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ABSTRACT
HW/SW partitioning of modern heterogeneous systems,
which combine signal processing as well as multimedia ap-
plications, is usually performed on a task or process graph
representation. As this optimisation problem is known to
be NP-hard, existing partitioning techniques rely on heuristic
methods to traverse the vast search space. The Global Criti-
cality/Local Phase (GCLP) algorithm, initially introduced by
Kalavade and Lee as an integral part of the Ptolemy work
suite, has been frequently referred to as fast and powerful
technique to generate high quality solutions for a combined
partitioning/scheduling problem. Although having a good
reputation, GCLP neglects essential information with respect
to the underlying communication model. A detailed commu-
nication model for a typical System-On-Chip (SoC) archi-
tecture is introduced that considers different read and write
times for all memory and bus resources. The internal mecha-
nisms of the GCLP algorithm have been thoroughly analysed
and several modifications are proposed that lead either to a
significant increase of the quality of the obtained solutions
without affecting the computation time of the algorithm or to
a substantially lower computation time while increasing the
output of valid partitioning solutions.
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1. INTRODUCTION

Modern system design, especially in the wireless domain,
has to face hard challenges with respect to chip area, power
consumption, and execution time while time-to-market is
critical. The diversity of the requirements has led to ex-
tremely heterogeneous system architectures, whereas the
short design cycles boosted the demand for early design de-
cisions, such as architecture selection and HW/SW partition-
ing on the highest abstraction level, i.e. the algorithmic de-
scription of the system. HW/SW partitioning can in general
be described as the mapping of the interconnected functional
objects that constitute the behavioural model of the system
onto a chosen architecture model. The task of partitioning
has been thoroughly researched and enhanced during the last
15 years and produced a number of feasible solutions, which
depend heavily on their prerequisites: the architecture model,
the communication model, the granularity of the functional
objects, etc. A short overview of the most relevant work in
this field is given in Sec. 2.

This work has been funded by the Christian Doppler Pilot Laboratory
for Design Methodology of Signal Processing Algorithms.

One of the leading research groups to address the difficul-
ties in modern system design established the Ptolemy Project
(1991 - now) at the University of California, Berkeley [1].
The Global Criticality/Local Phase (GCLP) algorithm, firstly
published in 1994 [2], has been integrated into Ptolemy in
1995 [3]. In the following years the authors enhanced this
method to solve theextended partitioning problem[4], which
incorporates the existence of several implementationbinsfor
both hardware (HW) and software (SW). Due to its fine rep-
utation being a fast technique, i.e. with a low complexity of
O(|V|2) in the number of processes|V|, while yielding rea-
sonably good results compared toInteger Linear Program-
ming[4], the Open Tool Integration Environment (OTIE) [5]
has been enriched with a version of the GCLP algorithm. As
our main focus lies on SoCs in the wireless domain with strict
real-time constraints, the architecture abstraction is slightly
different. It features a more sophisticated communication
model to deliver precise timing results including bus traf-
fic, different access times for read and write instructions and
the distinction between local and shared memory units. The
analysis and evaluation of the original algorithm disclosed
several possibilities to save computation time and to improve
quality. The contribution of this paper comprises a thor-
ough analysis of the GCLP algorithm and the introduction
of several modifications to increase the performance of this
approach with respect to the solution quality, the computa-
tion time and the probability of valid results.
The rest of the paper is organised as follows. The next sec-
tion sheds some light on related work in the field addressing
combined partitioning/scheduling techniques. Section 3 il-
lustrates the basic principles of system partitioning and gives
an overview of the GCLP algorithm. It is followed by a de-
tailed description of the new architecture model, the applied
modifications in Sec. 4 and results for every single modifi-
cation. Suitable combinations of the proposed modifications
are compared to the original GCLP algorithm in Sec. 5. The
work is concluded and perspectives to future work are given
in Sec. 6 .

2. RELATED WORK

Heuristic approaches dominate the field of partitioning algo-
rithms, since partitioning is known to be an NP-hard prob-
lem in most formulations [6]. Genetic algorithms have
been extensively used [7, 8] as well as simulated anneal-
ing [9, 10]. To a smaller degree tabu search [11] and
greedy algorithms [12] have also been applied. Other re-
search groups developed custom heuristics such as the early
work in [13] or the GCLP, which features a very low al-
gorithmic complexity. With respect to combined partition-
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ing/scheduling approaches, the work in [14, 15] has to be
mentioned. The approaches in [16, 8] also add communi-
cation events to links between HW units and SW functions.
The architecture model varies from having a single SW and a
single HW unit [12, 9], which might be reconfigurable [14],
to a limited set of several concurrently running HW units
combined with a general-purpose processor [17, 18].

3. SYSTEM PARTITIONING WITH GCLP

This section covers the fundamentals of system partitioning
and the main mechanisms of the GCLP algorithm. Due to
limited space only a general discussion of the basic terms
is given in order to ensure a sufficient understanding of our
contribution. For a detailed introduction to partitioning,
please refer to the literature [19, 20, 4].
In embedded system design the termpartitioning combines
two tasks:allocation, i.e. the selection of architectural com-
ponents, andmapping, i.e. the binding of system functions
to these components. Usually a number of requirements, or
constraints, are to be met in the final solution, for instance
execution time, area, throughput, power consumption, etc.
This task is known to be a hard optimisation problem [21],
in many formulations even NP-hard [6, 2]. The system
functionality is typically abstracted into a graphG = (V,E)
representation. In Fig. 1a, six verticesV = {a, .., f} are
depicted which are connected by six edgesE = {e1, ..,e6}.
The vertices cover the functional objects of the system,
or processes, whereas the edges mirror data transfers
between different processes. Depending on the granularity
of the graph representation, the vertices may stand for a
single operational unit (MAC, Add, Shift) or have the rich
complexity of an MPEG decoder. The majority of the
partitioning approaches [4, 17, 16, 14] decide for medium
sized vertices that cover the functionality of FIRs, IDCTs,
shellsort algorithm or similar procedures. Every vertex has

Figure 1: (a) Process graph, annotated with characteristic
values. (b) Typical platform model.

been annotated with characteristic values, that, in the case of
the GCLP algorithm for the binary (SW, HW) partitioning
problem, build a quadruple: (process computation time
(pctsw) and code size (cs) for SW, process computation time
(pcthw) and area in gates (gc) for HW). The edges are an-
notated with the number of data samples (bytes) transmitted

per invocation of one process. The mapping of the task
graph to the given architecture in Fig. 1b is performed by
the GCLP algorithm with the objective to meet constraints
for time, area, and code size. The platform model features
a general purpose processor, which allows for sequential
execution of the assigned processes, and an FPGA or a set of
ASICs for a custom data path, which allows for concurrent
execution of the assigned processes. A model for HW to SW
communication via shared memory is provided, whereas
HW to HW and SW to SW communication is neglected.
The following paragraphs present a short discussion of the
basic concepts of the GCLP approach. For complete detail,
please refer to the author’s dissertation [3].
Essentially this algorithm is a greedy approach, which visits
every vertex exactly once, and decides where to map it based
on two different values: theGlobal Criticality (GC) measure
and theLocal Phase(LP) measure. The GC value is aglobal
look-ahead measure that estimates whether time, code size
or area is most critical at the current stage of the algorithm
and then decides which of these targets shall be minimised.
The LP value is calculated for every single process before
the main algorithm starts and is based on intrinsic properties
that represent the individual mapping preferences of this
process. For instance, when a specific process prefers an
implementation in SW, because of its very large bit level
instruction mix, the LP value reflects this preference, or
when a process stands out by its extraordinary HW size
and a rather small SW execution time, then LP value takes
this into account. By the superposition of the global GC
value and the local LP value the greediness of the approach
is moderated and a balanced mapping, which meets all
constraints, shall be ensured.

In Fig. 2a the process graph is depicted and in Fig. 2b

Figure 2: (a) Process graph at a distinct stage of the GCLP
algorithm. (b) Pseudo code for a single GCLP iteration.

pseudo code of one GCLP iteration is listed. The upper
two vertices have been alreadymapped (NM = {a,b}), all
others are stillunmapped (NU = {c,d,e, f}), of which two
are ready (NR = {c,d}) to be mapped next. In step S1 the
current GC value is calculated. Within S1 a provisional yet
completemapping is performed such that the time constraint
is surely met. The GC value is then calculated based on
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this preliminary mapping and is normalised to lie in the
interval [0,1] (0 , lowest time criticality, 1, highest time
criticality). In step S2 the ready processesNR = {c,d}
are determined. The steps S3 and S4 shall decide which
of both verticesc,d will be mapped next. In step S3, an
effectiveexecution timete f f = GCpcthw + (1− GC)pctsw
is assigned to all yet unmapped vertices. In step S4,te f f
serves as the base for a longest path search from every
vertex in NR to the exit processf . In step S5, the vertex
with the maximum longest path value is selected to be
mapped next. In step S6 the final mapping of this vertex
is performed based on the superposition of theglobal GC
value and thelocal LP value. In step S7, all sets, lists
and intermediate values are updated. These seven steps are
repeated until all vertices have been finally mapped (NU = /0).

The algorithmic complexity is claimed to beO(|V|2), |V|
is the number of vertices. The step S1 is the most domi-
nant part, since several provisional mappings are produced
and a complete schedule has to be generated for every sin-
gle one of them, until the deadline is met. An underlying
list scheduling technique,earliest task first, ensures are-
scheduling time, which is linear in the number of vertices
and edgesO(|V|+ |E|). For sparsegraphs (|V| ∼ |E|) this
is usually simplified toO(|V|). The second dominant part
are the steps S3 and S4: S3 is a list operation on an ever
decreasing list of length|V|, thus the complexity is approx-
imated withO(|V|/2) = O(|V|), and S4 is a longest path
search over the subgraph of theNU node set. It can be im-
plemented with linear complexityO(|V|+ |E|), set the graph
is directed and acyclic (DAG). S7 comprises several list up-
dates that are linear as well. Since the leading terms are all
linear and these seven steps are performed for all|V| vertices
in the graph, the result grows asymptotically with squared
complexity:O(|V|2).

4. IMPROVEMENTS

The section discusses in detail the improvements applied to
underlying platform model and the GCLP algorithm itself.
In the following the algorithm is evaluated based on some
characteristic values: the computational run timeΘ, on a
PC (AMD Athlon 64 3000+, 1.8GHz Processor) measured in
seconds, the quality of the obtained solution, the cost value
ΩP, for the best partitioning solutionP:

ΩP = α
TP

Tlimit
+β

AP

Alimit
+ γ

SP

Slimit
. (1)

The makespan of the graph forP is TP, which must not ex-
ceedTlimit . The sum over the area of all processes mapped
to HW is AP, which must not exceedAlimit . The sum over
the code sizes of all processes mapped to SW isSP, which
must not exceedSlimit . With the weight factorsα, β , andγ

the designer can set individual priorities. If not stated oth-
erwise, these factors are set to 1.0. The booleanvalidity VP
of an obtained partitioningP is given by the boolean expres-
sion:VP = (T ≤ Tlimit )∧ (AP ≤ Alimit )∧ (SP ≤ Slimit ). A last
characteristic value is the validity percentageϒ = Nvalid/N,
which is the quotient of the number of valid solutionsNvalid
divided by the number of all solutionsN, for a graph set con-
tainingN different graphs.
Among system partitioning techniques this approach stands
out because of its low algorithmic complexity (O(|V|2)). The

key aspect of its design is to find solutions that meet the
constraints as fast as possible rather than traversing the vast
search space in a time-consuming manner. Thus, the objec-
tive for all the following considerations focuses on either the
improvement of the solution qualityΩP without affecting the
run timeΘ and the validity percentageϒ, or on a substantial
reduction ofΘ without affectingϒ.
A multitude of graphs have been generated according to the
same rules as described in the original work [3]. The sets
are ordered by the size of the contained graphs, measured by
the number of vertices|V|. Each set contains 180 different
graphs of the same size.
The constraints are specified by three ratiosRT ,RA,RS ob-
tained by the following equations:

RT =
Tlimit −Tmin

Ttotal−Tmin
,RA =

Alimit

Atotal
,RS =

Slimit

Stotal
, (2)

The totalised values for areaAtotal, code sizeStotal, and
execution timeTtotal are simply the sum over the gate counts
gc, code sizescs, and SW execution timespctsw (plus
communication) of all processes. The computation ofTmin
is obtained by scheduling the graph under the assumption
of a pure HW implementation featuring a full parallelism,
i.e. unlimited HW resources. Therefore, a constraint is
rather strict, when the allowed resource limit is small in
comparison to the resource demands that are present in the
graph. For instance, the totalised gate countAtotal of all
processes in the graph is 100k gates, ifAlimit = 20k, then
RA = 0.2, which is rather strict, as in average only every fifth
process may be mapped to HW at all. If not stated otherwise,
medium constraints(RT = RA = RS = 0.5) are set as targets.

4.1 Extended Platform Model

As mentioned before the communication model of the origi-
nal GCLP algorithm completely neglects HW-HW and SW-
SW data transfers. Apparently the major load and store pro-
cedures for data and instructions that occur at the beginning
and end of every process do affect the execution time of
the system. The abstracted HW processor does not prop-
erly reflect the realities that we face in the wireless domain.
The inspiration for the architecture model in this work orig-
inates from an industry-designed UMTS baseband receiver
chip [22, 18]. Its abstraction (see Figure 3) has been devel-
oped to provide a maximum degree of generality while being
along the lines of the industry-designed SoCs in use. It con-
sists of at least one (or more) DSP handling the control ori-
ented functions, for instance an ARM [23] for the signalling
part (and/or a StarCore [24] for the multimedia part), several
hardware accelerating units (ASICs), for the data oriented
and computation intensive signal processing, one system bus
to a shared RAM for mixed resource communication, and
optionally direct I/O to the periphery, i.e. the antenna sub-
system. To capture the communication times precisely the
designer is allowed to model load and store times for the in-
terprocess data transfers. Table 1 lists the access times for
reading and writing bits via the different resources of the
platform in Figure 3.
All memory and bus resources are properly scheduled dur-
ing the HW/SW partitioning process. Collisions are solved
via the HU level list scheduling technique [25]. The priority
levels that are required for every single process have to be
computed beforehand based on the unpartitioned task graph.
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Figure 3: Extended SoC platform abstraction with dedicated
load andstoretimes for all communication resources.

Communication read write
(bits/cycle) (bits/cycle)

Local SW memory 128 256
Local HW memory 64 128
Shared system bus 256 512
Direct I/O 1024 1024

Table 1: Maximum throughput for read/write accesses to the
communication resources.

4.2 Modification 1 - Revision of S3 and S4

Consider the steps S3 and S4 in the listing in Fig. 2b. Note,
that their single purpose is the decisionwhich process is
going to be mapped next, neitherwhere it is going to be
mapped, norwhenexactly it will be scheduled whenall pro-
cesses have been finally mapped. For all the graph sets, a
positive impact on the solution quality by these two steps
could not be observed. A comparison to a random selection
of the process fromNR, which should be mapped next, did
not show any significant difference, as Tables 2 and 3 indi-
cate. The reason for this result is two-fold: the calculation of
the longest paths in S4 is based oneffectiveexecution times.
The longest path search yields correct values for all vertices
in NR, if and only if GC= 1, or in other words in case of a
complete HW solution, given the HW processor allows for
concurrent execution of tasks. For a complete SW solution,
the longest path calculation loses its relation to the graph
completely, since the SW processor is asequentialdevice,
and all processes have to run on it consecutively anyway. So
for small GC values this calculation does not have signifi-
cance, and for balanced GC values, the execution times are
averaged betweenpcthw andpctsw and lack precision due to
this averaging. Only for large GC values S4 delivers approx-
imately correct results, which is not enough to compensate
the imbalance of this mechanism.
To overcome this malfunction we propose two modifications,
M1a or M1b:
• M1a: Omit the steps S3 and S4 completely to save run

time of about 15%. That is only of interest for huge
graphs (|V|> 500), in which the run time for each graph
becomes a matter of many seconds instead of millisec-
onds.

• M1b: Calculate the longest path searches for all vertices
in NR based on the provisional partitioning just generated
in step S1. Recall, that step S1 comprises a full partition-
ing and scheduling to compute the current GC value and
thus represents a precise snapshot of the present partition-
ing situation: all processes apply either their correctpctsw
or pcthw instead of a mixture of both and a full schedule
exists, hence, the longest path search in S4 returns cor-
rect values to determine the vertex inNR that currently
lies on the critical path. S3 can be saved here as well.

Graphs Cumulated run time Cumulated cost
(|V|) (Θcum) (Ωcum)

GCLP M1a M1b GCLP M1a M1b
20 1.3s 1.2s 1.3s 292.1 293.8 290.4
50 8.2s 7.3s 8.1s 287.3 286.4 282.7

100 47.5s 42.6s 46.0s 281.6 281.5 276.9
200 627.8s 542.0s 619.1s 278.6 279.0 273.2

Table 2: Impact on run time and cost of proposed modifica-
tions M1a and M1b compared with the original GCLP algo-
rithm.

Table 2 shows the impact for all graph sets on run time and
cost. M1a saves about 15% run time without any degradation
of the obtained solutions. Modification M1b improves the
result quality by about 1.5% to 2% in cost,and reduces the
run time,and features an almost 3% higherϒ, as listed in
Tab. 3.

Graphs ϒ(%)
(|V|) GCLP M1a M1b

20 74.4 75.0 76.6
50 86.1 86.6 90.0

100 90.0 90.0 92.2
200 90.0 90.5 92.2

Table 3:Impact on the percentage of valid solutionsϒ.

4.3 Modification 2 - Initial Solution

Another substantial gain in performance is possible by a
more sophisticated choice of the initial solution. Although
the preparation phase of GCLP comprises the individual
characterisation of processes with respect to their preferred
implementation type, GCLP assumes a complete SW solu-
tion as starting point. Neither the constraints given by the
designer nor the just calculated LP values affect this assump-
tion in any manner. A strong potential to enhance the qual-
ity of the final result without increasing the run time can be
put forth. The initial configuration for GCLP is a graph, in

Figure 4: Modification 2 (M2): Constructing the initial so-
lution.

which every vertex has an LP value in[−0.5,0.5] indicating
whether it is more suited for a SW (−0.5) or a HW (0.5) im-
plementation. The generation of these values is described in
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detail in the publications [3, 4], due to limited space it has
to be omitted here. A simple and fast strategy to construct a
better initial solution is to build an ordered list of these in-
dividual values, which can be achieved very efficiently (on
average inO(|V| log|V|) with the quicksort algorithm).
Now we process this list alternating from both ends, de-
pending on the absolute value of the contained measure,
as depicted in Fig. 4. We proceed as long as the initially
mapped processes do not reach the area limitAlimit for those
mapped to HW or the code size limitSlimit for those mapped
to SW. The remaining processes in the middle of this list
are flagged to be considered preferentially in step S1 of the
GCLP algorithm. The complexity of this operation isO(|V|)
. The computational overhead is smaller than 0.3% and was
only observable during the simulations for the largest graphs
(|V|= 200) cumulated over 180 graphs. Table 4 contains the

Graphs Cumulated cost (Ωcum) ϒ (%)
(|V|) GCLP M2 GCLP M2

20 292.1 290.2 74.4 76.6
50 287.3 283.0 86.1 88.8

100 281.6 276.9 90.0 91.1
200 278.6 273.3 90.5 91.6

Table 4:Impact on cost and validity percentage of M2.

results obtained while applying this modification (M2) to the
graph sets compared to the original algorithm. Another gain
in cost and a higher yield in valid results can be achieved.

4.4 Modification 3 - Precocious Breaks

A third modification (M3) is the insertion of precocious
breaks as soon as all constraints are met. Although the design
of the GCLP algorithm focused on low run time, a mecha-
nism to stop the algorithm as soon as possible is surprisingly
not provided. As stated before, step S1 generates a full par-
titioning solution, even though being provisional, it makes
perfect sense to evaluate this solution as well. The partition-
ing with the lowest cost seen is stored and when the con-
straints happen to be met, the algorithm stops. In the case
of rather loose constraints the run time drops dramatically.
When the constraints are rather strict, so that the original al-
gorithm would finalise returning aninvalid solution, the run
time stays exactly the same, with a possibly better cost ob-
tained by one of the provisional mappings. When the con-
straints are strict, but the original algorithm would finalise
with a valid solution, the run time will drop very likely by
at least a small margin. For a profound understanding of the
last case, it is mandatory to demonstrate the functionality of
S1 in detail.
As stated in Sec. 4.2, in S1 it is always assumed that all pro-
cesses inNU are implemented in SW. Then it moves ten-
tatively processes to HW until the time constraint is met.
Of course this mechanism is sensitive to the chosen order
in which the processes inNU are tentatively moved. The
GCLP designers proposed an priority list for the processes
ordered by their bestgain in time measured by the quotient
pctsw/pcthw. A largegain means that its mapping from SW
to HW results very likely in a large execution time reduction.
Consider a situation, which adheres to the mentioned case: a
valid solution exists, that would be found by the original al-
gorithm and rather strict constraints prevented a precocious
break up to the current stage of the algorithm. In Fig. 5 the
tail of a graph is depicted with the exit vertexz. The preced-
ing iteration, in which processy was finally mapped, did not

Figure 5: Modification 3(M3): Precocious breaks.

break precociously, i.e. not all constraints had been fulfilled
in S1 of the last iteration. Since S1 ensures a provisional par-
titioning, in whichTlimit is met, onlyAlimit and/orSlimit could
have been exceeded. But this is only possible when the order
of the priority list, that guides the tentative mapping, in S1
doesnot cause a valid mapping. On the top right of Fig. 5
the entries forx andz in the priority list are shown. Hence,
S1 does always mapx to HW at first, detects thatTlimit is
met and thus leavesz in SW. In this exampleAlimit is then
exceeded by this combination (35000+6000≥ 40000), so a
precocious break is not possible. The following final map-
ping of x chooses a SW implementation, sinceAlimit is ex-
ceeded whereasTlimit is met and proceeds the very last pro-
cessz in the graph.
This scenario demonstrates the only case in which the mod-
ified version is not capable of finishing at least a short time
earlier than the original algorithm. Inall other scenarios,
when the tail of the priority list matches avalid partition-
ing solution, a precocious break will occur. Table 5 lists
the impacts of this last modification on the run time for
loose, medium, and strict constraints. The leftmost column

Cumulated run timesΘcum
Constraints |V|= 20 |V|= 50
(RT ,RA,RS) GCLP M3 GCLP M3

(0.4, 0.4, 0.4) 1.3s 1.3s 8.2s 8.1s
(0.5, 0.5, 0.5) 1.3s 1.2s 8.2s 7.9s
(0.7, 0.7, 0.7) 1.3s 1.2s 8.1s 7.2s

Constraints |V|= 100 |V|= 200
(RT ,RA,RS) GCLP M3 GCLP M3

(0.4, 0.4, 0.4) 48.0s 45.4s 632.4s 548.3s
(0.5, 0.5, 0.5) 47.5s 43.2s 627.8s 525.0s
(0.7, 0.7, 0.7) 47.1s 39.8s 623.0s 498.6s

Table 5:Effect of modification M3 on the run time.

of Tab. 5 contains a set of constraint ratios (RT ,RA,RS). The
run time improvement for large graphs and loose constraints
is substantial with up to 21%. The validity percentage is
even improved by about 0.5% for larger graphs (|V| ≥ 100),
as there are rare occasions, when a provisional mapping is
detected to be valid and the modified algorithm ends preco-
ciously, whereas the original algorithm would yield an in-
valid result with one of the constraints narrowly missed.
It has to be mentioned that the third modification evidently
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leads to a degradation of the quality for thevalid partitioning
solutions, as a precocious break is surely valid but will often
have a higher cost than an algorithm with this option dis-
abled. Whereas the quality ofinvalid solutions will increase,
as the provisional mappings are considered additionally.

5. RESULTS FOR COMBINED MODIFICATIONS

Eventually, two promising combinations, C1 and C2, of the
proposed modifications are build. Combination 1 incorpo-
rates M1a and M3 to obtain an algorithm with a substan-
tially lower run timeΘ, a slightly better validity percentage
ϒ, and minor degradations of the solutions costΩ. Com-
bination 2 incorporates M1b and M2 to obtain an algorithm,
which concentrates on cost improvements and higher validity
percentages without affecting the run time. The succeeding
Tables 6-8 present a comparison with the original algorithm
for all graph sets and different sets of constraints:

Table 6 lists the significant improvements of C1 concern-
ing run time. Naturally, large graphs with rather loose con-
straints lead to a dramatic drop in computation time of up
to 27%. Additionally C1 causes a measureable increase in
the validity percentage of about 1%. These improvements
are paid by a rise in cumulated costΩcum of about 3-4%.
The combination C2 is a more balanced improvement. The
predominant part is the boost in validity percentageϒ, with
about 4% most noticeable for strict constraints on smaller
graphs. This performance is accompanied by a reduction of
cost of up to 3%, while the run time even drops slightly.

Both combinations cover different areas of problem in-
stances, while both prove to be better than the original al-
gorithm in these areas. The first combination C1 is rec-
ommended for problem instances with very large graphs
(|V| ≥ 200) or a graph set containing many different graphs,
for which valid results shall be produced, as its benefits lie
predominantly in a run time reduction. The second combina-
tion C2 can simply replace the implementation of the origi-
nal GCLP algorithm, as it yields better results in every aspect
with the largest margin in increasingϒ.
Finally it has to be clarified that the GCLP approach was not
designed and is not capable to compete with time-consuming
approaches based on genetic algorithms, tabu search, simu-
lated annealing or even integer linear programming, when the
aim is to find a near-optimal solution. The run time of these
approaches is 103− 104 times higher [17, 4], while tens of
thousands of solutions are generated and a cost reduction of
up to 15% is observed.

6. CONCLUSIONS

In this work the GCLP algorithm for the solution of the
binary HW/SW partitioning problem has been thoroughly

Cumulated run timesΘcum
Constraints |V|= 20 |V|= 50
(RT ,RA,RS) GCLP C1 C2 GCLP C1 C2

(0.4, 0.4, 0.4) 1.3s 1.2s 1.3s 8.2s 8.0s 8.1s
(0.5, 0.5, 0.5) 1.3s 1.2s 1.3s 8.2s 7.7s 8.1s
(0.7, 0.7, 0.7) 1.3s 1.1s 1.2s 8.1s 6.8s 8.0s

Constraints |V|= 100 |V|= 200
(RT ,RA,RS) GCLP C1 C2 GCLP C1 C2

(0.4, 0.4, 0.4) 48.0s 41.4s 47.2s 632.4s 529.5s 626.1s
(0.5, 0.5, 0.5) 47.5s 40.9s 46.9s 627.8s 503.8s 625.7s
(0.7, 0.7, 0.7) 47.1s 37.3s 46.1s 623.0s 458.3s 621.2s

Table 6: Impact of combined modifications C1 (M1a, M3)
and C2 (M1b, M2) on the cumulated run timeΘcum.

Cumulated costΩcum
Constraints |V|= 20 |V|= 50
(RT ,RA,RS) GCLP C1 C2 GCLP C1 C2

(0.4, 0.4, 0.4) 321.2 330.4 317.4 314.9 323.4 309.1
(0.5, 0.5, 0.5) 292.1 302.8 287.0 287.3 298.5 282.2
(0.7, 0.7, 0.7) 250.6 266.9 245.2 244.0 256.0 239.2

Constraints |V|= 100 |V|= 200
(RT ,RA,RS) GCLP C1 C2 GCLP C1 C2

(0.4, 0.4, 0.4) 308.5 319.4 301.9 305.4 312.3 297.7
(0.5, 0.5, 0.5) 281.6 292.7 275.4 278.6 291.0 271.1
(0.7, 0.7, 0.7) 238.7 250.2 233.3 231.4 243.9 222.8

Table 7: Impact of combined modifications C1 (M1a, M3)
and C2 (M1b, M2) on the cumulated costΩcum.

Validity percentageϒ
Constraints |V|= 20 |V|= 50
(RT ,RA,RS) GCLP C1 C2 GCLP C1 C2

(0.4, 0.4, 0.4) 58.8 59.4 62.7 68.8 69.4 69.4
(0.5, 0.5, 0.5) 73.8 74.4 77.7 86.1 86.6 88.8
(0.7, 0.7, 0.7) 97.9 97.9 98.4 98.8 98.8 100.0

Constraints |V|= 100 |V|= 200
(RT ,RA,RS) GCLP C1 C2 GCLP C1 C2

(0.4, 0.4, 0.4) 65.0 66.1 68.8 71.6 72.2 73.3
(0.5, 0.5, 0.5) 90.0 90.5 92.2 90.5 91.5 92.2
(0.7, 0.7, 0.7) 100.0 100.0 100.0 100.0 100.0 100.0

Table 8: Impact of combined modifications C1 (M1a, M3)
and C2 (M1b, M2) on the validity percentageϒ.

analysed and several modifications to increase its perfor-
mance have been introduced. Depending on the problem
instances and the designer’s intentions two versions of
GCLP advancements are presented, either of which yielding
significantly better results than the original algorithm with
the focus set on different problem instances. The introduc-
tion of a more sophisticated platform model increases the
reliability of the results further. Precise static schedules can
be generated for all resources in the design.

Future work will concentrate on low complexity tech-
niques exploiting the inherent parallelism in the graph struc-
ture. Since more than one HW implementation alternative
may exist for a single process depending on the pipelining,
the loop unrolling factor or allowed register usage, a more
complex scenario has to be embraced by the partitioning
strategy than in the case of binary decisions between HW
and SW. Analogously control-oriented functions may cover
a range of different execution times based on their current
control flow. In a further step these execution time profiles
shall be integrated in the final partitioning technique.
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