Special theme: Planning and Logistics

Also in this issue:

Keynote: Trends and Challenges in Logistics and Supply Chain Management by Henk Zijm, Professor of Production and Supply Chain Management, University of Twente

Research and Innovation: Business Process Execution Analysis through Coverage-based Monitoring by Antonello Calabrò, Francesca Lonetti, Eda Marchetti, ISTI-CNR
ERCIM News is the magazine of ERCIM. Published quarterly, it reports on joint actions of the ERCIM partners, and aims to reflect the contribution made by ERCIM to the European Community in Information Technology and Applied Mathematics. Through short articles and news items, it provides a forum for the exchange of information between the institutes and also with the wider scientific community. This issue has a circulation of about 6,000 printed copies and is also available online.

ERCIM News is published by ERCIM EEIG
BP 93, F-06902 Sophia Antipolis Cedex, France
Tel: +33 4 9238 5010, E-mail: contact@ercim.eu
Director: Jérémy Chailloux
ISSN 0926-4981

Contributions
Contributions should be submitted to the local editor of your country

Copyright notice
All authors, as identified in each article, retain copyright of their work
ERCIM News is licensed under a Creative Commons Attribution 4.0 International License (CC-BY).

Advertising
For current advertising rates and conditions, see
http://ercim-news.ercim.eu/ or contact peter.kunz@ercim.eu

ERCIM News online edition
The online edition is published at http://ercim-news.ercim.eu/

Next issue
July 2016, Special theme: Cybersecurity

Subscription
Subscribe to ERCIM News by sending an email to
en-subscriptions@ercim.eu or by filling out the form at the ERCIM News website: http://ercim-news.ercim.eu/

Editorial Board:
Central editor:
Peter Kunz, ERCIM office (peter.kunz@ercim.eu)

Local Editors:
Austria: Erwin Schoitsch (erwin.schoitsch@saul.ac.at)
Belgium: Benoît Michel (benoît.michel@uclouvain.be)
Cyprus: Ioannis Krikidis (krikidis.ioannis@ucy.ac.cy)
Czech Republic: Michal Haindl (haindl@utia.cas.cz)
France: Steve Kremer (steve.kremer@inria.fr)
Germany: Michael Krupp (michael.krupp@scai.fraunhofer.de)
Greece: Eleni Orphanoudakis (elen@ics.forth.gr), Artemios Voyiatzis (bogar@isi.gr)
Hungary: Erzsébet Csuhaj-Varjú (csuhaj@inf.elte.hu)
Italy: Carol Peters (carol.peters@isti.cnr.it)
Luxembourg: Thomas Tamisier (thomas.tamisier@list.lu)
Norway: Poul Heegaard (poul.heegaard@item.ntnu.no)
Poland: Hung Son Nguyen (son@minuw.edu.pl)
Portugal: Joaquim Jorge (jorgej@tecnicos.ulisboa.pt)
Spain: Silvia Abrahão (sabrahao@dsic.upv.es)
Sweden: Kersti Hedman (kersti@sicse.se)
Switzerland: Harry Rudin (hrudin@smile.ch)
The Netherlands: Annette Kik (Annette.Kik@cwi.nl)
W3C: Marie-Claire Forgue (mcf@w3.org)

Cover photo by courtesy of Electrocomponents plc.
KEYNOTE

3 Trends and Challenges in Logistics and Supply Chain Management
by Henk Zijm, Professor of Production and Supply Chain Management, University of Twente

SPECIAL THEME

The special theme section “Planning and Logistics” has been coordinated by Rob van der Mei, CWI and Ariona Shashaj, SICS.

Introduction to the Special Theme

8 Visions of the Future: Towards the Next Generation of Logistics and Planning Systems
by Rob van der Mei, CWI, and Ariona Shashaj, SICS

Simulation Models and Test Beds

10 Defining the Best Distribution Network for Grocery Retail Stores
by Pedro Amorim, Sara Martins, Eduardo Curcio and Bernardo Almada-Lobo, INESC TEC

11 Planning Production Efficiently
by Andreas Halm, Fraunhofer Austria

12 ICT for a Logistics Demonstration Centre
by Miguel A. Barcelona, Aragón Institute of Technology

14 Production Planning on Supply Network and Plant Levels: The RobustPlaNet Approach
by Péter Egri, Dávid Gyulai, Botond Kádár and László Monostori, SZTAKI

Case Studies

15 Modelling and Validating an Import/Export Shipping Process
by Giorgio O. Spagnolo, Eda Marchetti, Alessandro Coco and Stefania Gnesi, ISTI-CNR

16 Where is the Money? - Optimizing Cash Supply Chain Networks
by Leendert Kok and Joaquim Gromicho, ORTEC

18 An Industrial Take on Breast Cancer Treatment
by Sara Gestrelius and Martin Aronsson, SICS Swedish ICT

19 Evaluating Operational Feasibility before Investing: Shunting Yards in Sweden
by Sara Gestrelius, SICS Swedish ICT

20 Boosting the Responsiveness of Firefighter Services with Mathematical Programming
by Pieter van den Berg, TU Delft, Guido Legemaate, Amsterdam Fire Department, and Rob van der Mei, CWI

22 Predicting the Demand for Charging Stations for Electric Vehicles
by Merel Steenbrink, Elenna Dugundji and Rob van der Mei, CWI
Cutting-Edge Technologies

23 Data-driven Optimization for Intelligent and Efficient Transport
by Björn Bjurling and Fehmi Ben Abdesslem, SICS Swedish ICT

24 Adopting a Machine Learning Approach in the Design of Smart Transportation Systems
by Davide Bacciu, Antonio Carta, Stefania Gnesi and Laura Semini, ISTI-CNR

25 Remote Service Using Augmented Reality
by Björn Löfvendahl, SICS Swedish ICT

Sustainable Logistics and Planning

26 Value Stream Mapping with VASCO - From Reducing Lead Time to Sustainable Production Management
by René Berndt and Alexander Sunk, Fraunhofer Austria

28 Risk Analysis for a Synchro-modal Supply Chain Combined with Smart Steaming Concepts
by Denise Holfeld and Axel Simroth, Fraunhofer IVI

Mathematical Tools for Logistics and Planning

29 Designing Sustainable Last-Mile Delivery Services in Online Retailing
by Niels Agatz, Leo Kroon, Remy Spliet and Albert Wagelmans, Erasmus University Rotterdam

30 Spare Parts Stocking and Expediting in a Fluctuating Demand Environment
by Joachim Arts, TU Eindhoven

32 Packing with Complex Shapes
by Abderrahmane Aggoun, KLS OPTIM, Nicolas Beldiceanu, Gilles Chabert, École des Mines de Nantes and François Fages, Inria

33 Allocating Railway Tracks Using Market Mechanisms and Optimization
by Victoria Svedberg, SICS Swedish ICT

34 OscaR, an Open Source Toolbox for Optimising Logistics and Supply Chain Systems
by Renaud De Landsheer, Christophe Ponsard and Yoann Guyot, CETIC

35 Integrated Resource Planning in Maintenance Logistics
by Ahmad Al Hanbali, Sajjad Rahimi-Ghahroodi, and Henk Zijm

36 Utilising the Uniqueness of Operation Days to better Fulfil Customer Requirements
by Sara Gestrelius

38 Planning Complex Supply Networks Facing High Variability
by Ulrich Schimpel and Stefan Wörner, IBM Research

RESEARCH AND INNOVATION

This section features news about research activities and innovative developments from European research institutes

40 Business Process Execution Analysis through Coverage-based Monitoring
by Antonello Calabró, Francesca Lonetti, Eda Marchetti, ISTI-CNR

42 Quality of Experience-assessment of WebRTC Based Video Communication
by Doreid Ammar, Katrien De Moor and Poul Heegaard, NTNU

43 D2V – Understanding the Dynamics of Evolving Data: A Case Study in the Life Sciences
by Kostas Stefanidis, Giorgos Flouris, Ioannis Chrysakis and Yannis Roussakis, ICS-FORTH

45 Detection of Data Leaks in Collaborative Data Driven Research
by Peter Kieseberg, Edgar Weippl, SBA Research, and Sebastian Schittwieser, TARGET

46 HOBBIT: Holistic Benchmarking of Big Linked Data
by AxelCyrille Ngonga Ngomo, InfAI, Alejandra García Rojas, ONTOS, and Irini Fundulaki, ICS-FORTH

48 Smart Solutions for the CNR Campus in Pisa
by Erina Ferro, ISTI-CNR

EVENTS, IN BRIEF

Announcements

47 ERCIM “Alain Bensoussan” Fellowship Programme

49 Minerva Informatics Equality Award

50 ERCIM Membership

In Brief

50 SHIFT2RAIL - European Railway Research of 2015-2024

50 The ExaNeSt project - Fitting Ten Million Computers into a Single Supercomputer
Value Stream Mapping with VASCO - From Reducing Lead Time to Sustainable Production Management

by René Berndt and Alexander Sunk, Fraunhofer Austria

Value stream mapping (VSM) is a lean management methodology for analyzing and optimizing a series of events for production or services.

Even now, the first step in value stream analysis - the acquisition of the current state - is still created using pen and paper by physically visiting the production site (see Figure 1). VASCO is a tool that contributes to all parts of value stream analysis - from data acquisition on the shop floor, detailed analysis, over planning, through to simulation of possible future state maps (FSM) - always taking economic and ecological factors into consideration (see Figure 2).

When a new product is manufactured - starting with the raw materials at the incoming goods department right through to the end product in the hands of the customer - multiple activities are required, for instance, assembly, transport and temporary storage. The aggregation of these various steps is called “value stream”. More efficient planning and implementation of the value stream means more profit for the business. Maximizing the efficiency of a value stream is becoming increasingly difficult owing to the flexible nature of modern production. Enterprises need to adopt their business to the requirements of the market - e.g. how to cope with demand fluctuations or to fulfil individual customer requests. This is one of the major challenges for value stream planning.

Based on the experience of many projects in the field of value stream optimization – and in cooperation with partners from industry - Fraunhofer Austria has been developing the software tool VASCO. This solution is tailored for flexible and sustainable value stream planning. Even the visualization and analysis of complex value streams can be performed efficiently.

VASCO is implemented as a Microsoft Visio Add-In and supports the user in creating intelligent value stream maps in a fast and user-friendly manner. Its main advantages are the automatic linking of processes and configurable logistic tasks, as well as the (optional) display of five “economic” data-lines (production time, transport distances, space area usage, energy consumption, production costs) directly underneath the value stream. Furthermore, “ecological” data-lines are implemented for assessing disposal and carbon footprint per part produced.

One of the significant features of VASCO is that all VSM related symbols are fully customizable by a configuration file. This configuration file defines which properties are added to the symbol. These properties can be classified into two major categories: manual input values or calculated values. The manual values are entered by the user, whereas the calculated values depend on a formula consisting of manually entered or other calculated values. The formula definition is also part of the configuration file and can be modified even at run-time. As a result, each company can customize VASCO to their individual needs.

Another key feature of VASCO is extensibility. While VASCO is a Microsoft Visio Add-In, it can be customized by plugins itself. The basic version of VASCO is shipped with three plugins, extending the basic functionality of the tool:

- KPI-Plugin The KPI-Plugin adds additional visual features (see Figure 4) to the Visio page. This shape clearly displays the key performance indicators of the factory. Once a VASCO graph is complete and VASCO itself is in calculation mode, the values are calculated and auto-
matically updated when a value in the graph changes.

- OBC-Plugin The operator balance chart (OBC) visualizes the total amount of work of each process compared to the takt time. The takt time can be considered as an average external rate at which customer requires goods produced. Therefore, the OBC visualizes how the cycle times of processes in the considered value stream fulfill this need. An OBC also supports optimal workload balancing between processes by making the amount of work for each operator very nearly equal to, but slightly less than, takt time. Figure 5 shows the OBC chart of the given example.

- Comment-Plugin VASCO was designed to make the acquisition and calculation of a new value stream easier and to replace the pen and paper acquisition. With the pen and paper method it is always possible to add different comments to the different symbols. In order to give the VASCO user a similar feature during the acquisition a comment plugin was created. This comment plugin enhances every symbol on a VASCO page with a comment tab (see Figure 3). When we observed that users sometimes only copied key figures from a machine into this comment tab during the data acquisition process, we further enhanced the comment plugin with a snapshot ability. This feature enables the user to take a snapshot with the tablet instead of copying the values. It is also possible to record a video with the comment plugin. This can be used to record different views of the machine or to record the voice of the person who does the acquisition so that there is not even the

Current work-in-progress is the integration of sustainability criteria within a VSM. Ecological aspects are an increasingly important factor in addition to traditional economic considerations. “Sustainability” is the keyword that is causing enterprises to a change the way they operate. Responsible entrepreneurs and managers in Austria and throughout Europe also have responsible customers. Products with a very good environmental balance provide a competitive advantage by fulfilling the customer’s needs and the demand of efficient resource use.

Link: http://www.fraunhofer.at/vasco

Reference:

Please contact:
Thomas Edtmayr
Fraunhofer Austria
thomas.edtmayr@fraunhofer.at