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Abstract—The increasingly large number of available writings describ-
ing technical and scientific progress, calls for advanced analytic tools for
their efficient analysis. This is true for many application scenarios in sci-
ence and industry and for different types of writings, comprising patents
and scientific articles. Despite important differences between patents
and scientific articles, both have a variety of common characteristics
that lead to similar search and analysis tasks. However, the analysis and
visualization of these documents is not a trivial task due to the complex-
ity of the documents as well as the large number of possible relations
between their multivariate attributes. In this survey, we review interactive
analysis and visualization approaches of patents and scientific articles,
ranging from exploration tools to sophisticated mining methods. In a
bottom-up approach, we categorize them according to two aspects: (a)
data type (text, citations, authors, metadata, and combinations thereof),
and (b) task (finding and comparing single entities, seeking elementary
relations, finding complex patterns, and in particular temporal patterns,
and investigating connections between multiple behaviours). Finally, we
identify challenges and research directions in this area that ask for future
investigations.

Index Terms—Visualization, Scientific Literature, Patents, Documents,
Survey

1 INTRODUCTION

This article aims at shedding light on interactive visualiza-
tion approaches supporting search and analysis of scientific
articles and patents. We focus on this topic, because there
has been an increase in visual approaches for these domains
and corresponding tasks during the last few years. This
trend can be explained by and correlates with the strongly
rising numbers of documents in both domains. From our
perspective, the introduction of visualization offers addi-
tional levels of aggregation and overview, and helps to deal
with bigger sets of these complex documents.

Searches for and analyses of scientific literature and
patents typically have high demands on precision, and,
particularly, on recall. This distinguishes the tasks that need
to be supported in these searches and analyses from those
in many other domains. The iterative nature of the analyses,
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that are typical for complex information-foraging tasks on
these documents, render visual approaches particularly suit-
able for them. Visualization techniques used vary greatly
from explanation tools to exploratory methods, but search
and analysis goals are comparable in some cases. Straight-
forward approaches summarize results visually, while ad-
vanced ones integrate suitable interaction concepts enabling
users to steer algorithms. Immediate updates of visual
representations, as a result of such user interactions, close
feedback loops and are characteristic of visual analytics
approaches.

1.1 Characteristics of scientific literature and patents
We surveyed visual approaches for analysis of scientific
articles and patents (with a numerical preponderance of
the former, see Section 3). Indeed, scientific articles and
patents have a variety of common characteristics which
motivated a joint discussion for these two objects of analysis.
These common characteristics result in similar search and
analysis tasks for both types of documents. Both have a
rather similar set of bibliographic information, that we refer
to as metadata, attached to them. This includes authors for
scientific articles, and applicants for patents. While scientific
articles are typically annotated with their date of publi-
cation, patents have a much richer set of time-dependent
meta data, e.g., filing/application date and many other legal
events that may occur within a patent’s life cycle.

Another commonality shared by scientific articles and
patents are citations of relevant previous documents that
explain the context a document is embedded in.

Citations and references, however, are not the only
source of relational information. Patent families, which are
based on common (sets of) priorities, are another example.
In addition, documents can be linked through metadata,
e.g., the same (co-)author. Both document types typically
have manually created classification schemes associated with
them. The ACM taxonomy1 and the Physics and Astronomy
Classification Scheme (PACS)2, for example, are popular
for publications in the respective fields. Depending on the
regional office, different classification schemes are in use for
patents. These include the Cooperative Patent Classification
(CPC)3 system, as well as former schemes such as the

1. http://www.acm.org/about/class/
2. https://www.aip.org/pacs
3. http://www.cooperativepatentclassification.org/index.html
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International Patent Classification (IPC)4, and the United
States Patent Classification (USPC)5. Most of these schemes
are organized in the form of hierarchical taxonomies.

Geographic information is typically available in the form
of regions where a patent is in force, locations of appli-
cants, and locations of institutions authors are affiliated
with. These attributes contain structured information on
patents and scientific literature and are well-suited to create
different visual perspectives on collections of documents.
Accordingly, they are often used to create overview visual-
izations that help stakeholders to get a general understand-
ing of document sets, or, combined with suitable interaction
methods, support them in navigating document sets.

The content of both document types has common char-
acteristics as well. While the main information is typically
encoded as text, patents and scientific literature are often
enriched with additional elements. These include formulas,
tables or lists, but also drawings, photos or videos. The use
of these elements results in multimodal documents. Both
types of documents have technical content, and patents are
written with some legal jargon sometimes referred to as
‘patentese.’ The goal of achieving an unambiguous defi-
nition of what a patent covers conflicts, to some extent,
with the applicants’ demand for broad coverage of legal
protection. In combination with the requirements for legal
texts and the formal rules for writing patents, this makes
patent documents difficult to read and understand for non-
experts. Additionally, language processing, mining, and
retrieval approaches can lead to results that do not meet
the expected quality. Visualization offers means for quickly
assessing (intermediary) results, helping users to quickly
improve automatic procedures to a satisfactory level of
quality.

Scientific documents as well as patents undergo eval-
uation processes to get published or granted. For both,
scientific documents as well as patents, technical novelty
is a fundamental requirement for a positive assessment.
However, the notion of novelty is different for both types
of documents. While it evolves over time for scientific disci-
plines, and has a generally broader definition, e.g., by also
comprising insights from comparative studies, its definition
for patents is much more narrow. Rules for ‘patentability’
are defined in corresponding laws and regulations and
differ by country. In general, these rules require that a new
‘technical’ invention is applicable in an industrial way, and
that it must involve an inventive step (c.f. article 33 of
PCT). Apart from exhibiting a certain level of novelty, both
document types have to fulfill different additional require-
ments to be ‘acceptable’. And although they are formulated
differently in practice, tasks such as finding similar works
and comparing them are common for both domains. Again,
interactive visualization can speed up such tasks.

1.2 Related Surveys
There are a couple of related surveys and other collections of
techniques and publications that we want to discuss in this
section. Bonino et al. [1] describe the technological state-of-
the-art in patent analysis. They introduce patent databases,

4. http://www.wipo.int/classifications/ipc/en/
5. http://www.uspto.gov/web/patents/classification/

tasks important for stakeholders, and recent technological
innovations. Their survey does not include any visualization
approaches or techniques at all, while ours focuses entirely
on visualization.

In a more recent patent analysis survey, Abbas et al. [2]
identify visualization techniques as an important group of
approaches to analyze and understand patent data. While
they list some visualization approaches to patent search
and analysis, they entirely focus on the patent community.
As a consequence, they omit all approaches published to
other communities, such as the visualization community. In
this survey, all relevant approaches from the visualization
community are included and discussed.

Yang et al. [3] review only commercially available text
mining and visualization approaches for patents. We have
decided to exclude these from this survey, the main reason
for this being that available information about them is
scarce. Lupu et al. [4] give an in-depth account of current
techniques for patent retrieval. While this also includes
visualization approaches to retrieval, it does not cover the
whole gamut of visualization approaches to patent analysis,
as does this survey.

In addition to related surveys on patent retrieval, there
are more general publications that focus on certain aspects
of scientific literature, often also comprising visualization
approaches. Chen [5] gives a broad account of visualiza-
tion approaches for citations, collaborations, and scientific
communities in general. He discusses these approaches in
the context of research fronts and their evolution. While we
focus on visualization of aspects of scientific publications,
Chen focuses on knowledge visualization and the evolution
of scientific knowledge in a broader sense.

With her Atlas of Science, Börner [6] focuses on mapping
approaches, i.e. spatializations of scientific communities of-
ten based on citation data. She provides a comprehensive
overview including hand-drawn examples. Our focus, in
contrast, is broader, comprising all types of visualization
methods that provide benefits for the analysis of scientific
documents and patents.

Search and retrieval tasks play a vital role for patent
and scientific document analysis, and this survey includes
multiple visual approaches to support them. Hearst [7]
gives a detailed account of these types of interfaces, dis-
cussing, among other topics, their design, evaluation, and
query refinement techniques. Visual text analysis is another,
broader group of techniques relevant for patents and scien-
tific documents. Alencar et al. [8] provide an overview of
these techniques. Another comprehensive collection of such
approaches that can be searched interactively [9] is available
online6.

1.3 Terminology

With the terms scientific document, scientific publication, paper,
and article, we refer to articles published in a scientific
journal or in the proceedings of a scientific conference.
For the patent domain, we use the terms patent and patent
application to refer to documents that are in any stage of the
process of patent examination, excluding design patents.

6. http://textvis.lnu.se/
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With the term visualization we refer to the disciplines of
information visualization, data visualization, and visual an-
alytics. We concentrate on approaches that generate visual-
izations algorithmically from the data contained in or asso-
ciated with the documents. Visual representations that were
created manually in the form of illustrations or schematic
drawings are not considered in this survey whether they
are created with computer aid or not. However, there are
some approaches where an exact distinction is not possible
because they contain a ‘constructive’ component, either for
formulating queries visually or for externalizing derived
analysis results. Since these couple data visualization and
constructive approaches, they are included in this survey.

1.4 Methodology for selecting publications

As this work aims to summarize the state-of-the-art in visu-
alization of collections of patents and scientific documents,
our selection of publications is biased towards papers from
the field of visualization or visual analytics. The reason
for this is simple: many of the approaches containing a
considerable visual contribution were developed by the
visualization community. Our goal was to identify and
collect all publications from this community that contain a
technique, visualization, or approach designed to visualize
and analyze either patents or scientific publications. In ad-
dition, we have also included all publications that present
more general approaches whose application to patents or
scientific literature is demonstrated by an example or use
case within the publication.

We have collected these publications by listing a core
set of relevant publications known to us in advance, or
identified through a keyword search. Starting from this
core sample, we have followed forward and backward
citation links to identify additional relevant publications
in an iterative way. In addition to publications from the
visualization domain, this process yielded many articles
from various other communities. We have included them
in this survey if they propose a substantial visualization
approach for data from patents or scientific publications that
can be used for their analysis. These communities include,
but are not limited to information science, bibliometrics and
scientometrics, patent research, data mining, information
retrieval. We have also included relevant introspective work
in publication patterns, behavior, and the history of other
scientific disciplines. In addition to following citation links,
we have scanned through publication titles and abstracts
of conferences and journals that were published during the
time of writing this article in order to include the latest
developments.

There are certainly patents on how to analyze and re-
trieve patents, and some of them might consider interactive
visualization as well. Apart from these, there are commercial
products which integrate a variety of visual techniques and
approaches for patents and scientific literature analysis. As
we consider the former out of the scope of this survey,
and the latter often hard to analyze due to the limited
availability of information about commercial approaches,
we have decided to not include them in this survey. We
thus have decided to concentrate entirely on approaches
described in scientific publications.

2 CATEGORIZATION

We have structured this survey according to two orthogonal
aspects: tasks and data types. All of the publications are
categorized according to different categories along these
two dimensions. This categorization is inspired by Shnei-
derman’s task by data type taxonomy for information visu-
alization [10], but it comprises domain-specific data types
and a different task framework. In this section we list and
specify the categories and discuss our reasons for each of
them.

2.1 Data Categories
We have identified four relevant data types in the domain
of patents and scientific literature: Text, Citations, Authors,
and Metadata. We devoted to each of these data types a cate-
gory, where techniques for that data type are discussed. The
categories are not mutually exclusive: since some techniques
deal with more than one data type, we have identified a
main category, and one or several secondary ones. More-
over, some visual analytics approaches combine different
techniques; in these cases, the techniques are listed in the
corresponding categories, and their combinations in the
additional Multiple category. In the following we describe
each data category.

Text: The textual content of a publication is its central
component, as it encodes its main scientific contribution
and a wealth of additional information. Natural language
is used to encode information in multiple parts of a publi-
cation, including its title, the abstract, the main part, and
its conclusion. Some of the information stored in textual
form can be extracted automatically. This includes, e.g.,
the reasons for each of the citations within a publication,
and technical concepts that are being used or advanced.
From multiple documents, structural information such as
prevalent research topics and their popularity over time
can be extracted from the texts. As automatic text analysis
is an inherently hard task, it is natural to include human
users into the analysis loop to steer the analysis. While
some of the visualization approaches are directly designed
to support interactive exploration and analysis of a docu-
ment’s contents, others use text data to relate documents
and gauge their similarities to create a visualization of the
dataset. The approaches in this category vary according to
the types of text they use from the publications, including
titles, abstracts, and full texts, or any combination of the
three.

Citations: Citations are an essential part of research
papers and patents. They indicate a certain relatedness
between the citing and the cited document, such as a topic
similarity, an intellectual influence, a reuse, an extension,
or even a confutation. The analysis and visualization of
citations can support different kinds of tasks. First of all,
citations are understood as a measure of relevance; the mere
citation count as well as more complex indices (e.g., PageR-
ank [11], H-index [12]) can be used to assess scientific and
technological documents and evaluate scholarly contribu-
tions and inventions. Conversely, as a measure of similarity,
citations can be exploited to identify related works, cluster
them, and map the intellectual structure of research fields.
Moreover, as a measure of intellectual influence, citations
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Elem. lookup & comparison Elem. relation seeking Synoptic (Patterns) Synoptic (Temporal patterns)
Text 8 7 20 5 (6)
Citations 2 7 9 10
Authors 2 1 2 7
Metadata 2 5 8 2 (3)

a Approaches for data types: Text, Citations, Authors, and Metadata (supporting Elementary and Descriptive Synoptic tasks).

Aggregation Labelling Composition Multiple views Tight integration
Multiple/Connectional 11 (6) 4 (3) 3 (1) 12 (3) 5 (2)

b Approaches for data type: Multiple (supporting Connection Discovery tasks), by level of integration.

Table 1: Distribution of publications across the task by data type classification: a contains the classifications for the single
data categories, while b contains those for the category of approaches combining multiple data types. The numbers in
parentheses are the secondary classifications for a category.

can be used to track the dissemination of new concepts and
to identify knowledge flows. Finally, combining the three
aforementioned aspects, citations can be exploited to sup-
port information organization, management, and retrieval.
This category comprises methods that directly visualize
links between publications, and methods that exploit cita-
tion links to derive information about publications.

Authors: In the context of scholarly literature, an author
is generally considered to be a person who has made sub-
stantial intellectual contributions to a scientific publication,
in terms of both scholarship (conception, design, implemen-
tation, analysis, and interpretation of results) and author-
ship (writing, reviewing, revising the manuscript and ap-
proving its submission). In the patent domain, the concept
of authorship can be diversified into three different roles:
the inventors (who conceive and develop the invention), the
applicants (who filed the application for a new patent), and
the assignees (who hold the ownership of the patent). The
laws are different across countries and patent offices, but
inventors are generally natural persons, sometimes coincide
with applicants and, as such, can be considered analogous
to the authors of scientific publications, in the context of our
treatment. This category includes approaches for the analy-
sis of authors, their scientific output, and their collaboration.

Metadata: Metadata comprises data that is typically as-
sociated with scientific publications when they are pub-
lished, such as authors, titles, conference or journal, and year
of publication. These attributes are important because they
are generally used as an identifier for publications, for exam-
ple, in reference lists of papers, in libraries, or on-line search
interfaces. Further, metadata attributes often associated with
publications or patents are categorizations of their topics.
These include author-assigned keywords, as often found in
conference papers, and classification schemes such as the
IPC for patents, or the ACM classification for computer
science publications. In addition, we consider all attributes
assigned to documents through human labeled metadata.
This includes a vast range of data types, such as human
assigned topics, or semantic relations between entities in a
text. We only include such approaches in this category if the
labeling is done without the help of automatic techniques,
before or during the visual analysis process. Some of the
document attributes mentioned in this category, such as
title and authors, have already been described as part of
other categories. This is due to the fact that we treat them
differently depending on their role in an approach. If an

approach exploits a specific method for these attributes (e.g.,
text mining for titles, social network analysis for authors),
then it will appear in the corresponding category (text or,
respectively, authors). Conversely, if these attributes are
used as document identifiers or multivariate categorical
data, the approach will be part of the metadata category.
This category also includes approaches that allow document
searches by metadata, and ordering them according to their
metadata attributes to get an overview of a large collection.

Multiple: Some of the approaches in this survey com-
bine more than one of the data types mentioned so far.
They can be categorized into two types. The first type are
approaches that loosely couple data types, for example, by
providing multiple views on a document data set, each
backed by a different type of data. They can, e.g., comprise
a scatterplot view based on document text similarities, a
graph view of a citation network, and a co-author graph,
combining them by techniques such as brushing and linking
as part of a user-centric analysis loop. Such loosely coupled
techniques will appear multiple times in this survey, in all of
the data categories they pertain to. We tried to assign a main
category to each of these cases, discussing the approach
in-depth in the respective section. Contrary to this loose
coupling, approaches that are part of this category closely
couple data types. We have created an additional category
for them, as they do not treat the different data types in
isolation. Presenting such approaches across multiple cate-
gories would not accurately account for their often elaborate
techniques of combining these data types either visually, or
through data mining methods. Examples of approaches in
this categories include co-author or citation graphs enriched
with content information from the publications, and topical
trends that are visually linked to the communities cited
by the respective publications. In both cases, combining
multiple data types provides a fuller picture of a data set
and helps to understand certain findings and phenomena.

2.2 Analysis Tasks

The second dimension for classification we used for this
survey is the analysis task. We revised and discussed several
possible schemes, and the one that we finally used is derived
from the task framework by Andrienko and Andrienko [13].
We used this classification as sub-categories for each of the
sections that group approaches by data type. The rest of this
section lists and explains the task categories.
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Elementary Lookup and Comparison: Approaches in
this category are designed to support analyses of single
entities. These are, for example, identifying relevant entities
from a larger set, or collecting and accumulating informa-
tion about a certain entity. The entities can be of many
types, including, but not limited to, the above listed data
types; they include documents, topics, authors, conferences
and journals, and many more. Approaches in this category
are not limited to visualizations that only depict one single
entity at a time, but can also show more than one, enabling
comparison between them. The joint characteristic of the
approaches, however, is that they support analysis tasks
aiming at single data entities. For example, visual document
retrieval techniques often comprise a visualization of result
sets, while their analysis process is designed to compare
results and identify the most relevant documents to a user’s
search objective.

Elementary Relation Seeking: Another kind of analysis
goals are those focusing on relations between entities. The
approaches in this category support analysts with iden-
tifying entities that satisfy a given relation (e.g., finding
publications that cite some of the same literature), or identi-
fying relations between entities (e.g., identifying the content
similarity between two publications that have an overlap
in their citations). Relations supported by the approaches
in this category can be between entities of the same type,
or of different types. Examples of the former include the
analysis of author collaborations, while examples of the
latter include approaches to analyze the relation between
documents and the technical concepts they contain.

Synoptic tasks (Patterns): If the analysis is not focused
on single entities, but rather on all the elements of a
dataset and on the system of relations existing between
these elements as a whole, then the approach is part of this
category. The approaches therein support the identification
and comparison of patterns. An example for such patterns
are collaboration circles of scientists: Approaches that al-
low identification, and exploration (including central and
peripheral authors) of such circles are part of this category.
Science maps also fall into this category; they show scientific
disciplines by grouping publications according to citation
links. Depending on the data set used, this results in groups
of documents that represent entire disciplines of science and
show their patterns of interconnectedness through citations.

Temporal patterns: Among all the approaches support-
ing synoptic tasks, a number of papers in this survey em-
phasize approaches that concentrate on the temporal aspect
of a data set and facilitate the analysis of its temporal
patterns. Therefore, we differentiate approaches that sup-
port synoptic tasks involving temporal patterns from the
others, and assign them to a specific category. It includes,
for example, approaches supporting the analysis of topics
interacting with each other and changing over time, of cita-
tion trends, of authorship and co-authorship dynamics. The
visualization techniques in this category can be split into
two subgroups. Some of them map time to space, which can
be achieved by introducing a dedicated axis for the temporal
aspect of entities. The other type of visualizations map time
to time resulting in an animation that conveys the temporal
dynamics of a data set. Some approaches within the above
categories might also support analysis of temporal aspects

Figure 1: Number of approaches per publication year.

of the data. In such a case, if we did not identify insights
into temporal phenomena as its main analysis goal, we
discuss the approach primarily in another category and only
mention it briefly in this one for the sake of completeness.

The only data category that does not use the above-
mentioned task sub-categories is Multiple, which comprises
techniques and approaches combining two or more data
types, often including temporal aspects. As such, they are
aimed at supporting complex synoptic tasks. For this reason,
we do not classify them according to the task, but rather ac-
cording to the way the different data types, analytical meth-
ods, and visualization techniques are combined, ranging
from a simple composition to a seamless interactive visual
analytics integration. With reference to the task framework
by Andrienko and Andrienko [13], the elaborate approaches
in the Multiple category support the most complex synop-
tic tasks, namely connectional tasks (e.g. finding significant
connections between phenomena, such as cause-effect re-
lations or structural links). Conversely, the approaches in
the Synoptic tasks and Temporal patterns subcategories of
each data category support simpler synoptic tasks, namely
descriptive tasks.

3 TECHNIQUES

Overall, we surveyed 109 approaches for scientific docu-
ments and 21 for patents. These approaches were published
between 1991 and 2016 (see Figure 1). In this time period,
the ratio of techniques addressing scientific documents and
patents has been relatively stable. As for data types, the last
decade has seen more approaches focusing on text analysis
and visualization, while in the previous decade research
addressed more authors and citations. Techniques have
always combined different data types, but a tighter integra-
tion of interactive visualization and automated analysis has
emerged in the last decade, in correspondence with the de-
velopment of the visual analytics paradigm. In this section,
structured according to our categorization, we present and
discuss all of the surveyed approaches. All techniques and
trends can be browsed through an interactive online tool7.

3.1 Text Data
This section discusses approaches based on analyzing tex-
tual content of publications. Some of the following ap-
proaches integrate their visualization techniques with ad-
vanced natural language processing (NLP). These NLP ap-
proaches are used for data preprocessing or directly inte-
grated within the visualization pipeline as an integral part of
the sense-making loop. In the latter case, users are typically
enabled to steer the automatic analyses of text data in order
to adapt and exploit these techniques for their analysis

7. http://www.paperviz.org
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needs. We mention these NLP methods if they play an
important role in a visualization approach. However, due
to a lack of space and because we focus on visualization, we
will not explain them in detail. For this, we refer the readers
to introductory texts on NLP [14]–[16], and to the original
papers listed in this survey.

3.1.1 Elementary Lookup and Comparison
This category mainly contains approaches for document
retrieval, an area of research that deals with finding, an-
alyzing, and comparing texts. Users typically provide a
query, often a list of search terms, and the system lists
the best matching documents, often in order of their rel-
evance. Retrieval techniques used in the subsequent ap-
proaches are the vector space model, and Boolean retrieval.
While the former statistically analyzes word occurrences
to quantify document similarity and relevance to a query,
Boolean retrieval just uses information about the presence
or absence of search terms within a document. Multiple
visual techniques have been proposed to improve the basic
retrieval schemes through user interaction, or by giving user
additional information besides the bare relevance order.

TileBars [21] is a visualization for Boolean search results
that is based on a text tiling technique to split texts into
coherent thematic sections. It depicts a visual summary
of the distribution of search terms across the sections of
a document as a rectangular strip. Through the length of
the strip users can compare relative document lengths and
differing term distributions in the result set. Nowell et
al. [22] present a highly flexible way of organizing search
results. Users can organize and explore result sets in the cells
of a matrix view whose axes can be set to any aspect of the
documents, e.g. author and year of publication. Additional
metadata attributes can be included by mapping them to
shape, pictograms, label, or color of the respective document
icon in its matrix cell. Koch et al. [23] introduce a visual
analytics approach for query extension and refinement of
Boolean queries. It supports the exploration of result sets
through multiple linked views of the distribution of dif-
ferent metadata aspects. The initial query can be extended
visually by interacting with these views.

Other approaches allow users to define multiple queries
and visualize documents based on their relevance to them.
Olsen et al. [24] propose the VIBE system that positions
documents on a 2D plane relative to multiple queries. These
queries can be defined and positioned freely by users,
which results in a highly interactive system for finding and
exploring document sets. Scalability is limited, however,
as the positions of the documents become ambiguous for
four or more queries. GUIDO [25] is a similar method that,
other than VIBE, does not support free query placement. It
optimizes query position and maps documents according to
their absolute distances to queries. Although this theoreti-
cally introduces less information loss, the resulting complex
geometric forms are harder to interpret. Sparkler [17] uses a
different spatialization scheme to facilitate the comparison
of multiple queries. It distributes result sets on a circle
split into one segment per query. Documents can occur
in multiple sets, and their glyphs are colored according
to the query, as depicted in Figure 2a. Distance from the
center encodes the relevance to a query. To avoid overlaps,

documents are spread out radially within the boundaries of
the segment. This gives users an overview of the relevance
distributions for each query and helps to compare results,
e.g., for patent prior art search.

Costagliola [26] presents an approach that also spatial-
izes search results. A user submits a query and the results
are laid out according to their textual similarities on a
circular area. This area is further extended into a 3D tube
by adding a third dimension for the publication time of the
articles. The interface supports the standard 3D interactions
to counteract occlusion. References between the articles in
the set can be displayed as edges on demand.

An approach that is designed for providing an overview
of a dataset, rather than retrieving documents, is Document
Cards [27]. Each publication is represented by a card that
contains descriptive terms as a brief summary of its content
and representative images. In addition, the cards provide
direct access to individual pages of the documents through
interaction.

3.1.2 Elementary Relation Seeking
Chuang et al. [18] present an approach to find topical
relations between different university departments based on
their doctoral dissertations. The dissertations are reduced
in their dimensionality by a method that converts word
vectors for documents into lower-dimensional vectors of
topics (topic modeling). These topics are represented by
weighted lists of words that are extracted from the texts
in the dataset. The topic vectors are then mapped to 2D
using Principal Component Analysis (PCA). It projects the
document vectors onto the two directions in their original
space along which they exhibit the highest variance. Such
a projection gives an overview of document similarities,
but also distorts the original distances. In order to gauge
the true distances, users can select a single department and
lay out the others in a circular fashion around it, showing
undistorted distances. An example of this is depicted in
Figure 2b. A method to find and relate thematic clusters
in a citation network is presented by Nakazawa et al. [28].
They use topic modeling to group documents thematically
and then depict these clusters as nodes of a graph.

Görg et al. [29] help users find relations between bio-
medical publications based on the biological entities men-
tioned in their abstracts and index terms, such as genes.
The approach helps users find new interesting publications,
and enables them to correlate and combine findings about
interconnections between entities to generate new insights.
A more general version of this approach [30] allows ana-
lyzing publications from any domain. It combines various
text analysis methods including clustering of documents
by topic and named-entity extraction and correlation with
metadata attributes of the documents. Riehmann et al.’s [31]
approach is also designed to relate and compare text from
different documents to explore cases of suspected plagia-
rism. The visualization is based on a bipartite graph, linking
text passages in the suspicious documents with possible
sources.

Rexplore [32] is a web-based system for search and
faceted browsing of publications that features a node-link
graph connecting similar authors. Similarity is quantified
by comparing the trajectories of authors through research
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Figure 2: Examples for visualization of text data, by task: a elementary lookup and comparison (in [17]); b elementary
relation-seeking (in [18]); c patterns (Utopian, [19]); d temporal patterns (HierarchicalTopics, [20]).

topics extracted automatically from the document contents
during a pre-processing step. PaperLens [33] groups papers
by research topics. The topics are automatically extracted
from the text and then depicted as barcharts per year. In
addition, it depicts rankings of the ten most often cited au-
thors per year, and allows users to find connections between
authors in a co-author graph.

3.1.3 Synoptic Tasks (Patterns)

In addition to supporting relation analysis, Görg et al.’s [30]
approach presented in the previous section also contains a
visualization that depicts document similarity patterns on
a 2D plane. This provides users with information about
similar group patterns of documents in a data set. The Vx-
Insight [34] system is specifically modeled to visualize such
automatic groupings of documents. It bases them on one of
several notions of similarity selected by the user, including
textual similarity and citation links between papers. The
resulting 3D visualizations follow a map metaphor repre-
senting dense areas as hills and areas of lower density as
valleys. Users can zoom and rotate the resulting terrain, and
the valleys are labeled with representative terms to assist
navigation. Analysts can thus overview a data set and see
its main topics and their distribution patterns. In-Spire [35]
also enables document set spatialization. It provides two
different visualizations, the GalaxyView and the ThemeView.
The former is a scatterplot of documents in 2D, while the
latter uses a 3D metaphor with mountains for dense and
valleys for less dense areas.

The GistIcons [36] approach produces a circular his-
togram of terms for each document. To make the resulting,
individual shapes comparable, the terms are grouped by
concepts. Based on the visual similarity of the shapes, users
can identify topics and groups of similar documents. Wu
et al. [37] achieve a similar effect using traditional word
clouds, presenting a new algorithm to optimize them. The
Termite system [38] is designed to give insight into au-

tomatic topic modeling results. It consists of a term-topic
matrix that includes the subset of most distinguishing terms
between the topics. The relevance of a term for each topic
is depicted by circles of varying size. This provides users
with an overview of the topics in a document set and
their meaning. Chuang et al. [39] use this technique for the
exploration of topics in a set of PhD dissertations. They
combine it with a citation graph along a time line that
visualizes the influence from a cited to a citing paper as
topic flows. The documents, depicted as nodes of the graph,
are sized according to their overall influence on others. This
shows historic developments over time and helps to identify
highly influential papers.

ParallelTopics [40] is another approach designed to an-
alyze and explore topic modeling results. It includes mul-
tiple views, including word clouds for each topic, and a
streamgraph to show the temporal dynamics. In addition,
a scatterplot gives information about the number of topics
each document contains, and a parallel coordinates view
gives a detailed account of the topic distribution for selected
documents. Jiang and Zhang [41] also use a topic scatter plot
to depict topic similarity. They combine it with a Sankey
diagram that shows topic evolution in a dataset over time.
Gretarsson et al. [42] present a web-based topic exploration
approach that shows topic modeling results as node link
diagrams and lets users explore their connection to pub-
lications and university departments. The iVisClustering
technique [43] uses topic modeling that can be steered by
users to visually classify documents based on its results.
Österling et al. [44] combine topic modeling with density
estimation to extract cluster structure from a document
dataset. Their visualization is a 3D spatialization technique
that represents document clusters as hills or islands on a
plane, depending on user preference. The authors show how
their technique can be applied to a patent set spanning eight
different IPC categories. Oelke et al. [45] focus on document
sets of up to three classes. These classes are depicted by
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splitting up a rectangular area into up to three subareas.
Circular document coins that contain word clouds of topics
extracted from the underlying documents are placed within
or at the border of areas, specifying the affinity of a topic
to one or multiple classes. The authors demonstrate their
technique by comparing the topics of papers from InfoVis,
SciVis, and Siggraph.

Choo et al. [19] propose UTOPIAN, a system that bases
a 2D mapping of documents on topic extraction results.
Through this 2D scatter plot, on which clusters are labeled
with keywords, users can interact with the topic modeling
algorithm. Possible interactions comprise topic refinement
by modifying the weight of keywords in a topic, merging
of topics that are similar, splitting of topics, and creation
of topics based on user selected documents or keywords.
The authors show how their approach can be applied to
a set of publications from InfoVis and VAST. An example
mapping with this dataset is depicted in Figure 2c. A
different approach to grouping documents into clusters is
presented by Kohonen et al. [46]. They create a 2D map of
a large number (about 6 million) of patent documents. The
approach features a search interface to highlight documents
on the map by specifying keywords.

Maps are a popular visualization metaphor for scien-
tific disciplines or publications. Many of the mapping ap-
proaches are based on either citation or co-author data,
but there are examples that create their map based on
textual data. Fried and Kobourov [47] create a map of
computer science publications based on titles from the DBLP
database8. Their algorithm extracts keywords, and links
them based on word co-occurrences. Users can activate a
heatmap that highlights certain areas of the map. Thus,
profiles of researchers, research institutions, or conferences
can be depicted relative to the entire map. Skupin [48]
creates a map based on contents of conference abstracts.
The resulting groups are clustered a second time into a
hierarchy from which maps of various granularity can be
created. Skupin [49] presents his entire pipeline into which
he plugs multiple other clustering methods, discussing and
evaluating the resulting maps.

3.1.4 Temporal Patterns
Depicting temporal developments and dependencies is part
of some of the above approaches in the entities [26], rela-
tions [32], and patterns [33], [34], [39], [40] category. Except
Davidson et al. [34], who produce visualizations of mul-
tiple time slices, all other approaches map time to space
by introducing an additional time axis in their respective
visualizations.

In Mane and Börner’s [50] approach, temporal dynamics
play a central role. They extract important terms from
titles and keywords of biological articles and plot their
occurrences over time. This allows the detection of bursts
caused by sudden interest in a particular theme. Term co-
occurrences can also be depicted as a graph, encoding the
temporal dimension by the color of the nodes.

Creating and visualizing a hierarchy of topics is explored
by Dou et al. [20]. They create the topic hierarchy through a

8. http://dblp.uni-trier.de
(All URLs in this survey were accessible on September 10, 2016)

combination of topic modeling and a hierarchical clustering
algorithm. The resulting tree of topics is depicted in a node-
link fashion and can be modified and adapted according
to the user’s analysis goal. Topics associated with each
node can be explored in a streamgraph view that depicts
their development over time, as can be seen in Figure 2d.
Streamgraphs [51] are a popular visualization technique for
time-dependent data that maps time to a spatial dimension.
Ahmed et al. [52] use a 3D approach similar to streamgraphs
to visualize clustering results on a data set of publications
(InfoVIS 2004 dataset). Thematic clusters are depicted over
time as worm-like 3D structures of varying thickness. Cita-
tions between papers in different clusters are depicted by
edges between time points of the streams. To analyze topics
in patents, Ankam et al. [53] also use topic modeling in com-
bination with a streamgraph visualization. Their approach
includes a radar chart that provides information about the
distribution of topics across IPC classes.

3.2 Citations
In order to support diverse analytical tasks, documents and
citations between them can be modeled as different kinds
of bibliographic networks [59]. In the simplest case of a
direct citation network, vertices represent documents and
edges represent citations between them. Several types of
indirect relations can be derived from the direct citation.
Bibliographic coupling, for example, is defined as the rela-
tion between two documents that cite one or more identical
documents. Co-citation is defined as the relation between
two papers that are cited by at least one common document.
Longitudinal coupling occurs between two papers if there is
a path of citations connecting them in two or more steps.

3.2.1 Elementary Lookup and Comparison
A well-known visualization, based on an organic metaphor,
is proposed by Mackinlay et al. [60]. Their search and
retrieval system depicts result sets for user queries as a
pyramid of bibliographic entries. A single document can
be selected, and its citations are depicted as a “butterfly”
that consists of two “wings” that list their incoming and
outgoing citations. Users can navigate these citations to find
more potentially relevant publications.

CircleView [54] is a visualization technique showing a fo-
cus paper and two levels of its citation network (Figure 3a).
The visual representation is based on a node-link diagram
with a radial layout, the focus paper being in the center.
Visual variables (e.g., color, node size, edge thickness) are
used to encode bibliometric measures such as the number
of outgoing references and incoming citations, while other
metadata (publisher, pages) are shown on-demand by a tool
tip. By clicking on an adjacent node, the user can switch the
focus paper and navigate the citation network step by step.

3.2.2 Elementary Relation Seeking
A first attempt to provide an overview of a direct citation
network was Garfield’s historiograph [61], a node-link vi-
sualization whose layout is arranged along the time axis. It
exploits the fact that citations links are directed backwards
in time (i.e. recent papers only cite older papers). Besides
this feature, the visualization does not use any other layout
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Figure 3: Examples for visualization of citation data, by task: a elementary lookup and comparison (CircleView [54], [55]);
b elementary relation seeking (CiteNetExplorer [56]); c patterns (VxInsight [57]); d temporal patterns (in [58]).

optimization and does not scale well with the number of
papers. The overview is thus limited to the most relevant
papers only, by filtering out the papers whose citation count
is below a certain threshold. CitNetExplorer [56] features a
re-implementation of historiographs, tailored for visualiza-
tion of longitudinal coupling links (Figure 3b).

While a node-link diagram is the most common visu-
alization for direct citations, other network visualization
techniques have been applied to this kind of data. Henry
et al. [62], for example, aggregate papers by conference,
and show inter- and intra-conference citations by a matrix-
based visualization. Aris et al. [63] group papers by research
fronts, i.e. areas of significant activity in a certain time
period. Research fronts are then visualized by multiple
scatter plots (year by citation count), with inter- and intra-
front citations draw as overlaid lines. CiteGraph [64] also
uses scatter plots to visualize citations in a bibliographic
collection. One axis is always devoted to citation statistics,
while the other axis and additional visual variables encode
other bibliographic data.

Small [65] focuses on co-citation as a similarity measure
to draw an early map of science. The huge data set is re-
duced by sampling, and then it is hierarchically clustered by
the co-citation count up to five levels. Finally, the layout for
each cluster in the hierarchy is computed by triangulation,
a fast algorithm for multi-dimensional scaling supporting
local optimization. Different other approaches have been
proposed to enhance a similar science map; for example,
filtering the data set by a citation count threshold and
applying a force-directed layout [66].

3.2.3 Synoptic Tasks (Patterns)
The adoption of adequate methods for decreasing the num-
ber of data items and computing a good layout is a common
problem of science maps. These maps aim to provide a
meaningful overview, keep the overall structure, and sup-
port the identification of patterns.

As for direct citations, Delest et al. [67] observe that, since
citation links are only directed backwards in time, there are
no cycles, i.e. the citation topology is a direct acyclic graph
(DAG). They introduce a metric that takes into account the
global branching structure of the DAG, and exploit it to
optimize the coloring, the label drawing, and the rendering
order. Moreover they use this metric to cluster the DAG, by
aggregating nodes into super-nodes. A more sophisticated
approach to highlight the structures of the science map and
visualize information flows between disciplines is proposed
by Rosvall et al. [68]. They consider a network of 6 mil-

lion direct citations aggregated at the level of 6 thousand
journals, and then apply a random walk algorithm which
identifies the fields and also highlights information flows
between them. The resulting node-link visualization pro-
vides details on specific disciplines and sub-fields, as well as
general trends (e.g., information flowing from basic sciences
to applied sciences). The VEGAS system [69] demonstrates
an influence graph summarization for citation networks: a
matrix-decomposition algorithm clusters nodes according to
topological similarity and reachability, and thus it highlights
flow-based citation patterns. The VxInsight system [57] for
patent visualization exploits a linear combination of citation
and co-citation counts as a similarity measure, and applies a
force-directed algorithm to draw a 3D landscape of a patent
data set (Figure 3c). Users can then define searches on the
whole data set and the results are depicted as an overlay of
points on the map.

As for co-citation networks, besides the basic reduc-
tion method consisting in filtering nodes by the overall
number of citations, one can take into account the num-
ber of times two papers have been cited together as their
link weight and then apply more advanced algorithms
for weighted networks, such as minimum spanning tree
(MST) and pathfinder networks (PFNET) [70]. An MST of
a network is a subgraph that is a tree, connects all vertices,
and has minimum weight. A PFNET can be understood
as a generalization of MST; it is a link reduction method
which essentially filters out links that are not on shortest
paths. A comparative application of MSTs and PFNETs to
co-citation networks shows that MSTs are computationally
more efficient and tend to form clusters that can be in-
tuitively perceived as hubs and authorities, but PFNETs
are actually able to better preserve structural patterns [70].
Several similarity or proximity metrics have been proposed
as alternatives to the co-citation count for feeding the link
reduction algorithms. Noel et al. [71], for example, consider
the citation correlation (more properly, the Pearson product-
moment correlation coefficient) and compare it with the
co-citation count as similarity metrics for computing an
MST-based visualization of influence networks. Their results
show that, despite the greater computational complexity of
the citation correlation, the citation count better supports the
identification of patterns of influential documents. Zhang et
al. [72] describe another approach for finding patterns in a
co-citation network exploiting a Frequency Pattern (FP) tree,
a compact prefix data structure for storing events that occur
frequently together. They combine an FP tree and a word
tree visualization to represent a paper-reference network
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and its co-citation counts. A comprehensive approach to
visualize bibliographic networks is proposed by Brandes et
al. [73]. Their similarity measure is based on a combination
of co-citation and bibliographic coupling, and it is used
for computing a modified Laplacian layout. The results are
visualized as a landscape visualization, where the surface
elevation represents the scholarly relevance, and papers
are visualized as houses on the landscape. Van Eck and
Waltman [74] present a system to view different types of
co-citation networks.

3.2.4 Temporal Patterns
Citations are an inherently temporal phenomenon (newer
papers cite older papers), thus many techniques discussed
in the previous sections deal to a certain extent with tem-
poral aspects. In the section we present techniques which
focus on time as the prevalent part of the analysis and
visualization process. As for the analysis, Chen [75] observes
that when sampling a large data set that spans over decades,
a static threshold for citation or co-citation counts can lead to
unbalanced results, because the average number of citations
and references can change over time. Hence, he proposes
a progressive approach: before applying link reduction al-
gorithms such as MST or PFNET, the data set is partitioned
into time slices, then any time slice is filtered by applying an
adaptive threshold and pruned by MST or PFNET. Finally
the slices are merged back into a single data set for the
layout computation. The resulting map is static, in the sense
that the data has been flattened over time, but it has also
been temporally normalized.

Other approaches take temporal aspects explicitly into
account to design the visual encoding, for example, by
including a time line. Herr et al. [76] present a visualiza-
tion of scientific articles in the domain of physics. They
do not reduce the large data set by filtering, but rather
aggregate the documents by journals and journal volumes.
The resulting clusters are visualized in a box layout, with
the PACS (Physics and Astronomy Classification Scheme)
classification along the vertical axis and time along the hor-
izontal axis. Citation flows are overlaid on top of the boxes,
by using an edge bundling algorithm, to show citations
patterns over time. Citeology [77] builds upon the already
mentioned historiograms [61] and computes the layout of
a citation network along a time axis. It does not reduce
the data set by filtering or aggregation, but rather exploits
several interaction techniques to cope with the large size
and to enable effective exploration.

Another possibility to visualize time is animation.
GraphaEL [78] is an animated node-link visualization for
dynamic citation networks; it features an evolving graph
layout that enables the identification of changes while
preserving the user’s mental map. The rising landscape
technique [79] animates two visual variables to show the
evolution of a co-citation pathfinder network rendered as a
3D landscape. The transparency of nodes and links encodes
the publication status (pre-print, published, and cited/co-
cited, respectively), while the third dimension is used to
visualize the citation count of each paper, as a colored bar
rising from each node.

Other techniques deal with changes over time by using
small multiples. The seminal work by Small [80], for ex-

ample, visualizes the evolution of co-citation networks by
slicing the data set and juxtaposing several contour maps
(obtained by a combination of a containment technique and
a multi-dimensional scaling algorithm). Shibata et al. [81]
use a small-multiples approach to visualize the evolution of
a direct citation network sliced, clustered, and then drawn
by a force-directed algorithm for either a stable or a dynamic
layout. Rosvall and Bergstrom [58] propose a sophisticated
approach to identify structural changes in a citation network
by considering temporal aspects not only in the sampling
or the layout phase, but also in the clustering phase. They
address the problem of tracking clusters over time which
includes identifying split and merged clusters. To solve this
problem, they apply bootstrap sampling and simulated an-
nealing algorithms and compute the significance of clusters
across splitting or merging. Then, the evolution of citation
flows is visualized by an alluvial diagram (Figure 3d).

Temporal aspects can be also addressed by proper in-
teractions. Abello et al. [82] observe that providing both
overview and detail on a dynamic citation network is a
challenge, and small changes can be drowned out by larger
ones. Thus, they provide a degree-of-interest specification
by which the user can identify salient changes at the desired
scale and importance. The approach by Chen et al. [83] aims
at delineating the citation impact of scientific publications.
It measures the impact by an adapted version of the H
index [12], while a decision tree algorithm identifies emerg-
ing topics. Users can review extracted topics and explore
keyword bursts through a CiteSpace [84] visualization.

3.3 Authors
In many analysis and visualization approaches, authors are
not considered mere metadata, but rather separate enti-
ties linked to the scientific documents or, respectively, the
patents.

3.3.1 Elementary Lookup and Comparison
A common approach is to model authors and documents as
nodes of a bipartite graph, connected by authorship links.
Thus, the visualization can exploit specific graph drawing
techniques, such as anchored maps [89]. An anchored map
is a node-link diagram for bipartite graphs where the nodes
of one set are fixed as anchors with a radial layout and the
nodes of the other set are arranged with a force-directed
layout. In this approach authors and papers can be alterna-
tively displayed as anchors.

NetLens [85] is an alternative approach that supports
the iterative exploration of content-actor network data. It
also uses a bipartite graph as a data model, but it is not
based on a node-link visualization. Conversely, it features
coordinated multiple views based on bar charts, showing
the distribution of papers and authors over all the available
attributes, for example topic, country, or year (Figure 4a).
The system supports iterative filtering, with a dual-mode
data flow that allows switching the focus from papers to
authors and back.

3.3.2 Elementary Relation Seeking
A relevant relation between authors is co-authorship, mod-
eling the collaboration among researchers or inventors.
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Figure 4: Examples for visualization of author data, by task: a elementary lookup and comparison (NetLens [85]); b
elementary relation seeking (in [86]); c patterns (NodeTrix [87]); d temporal patterns (in [88]).

Chinchilla-Rodrı́guez et al. [86] propose an approach to
visualize the scientific collaboration at a given level of ag-
gregation, such as institutional, regional, or national. Their
visualization features an egocentric node-link diagram with
a radial layout (Figure 4b): the central node represents
a given country, other nodes represent countries whose
researchers collaborate with the researchers of the given
country, and links represent collaboration ties. The diagram
is enriched with two measures: collaboration rate (node size)
and impact factor (distance from center).

3.3.3 Synoptic Tasks (Patterns)
NodeTrix [87] can visualize a co-authorship network with
a hybrid approach: intra-community relationships are vi-
sualized as adjacency matrices while inter-community re-
lationships are visualized by the means of node-link di-
agrams (Figure 4c). It enables the visual identification of
three co-authorship patterns: the cross pattern (a research
group in which a central researcher collaborates with all the
others), the block pattern (all researchers collaborate with
each other), and the intermediate pattern (many researchers
collaborate but there is a prominently central researcher).

Ichise et al. [90] propose an approach to filter out unim-
portant links and visualize only tight communities in a
co-authorship network. The approach is based on three
different community mining algorithms whose parameters
can be interactively adjusted by users.

3.3.4 Temporal Patterns
While the approaches described in the previous sections are
limited to the visual analysis of authors in a static fashion,
there are also techniques that focus on the dynamics, i.e.,
the change of productivity and collaboration patterns over
time. Kutz et al. [91] focus on the trends of both the produc-
tivity of single inventors and the diversity of their patent
portfolios. The approach features tree maps arranged along
a time line. Each tree map represents the class distribution
of patents granted to an inventor in one year. Keim et
al. [92] visualize the dynamics of collaboration by means
of two techniques: PaperFinder and InterRing. PaperFinder
features a 2D layout, with the authors along the y axis
and the time line along the x axis. The papers, depending
on their keywords, are assigned to categories encoded by
colors. Thus, the visualization shows the development of
topic and authors over time. InterRing is a radial, space-
filling visualization technique. It encodes years into circular

sectors and arranges co-authors along the radial axis, still
using colors for categories. Huang et al. [88] also propose
the use of InterRings to visualize the collaborations of indi-
vidual researchers over time, but they map time to the radial
axis and introduce an algorithm to compute the weight
of each co-author’s contribution, visually mapped to the
angle (Figure 4d). Shi et al. [93] apply a 1.5D visualization
technique to egocentric co-authorship networks. It features
a combination of two layout algorithms (force-directed and
radial), complemented by trend glyphs.

Animation can be also useful to visualize the dynamics
of a co-authorship network. GraphDiaries [94], for example,
provides a node-link visualization technique that exploits
staged animated transitions and highlighting to support the
identification and tracking of changes.

The evolution of co-authorship relations over time can
be modeled and visualized as a temporal multi-dimensional
network. This is demonstrated by the comprehensive ap-
plication examples of the Orion system [95]. It features
several visualizations, such as node-link diagrams and ad-
jacency matrices. Moreover, it computes authors’ centrality
measures, both static (visually encoded into scatter-plots)
and dynamic ones (encoded into line charts). Kurosawa
and Takama [96] propose a visualization system to analyze
collaboration between researchers. The system features the
visualization of a co-authorship network as a node-link
diagram. Each node represents a researcher and is drawn
as a radial glyph, encoding the research topics and the
temporal trend of the researcher’s publications.

3.4 Metadata
This section discusses approaches that are primarily based
on metadata of documents.

3.4.1 Elementary Lookup and Comparison
Giereth et al. [101] visualize annotations in patents by
distorting the text and enlarging annotated lines. The ap-
proach supports semantic annotations that are visualized
by node-link diagrams as text overlay. SurVis [97] is a
web-based method designed to support survey authors.
Figure 5a shows a screenshot of the system. It is based on
document metadata including keywords assigned by users,
and helps to structure and explore a set of publications. This
is achieved by allowing users to create multiple selectors
that help to structure the set. In addition, clustering of
publications based on metadata is included in the approach.
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Figure 5: Examples for visualization of meta data, by task: a elementary lookup and comparison (SurVis [97]); b elementary
relation seeking (RadialSets [98]); c patterns (in [99]); d temporal patterns (BubbleSets [100]).

3.4.2 Elementary Relation Seeking

We introduced Görg et al.’s [30] approach in the text
category, but it also supports relating documents through
metadata such as year, author, and keywords. We thus
mention it here again. Hascoët and Dragicevic [102] present
a technique for the interactive visualization of multi-layered
graphs. They apply it to a set of InfoVis publications from
1989-1993, defining each year as a separate layer indicated
by a distinctive color. In addition, keyword bursts are ex-
tracted and linked to the respective papers. This helps to
explore the occurrence of popular topics and their dynamics
over the years.

RadialSets [98] is an approach for visualizing the overlap
between sets of entities. It is based on a radial layout
of different sets grouped by data attributes. The overlaps
between pairs or amongst larger tuples of sets are depicted
as arcs between them. An example of this is shown in Fig-
ure 5b for pairwise overlaps. The authors demonstrate their
technique with a set of 50, 000 ACM publications grouped
by their ACM classifications. For each set, the distribution of
publication time is depicted as bar charts. In Figure 5b, the
size of the overlaps is encoded by the thickness of the arcs,
while the color encodes disproportionality, a measure for the
statistical significance of the size of an overlap.

Guo et al. [103] propose a visualization for the connec-
tivity of rat brain areas based on data extracted manually
from relevant publications. It depicts a radial ordering of
coarse brain areas as arcs of a circle with edges between
them showing connections.

Nesbitt [104] visualizes relations using the metro map
metaphor. Visualizations are constructed by interpreting
entities as stations, and relations between them as rail tracks.
Relation types are encoded through different track colors.
The author presents an example that shows the interconnec-
tion of ideas and themes within a PhD thesis.

3.4.3 Synoptic Tasks (Patterns)

The INVISQUE system [105] supports interactive visual
analysis of document search results. It is designed for users
that have only a vague idea of what they are looking for and
supports them in exploring sets of potentially relevant enti-
ties to refine their search objectives. Documents are depicted
as cards that contain metadata and other information about
it. The approach facilitates interactive exploration of a 2D
document projection. Documents similar in certain aspects,
e.g., in content or metadata can be highlighted.

PivotSlice [99] is based on a 2D matrix visualization.
It depicts the distribution patterns of data attributes based
on Boolean queries constructed by users. Users can explore
each matrix cell and view links between documents (e.g.,
citation links). The authors demonstrate their system using
the InfoVis 2004 contest dataset, as depicted in Figure 5c.

An approach to visualize set-valued attributes of patent
documents is presented by Wittenburg et al. [106]. They
are depicted as stacked bar charts that show the relative
frequency of a specific value, and co-occurrences with other
attributes. Wittenburg and Pekhteryev [107] present a com-
parable technique designed for hierarchical attributes.

Another matrix-based approach for document search
results is presented by Shneiderman et al. [108]. The axes of
the matrix can be freely configured, and the approach allows
highlighting cells based on specific attributes. In addition,
hierarchical attributes are supported, whose level can be
changed interactively.

Sallaberry et al. [109] present a system to explore con-
tents of publications. Users can analyze documents relevant
to specific, user provided, sequential biological patterns. The
publications are automatically retrieved and then organized
radially around the center of the display. Distance from the
center increases with decreasing relevance of the publica-
tion.

Other approaches use graph or graph-based visualiza-
tions to show patterns. For the IPC class usage frequencies,
Giereth et al. [110] use a treemap. On top of each cell that
represents an IPC class, a 3D bar chart shows its usage
frequency. In addition, co-classification relations can be dis-
played using 3D edges and edge bundling on the depicted
IPC landscape.

Börner et al. [111] use a similar technique in 2D that
links citations in patents directly to the taxonomy hierarchy.
The approach also includes a notion of document similarity
based on the taxonomy.

Perer et al.’s approach [112] is designed to mine inter-
person relationships in organizations. Analyses are based on
data available within the organization, such as co-authored
documents or other collaborative projects. Although it is
not designed for scientific literature, we decided to include
it here, because it is closely related and could be easily
adapted to model and analyze scientific collaboration. The
approach automatically creates models of personal rela-
tionships visualized as an interactive graph that users can
browse and filter.
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3.4.4 Temporal Patterns
The matrix approaches for search results whose axis can
be freely configured [99], [108], also allow temporal explo-
ration of document sets. Users can configure the matrix to
map a temporal aspect to an axis, e.g., year of publication
for the documents. In addition, the technique by Hascoët
and Dragicevic [102] presented above encodes publications
years as layers of a graph allowing for temporal exploration
of documents and their correspondence to keyword bursts.
Bubble Sets [100] is a technique to show mutual relation-
ships among a set of data objects. It is a set visualization
that groups instances into one or multiple sets by including
them in a colored bubble. The objects can be grouped
or organized according to different aspects, e.g., along a
timeline. Figure 5d shows the development of different
topics over time, providing direct references and icons for
each of the publications. Additional information, such as the
publication abstracts, is accessible on demand. An approach
to track the community development in a patent domain
over time is presented by Chen et al. [113]. The communities
are extracted by creating time slices of a patent dataset,
and clustering citation graphs within each of the time steps.
These clusters are linked across multiple time slices based
on the overlap between them. The authors combine this
technique with a static visualization approach for the com-
munities, depicting them as circles on a scatterplot. Patent
numbers are indicated by the size of the circles which are
positioned according to their last year and their first year
of appearance. The temporal dimension is mapped to the
horizontal axis of the scatterplot.

3.5 Multiple
In this section, we discuss systems, techniques, and ap-
proaches that combine several data types from the previ-
ous sections. These comprise text, metadata, authors, and
citations, spanning from simple cases of juxtaposition or
sequential application to tighter levels of integration, sup-
porting connectional synoptic tasks.

3.5.1 Aggregation by metadata
A common way to combine two data types is the use of
one data type to perform an aggregation into groups, and
then the application of a specific visual analytics technique
for the other one. In the previous section we have pre-
sented examples of authors aggregated by their affiliation
or geographic location [86], and citations aggregated by
journals or conferences [62], [68], [76]. Common set visu-
alization techniques have been applied to metadata, such
as the already mentioned RadialSets [98], or LineSets [118].
The latter technique visualizes a co-authorship network as
a node-link diagram, and each group of authors work-
ing on the same topic as an overlaid continuous line. A
well-known specific example of aggregation by metadata
is the author co-citation analysis (ACA) [119]: co-citations
between documents are aggregated by authors, and the
resulting network is then processed by usual techniques for
citation analysis and network visualization, with authors
as nodes instead of documents. White and McCain [119]
compute several metrics and show them as a bar plot;
they also draw a 2D spatialization of the so-called authors’

landscape. Lin et al. [120] show how SOMs and PFNETs can
be applied to these author co-citation networks. Chen and
Paul [114] obtain a 3D visualization by applying PFNETs
to both author co-citations and author citations (Figure 6a).
Li et al. [121] present a node-link diagram of citations
between patents with three different types of aggregation
(by institution, country, or technology field), to analyze
patterns of knowledge transfer. Windhager et al. [122] model
a patent data set as a temporal multivariate network and
propose aggregation and projection methods that enable
the visual analysis of rising inventors and emerging tech-
nologies. Nagel et al. [123] demonstrate an interactive table
top visualization of a co-authorship network as a node-link
diagram, aggregated by authors’ affiliations and spatialized
by their geographical positions. Rosvall and Bergstrom [124]
present a method based on random walks to automatically
organize a graph into multiple levels; they apply it to
citations aggregated by journal, obtaining a map of science
with a multi-level hierarchy. Honkela et al. [125] draw a
SOM of documents and not only show papers aggregated
by authors and affiliations, but also complement these bibli-
ographic data by visualizing additional data such as funded
research projects. Jusufi et al. [126] use k-means clustering
to aggregate document into topic nodes and then depict
co-authorship relations as edges between them. Heimerl
et al. [117] visualize citation trends along a time line; the
standard citation count is complemented with the citation
entropy, a measure of diversity computed from publication
venues extracted from metadata.

3.5.2 Labels extracted from text and metadata
Another common way to combine data types is the use
of metadata for enriching existing visualizations, in par-
ticular for labeling clusters obtained by applying specific
techniques to the main data type (e.g., for labeling pa-
per co-citation clusters or keyword co-occurrence clusters).
Representative keywords can be extracted from metadata
manually (like in [127] and [128]), or automatically. Usually
keywords are extracted by computing the metadata profile
of a cluster and taking the most frequent words. In [65], for
example, labels are based on a frequency analysis of article
titles and journal category names. Similarly, Van Ham [129]
introduces a clustering and layout algorithm for citation and
co-authorship graphs, and uses keywords extracted from
metadata profiles to label the clusters. Sharara et al. [115]
present a system to compare uncertain graphs, featuring
multiple views (tabular, matrix-based, and node-link, Fig-
ure 6b). In particular, they show an example where the
uncertain items to be compared are the labels obtained by
two different algorithms. One is based on the text analysis
of single documents, and the other one is based on the text
analysis of neighboring documents in the citation graph. In
CiteScape II [84], clusters of co-cited papers are also labeled
by extracting most frequent terms from word profiles of the
titles of citing papers. Moreover, temporal bursts of citations
are taken into consideration to properly label emerging
topics.

A Document Card [27] can be also understood as a
combination of labels summarizing the main text (see also
Section 3.1), and image miniatures extracted from the docu-
ment and re-packed into a single-page layout.
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a b c

d e

Figure 6: Examples for visualization of multiple data: a aggregation (in [114]); b labeling (in [115]); c visual composition
(BiblioViz [116]); d multiple views (PatViz [23]); e tight integration (CiteRivers [117]).

3.5.3 Visual composition

Visual composition enables the display of different data
types within a single visualization. The analysis system for
scientific literature by Shen et al. [116] features a 2.5D visual-
ization (Figure 6c): relations between entities are depicted as
node-link diagrams with different layout algorithms (radial,
force-directed, SOM), and several layers can be stacked on
top of each other in parallel to present a coherent view. For
example, two node-link diagrams can be stacked on two
parallel planes, the one showing authors and co-authorship,
the other one showing papers and citations. Additional
inter-plane links connect authors with their papers.

Tyman et al. [130] propose a 3D scatter plot where
papers are positioned along three axes (keywords, citations,
and years) and colored according to the topic classification.
Moreover, along one facet of the 3D scatter plot, a 2D scatter
plot represents authors by citations and years.

Pivotpath [131] models a scientific collection as a tripar-
tite graph consisting of three type of nodes: authors, papers,
and keywords. It shows relations between them, including
citations between papers. The visualization is a node-link
diagram with a 2D layout divided into three regions, one
for each node type. A pivoting interaction enables the
navigation in the tripartite information space. A similar
interaction is used also by the above-mentioned (Section
3.4.3) PivotSlice [99], which models a scientific collection as
a multivariate network.

3.5.4 Sequential approaches and multiple views

Other examples from the literature we surveyed show a
loose coupling of multiple data types. They either apply

the same algorithm to different data types of the same
document collection, or sequentially apply different analytic
algorithms for specific data types and visualize the results
once at a time, or juxtapose multiple views with different
degrees of coordinated interactivity.

GraphaEL [78], for example, has been demonstrated by
applying its evolving graph layout not only to a citation
network, but also to a co-authorship network and a topic
network. Analogously, White et al. [132] show how SOMs
and PFNETs can be applied to both co-citation networks and
co-occurrence networks, by switching the similarity metric
used by the mapping algorithm. The DIVA system [133]
is capable of mapping patents or scientific literature docu-
ments to a 2D plane for visual cluster analysis. It features
two mapping algorithms (SOM or force-directed layout)
and two similarity metrics (citation or co-occurrence). The
approach by Ke et al. [134] exploits a node-link diagram to
visualize the citation network as well as the co-authorship
network, enriched with publication or citation counts. Chou
and Yang [135] demonstrate the use of radial node-link
diagrams and sunbursts to navigate an ego-centric citation
network and a hierarchical classification.

Spangler et al. [136] present a visual search interface for
patent retrieval and combine it with a number of interactive
views that allow to view and compare documents and their
metadata, e.g., in the form of document scatter plots, or
trend spark lines.

Chen [137] illustrates the sequential application of algo-
rithms. At first, a latent semantic indexing (LSI) algorithm
analyzes the full text and metadata of scientific papers to
build a semantic similarity matrix. Then, a PFNET approach
is applied for further data reduction. Finally, the identi-
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fied thematic fields are used to label the clusters of a co-
authorship network.

When the number of data types to be considered for the
analysis increases, several systems resort to multiple views,
each devoted to a subset of data types. Bivteci [138] is an
early example of a system that combines authors, citations,
and metadata. It features three views: a node-link diagram
of citations, a visualization of papers clustered by topics,
and a spatialization of papers according to other metadata.
The three views are mainly independent from each other,
and can be used each at a time to solve a specific task. The
Citiviz system [139] features two views: a hyperbolic tree
to visualize the hierarchical classification and a scatter plot
to visualize papers by date and rank. It allows the user to
explore similarities among documents, based on where their
topics fit into the classification system, and to assess their
relevance and timeliness.

CiteWiz [140] deals with three data types (authors, ci-
tations, and metadata) and features three different views.
The first view shows authors depicted as human-like glyphs
arranged along a time line, scaled according to their im-
pact (i.e. citation count). The second view shows the co-
occurrence keyword network as a node-link diagram. The
third view is based on Growing Polygons, a radial visu-
alization technique and depicts authors productivity and
mutual influence, measured through citations. All views are
interactive and can be docked simultaneously within the
main interface, but there is no coordination between the
views. PaperCube [55] features two main modes, each cor-
responding to the bibliographic entity to be shown (namely,
papers or authors). For each mode, several visual encodings
are available, for example time lines, tree maps, node-link
diagrams with different layouts, and CircleViews [54] (see
also Section 3.2.1). When the user switches between modes
and views, the only interactive coordination provided is that
filters and highlighted selections are kept, to maintain the
analytical focus.

FacetLens [141] is a multi-faceted searching and brows-
ing system that depicts several data aspects with different
techniques: mostly coloured circles, but also a containment
visualization for hierarchies (e.g., topic classification, or
geographic location), and bar charts for temporal aggre-
gates (e.g., number of citations per year). Facets can be
interactively manipulated for highlighting, selecting, and
filtering attributes and values across different documents.
The PatVis system [23] visualizes patent search results and
supports query refinement based on eleven views. They
span from bar charts and line plots to word clouds, node-
link diagrams, tree maps, and geographic maps (Figure 6d).
All selection and filtering interactions are coordinated, and
a dedicated view shows a graph-based representation of the
query as filtering constraints and Boolean operators.

Nazemi et al. [142] propose an adaptive semantic visual-
ization for bibliographic query results. The system is capable
of querying a digital library and processing the results to
clean data and to compute lightweight semantics. The latter
are used to automatically select the most appropriate visual-
ization (one of node-link diagrams, tree maps, or line plots).
A visualization cockpit allows the user to further combine
several views, coordinated with an enhanced brushing and
linking interaction.

3.5.5 Tight integration

In this last section, we present integrated approaches that
feature a seamless intertwining of several automated al-
gorithms and interactive visualizations, and support the
identification of complex patterns involving different data
aspects of patents and scientific documents.

The system by Dunne at al. [143] features an integration
of visualization techniques and natural language processing
algorithms to summarize and cluster documents. It inte-
grates a reference management component and comple-
ments the NLP analysis with the computation of citation
statistics and network measures, enabling the visualization
of citation patterns and clusters. Furthermore, a text visu-
alization provides a summary of incoming citations and
outgoing references of the selected document, helping users
to make sense of the citation context.

The capability to make sense of relations between doc-
uments beyond pure quantitative metrics (e.g., citation
counts) is an added value for the visual analysis of patents
and scientific literature. Uren et al. [144] propose a sense-
making tool to assist the analysis of argument relationships
across multiple papers. Their tool does not integrate any
automatic NLP algorithms, but provides the user with an
interactive visualization to build, annotate, and query maps
of concepts and claims, where the citation links can be
extended with the type of relation (e.g., similarity, causal-
ity) and the polarity (e.g., agrees/disagrees). Schäfer and
Spurk [145] propose the application of a sentiment analysis
algorithm for classifying citations and drawing a typed
citation graph in which citations are coloured according
to their polarity. With further integration of text analysis
algorithms, it is possible to automatically build a topic
influence map. Dietz et al. [146] propose an extended LDA
(Latent Dirichlet Analysis) algorithm to identify topics and
mutual influences between cited and citing papers. Then,
the citation network is visualized as a node-link diagram
where less relevant (in the sense of topic influence) links
are filtered out. The topic spectrum, i.e., the proportion of
topics in each paper, is shown as a colored stacked bar
within each node. CitePlag [147] exploits the analysis of the
citation context to identify disguised plagiarism techniques,
such as paraphrase or cross-language copying. It visualizes
the structures of two documents as two stacked bars, and
their bibliographic coupling as lines between the positions
of in-text references. Moreover, it uses diverse algorithms
to identify and visualize particular citation patterns. Görg
et al. [30] present a version of Jigsaw for the analysis of
scientific literature. Documents are clustered according to
two similarity metrics, one based on the analysis of textual
content (see Section 3.1), the other one based on connec-
tions with entities extracted from metadata (e.g., confer-
ences, affiliations, years). Document clusters are visualized
in a node-link diagram, as well as in a grid view, where
documents are represented as small squares, ordered and
coloured according to their similarity to a selected docu-
ment. The visualization is enriched with the results of a basic
sentiment analysis.

CiteRivers [117] features multiple coordinated views in-
tegrated with data mining techniques (Figure 6e). It exploits
spectral clustering to hierarchically aggregate documents as
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well as journals and conference at a granularity level that
can be adjusted interactively by the user. The visualization
is then enriched by additional computed metrics, such as
trendiness (measuring the freshness and the spreading of
new ideas), citation entropy (measuring the diversity of a
document impact on different research communities), and
authors’ prolificacy over time.

4 CHALLENGES AND OPPORTUNITIES

Here, we illustrate existing challenges to spur future re-
search, as will new datasets9. Some challenges refer to a
specific task or data type, while other, more general ones
have been derived from the surveyed literature.

Text data: When dealing with large text corpora, NLP
and text mining techniques help coping with high dimen-
sionality, identifying and summarizing key topics. Never-
theless, often the most relevant and descriptive terms still
need to be visualized as text. Moreover, the visualization
needs to also provide semantic context to support correct
interpretation. However, providing comprehensive informa-
tion about documents in a compact way is challenging.

Author data: While scientific documents and patents
have unique identifiers (such as the Digital Object Identifier
or the unique patent number), author data still suffer from
ambiguity because of synonyms (different spelling, same
person) and homonyms (same name, different persons).
Many approaches disregard this ambiguity, while adequate
uncertainty visualization techniques should be utilized to
communicate possible ambiguity to users and make them
aware of how it can affect the analysis results. Moreover, ad-
hoc visualization techniques might be developed to specifi-
cally support name de-duplication and disambiguation.

Citations data: A recent research trend in scientomet-
rics combines citation analysis with sentiment analysis and
other text mining techniques, in order to bring the analy-
sis beyond mere citation counts and to consider also the
reason beneath a citation (e.g., derivation, confirmation, or
confutation). We discussed a couple of preliminary works
in Section 3.5.5, but further research is needed to investigate
how visualization can help making sense of citations.

Metadata and other data types: Many surveyed tech-
niques lack a specific visualization design for metadata,
which are simply treated as generic data. An important
example are hierarchical classification schemes. These exist
for both patents and scientific literature (see also Section
1.1), and adequate techniques are available for visualizing
them [148]. Nevertheless, only few works adopt, refine, or
develop techniques for visualizing classification data. Other
data types are just ignored in most approaches. Images, for
example, are a relevant content of both patents and scientific
documents, but often they are not properly considered (with
notable exceptions, such as Document Cards [27]).

Connectional tasks: In order to support complex con-
nection discovery, such as finding structural or cause-
effect relations between phenomena, visualization tech-
niques need effective means to combine different data as-
pects and enable their simultaneous exploration. In this
context, visual scalability is a major challenge (see also

9. http://vispubdata.org

[24], [40], for example). As illustrated in Section 3.5, various
aggregations and projections as well as coordinated mul-
tiple views are applied to tackle large multi-dimensional
data sets. However, there is still the need for a systematic
analysis of the usefulness and appropriateness of scalable
visualization techniques for scientific literature and patent
data. Moreover, many of the approaches we surveyed make
limited use of user interaction to support the analysis task.
Some approaches use a loose coupling of views (compare
Section 3.5.4) and other approaches present a seamless inter-
twining of automatic algorithms and interactive visualiza-
tions (compare Section 3.5.5). A systematic investigation into
the applicability of various interaction techniques (Detail-
On-Demand, Focus+Context, Coordinated Multiple Views)
to solve particular problems in this domain would open new
research possibilities. As illustrated in Section 3.5.5, several
approaches follow the Visual Analytics paradigm. However,
automatic mining algorithms should not be treated as a
black box, but allow the user to interact with the different
parameter settings [149]. Furthermore, such an approach
should support the various steps in the knowledge gener-
ation process [150]. Consequently, there is open space for
future investigation in the field of patents and scientific
literature. In particular, many surveyed approaches sup-
port synoptic tasks involving temporal patters and they
also address the problem of understanding the connections
between non-temporal and temporal dynamics across mul-
tiple data types. Nonetheless, interactive visualization and
automatic analysis need to be integrated further in order to
enable users to formulate and test temporal hypotheses, as
well as to build or select models of time-oriented data. The
pursuit of this research direction would enable not only the
early identification of emerging technologies and research
fronts, but also their prediction.

General challenges: Quantitative and qualitative eval-
uations are important to gauge the effectiveness of new
developments in science. Nevertheless, only a few works,
among those we surveyed, include an in-depth evaluation
of the proposed technique by user studies. Hence, more
empirical research is needed to determine which techniques
work better for which data types, analysis tasks, users,
and combinations thereof. Visualizing patents and scien-
tific literature is definitely a multidisciplinary problem. On
the one hand, the visualization community is interested
to contribute with innovative visual and Visual Analytics
approaches. On the other hand, domain experts are eager
to explore the various data bases or resources according
to different criteria. Multidisciplinary approaches need a
common understanding of the various disciplines, their
aims, and their tasks. Therefore, a systematic approach, like
the data-users-tasks design triangle [151], could be useful to
guide and steer the different experts involved.

5 CONCLUSION

In this survey, we investigated different interactive visual-
ization approaches of patents and scientific articles, ranging
from explanation tools to sophisticated exploration meth-
ods. We categorized the survey according to two aspects:
(a) data types (text, citations, authors, metadata, and com-
binations thereof) and (b) analyses types (exploring and
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comparing single entities, investigating relations between
entities, finding patterns on various levels, exploring the
temporal dynamics, and finding complex connections be-
tween phenomena). Obviously, our aspects and categories
are not mutually exclusive and some approaches fit to
several aspects. To solve this issue, we identified the main
aspect of an approach, discussed it in that section, and
referred to it in the others.

The visual representations are obviously and self-
evidently dependent on the data types and the analyses
tasks. Graph and graph-based visualization (like node-link
diagrams), matrix-based visualizations as well as scatter
plots and scatter plot matrices are applied to explore the
relations of various entities and citations as well as to
detect patterns. Different derivatives of streamgraphs and
line charts are used to analyze temporal dynamics. Further-
more, animation and small multiples are used instead of
simple time lines. To tackle the complexity of patents and
scientific articles, various kinds of glyphs as well as maps
and landscapes are proposed. In case multiple variables
as well as multiple data types are explored, aggregations
and projections as well as multiple and/or sequential views
with and without tight integration and interactions are
proposed. The text analysis methods range from manual
and automatic annotations to sophisticated NLP techniques.
However, visual means to fine-tune the parameter settings
are seldom applied.
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