FLAIR 2016
The International Conference on
Field Laser Applications in Industry and Research
Program and Book of Abstracts
12-16 September
Aix-les-Bains France
Quantum cascade detectors and monolithically integrated sensing devices

Gottfried Strasser1,2, B. Schwarz1, R. Szedlak1, A. Harrer1, H. Detz1, A.M. Andrews1, T. Zederbauer4, D. MacFarland2 and W. Schrenk2
1Institute of Solid State Electronics, TU Wien, Austria
2Center for Micro- and Nanostructures, TU Wien, Austria
4Austrian Academy of Sciences, Austria
Email: gottfried.strasser@tuwien.ac.at

Mid-infrared spectroscopy is a reliable method for the identification of gaseous and liquid mixtures due to their unique and inherent absorption spectra. We used a specially designed intersubband material working as laser for a given bias voltage and as a detector without any bias. By the use of such a bi-functional quantum cascade structure material for the light sources and detectors the realization of mid infrared on-chip sensors is possible [1].

Monolithic integration allows for miniaturization and is especially suited for portable devices. This talk aims to give a short introduction in the field of intersubband bi-functional materials with a strong focus on quantum cascade lasers and quantum cascade detectors. The first sensor elements used multimode Fabry-Perot lasers and broadband detector materials [2].

Liquid sensing at room temperature with a monolithic integrated sensor was achieved [2] by a Quantum Cascade Laser (QCL), a dielectric loaded Surface Plasmon Polariton (SPP) waveguide as interaction section of the infrared light with the liquid, and a Quantum Cascade Detector (QCD). As SPP waveguide structures gold layers with SiN dielectrics, reduce the losses and allow long distance guiding of the mid-infrared light.

To further improve the sensitivity and selectivity of these monolithically integrated mid-infrared sensors we utilized distributed feedback quantum cascade lasers. Weakly coupled DFB quantum cascade lasers emit single mode mid-infrared light. RT laser threshold current density of the first demonstrated devices is around 3 kA/cm², a pulsed output power in the range of 200 mW was measured [3].

To show gas sensing a distributed feedback ring quantum cascade laser can be integrated with a detector element. The surface operation mode enables for comparable long interaction lengths as needed for gas absorption measurements. By placing a single pass gas-cell into the beam path gas concentrations from 0% up to 93% of butane and 0% up to 69% of propane in nitrogen were measured with a sensitivity in the low percent range [4].

References: