-
butions in Fig. 1. They look similarly. The bound decreases
with decreasing support size s− r. Compare it with the pure
uniform curve in Fig. 3. The support of the truncated Gaussian
density defines, whether the WWB tends to the uniform or to
the Gaussian WWB.

VII. UNINFORMATIVE PRIOR – UNIFORM PRIOR

A uniform prior is uninformative in the sense that it only
defines a minimum and maximum value. Measurement y
updates the beliefe of signal x. Due to the uninformative
prior, the noise distribution has a strong impact on the believe
update.

Let us now compare uniform prior / Gaussian noise x ∼
Unif {−2.45, 2.45} , v ∼ N {0, 2} with uniform distributions
x, v ∼ Unif {−2.45, 2.45}, and Gaussian distributions x, v ∼
N {0, 2}. For the uniform distribution we used

−r = s = +1/2
√

12σ2 ≈ 2.45

to achieve identical variance σ2 = 2 for the Gaussian and
uniform distribution.

Next, we plot the WWB for the scalar linear measure-
ment model in Fig. 4. Replacing the uniform by a Gaussian
likelihood function increases the lower bound. Observe that
the WWB of the mixed model lies above the pure uniform
case, but has a similar shape. Two characteristics influence the
maximum WWB: the support and the flatness of the densities.
The greater the support, the greater the possible error. The
flatter the density, the greater the error.

VIII. CONCLUSION

The Weiss-Weinstein bound (WWB) is parametrized by test
points leading to different levels. The WWB depends on the
density’s variability and on its support. They apply to both
discrete and absolutely continuous probability distributions.
This is useful for quantized variables, where the values in the
sample space have a physical interpretation. Furthermore, the
WWB supports singular-continuous multivariate probability
distributions with a hybrid joint density. A hybrid joint density
is the product of probability densities and probability mass
functions. The WWB is applicable to probability distributions
that are non-differentiable or have finite support, e.g. uniform
or truncated Gaussian distributions, and distributions defined
only on real positive support, e.g. exponential distributions.
For linear models, the WWB depends on the generalized
Bhattacharyya coefficient. If the distribution is unimodal, then
the WWB is bimodal.

To exemplify its use, we discussed a linear measurement
model. This illustrates the application of the WWB for sparse
signal models with a Laplace-distributed prior and additive
Gaussian noise. The WWB for a truncated Gaussian prior
tends to the normally or uniformly distributed case depending
on its support. The WWB of a model with a continuous
uniform prior and a Gaussian likelihood function is greater
than of the uniform-only model and has a similar shape.
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