Chapter 1

MODELING UNCERTAINTY IN NONLINEAR
ANALOG SYSTEMS WITH AFFINE ARITHMETIC

Wilhelm Heupke', Christoph Grimm?, and Klaus Waldschmidt!

1Depam‘mem‘ of Computer Engineering
University of Frankfurt

2 Institute for Microelectronic Systems
University of Hannover

Abstract This paper describes a semi-symbolic method for the analysis of mixed
signal systems. Aimed at control and signal processing applications, it
delivers a superset of the set of all reachable values. The method that
relies on affine arithmetic is precise for linear systems, but in the case of
nonlinear systems, approximations are needed. As for each approxima-
tion a new term is added, the number of approximation terms increases
during simulation and therefore slows down the simulation. This leads
to a quadratic time complexity in the number of time steps. A method
to avoid this and an example implementation based on SystemC-AMS
together with its performance are presented.

Keywords: affine arithmetic, intervals, SystemC-AMS, simulation, uncertainty, tol-
erance

1. Introduction

Today’s automotive, telecom, and ambient intelligence applications
consist of sensors, actuators, analog and digital circuits, and a large por-
tion of software. At the system level designers usually specify and model
such applications by continuous-time block diagrams with directed sig-
nal flow. For the verification and analysis of such systems, most notably
a transient simulation is used: Input stimuli are specified and the sim-
ulator computes the output signals. The transient simulation allows
designers to get important insight into the behavior of the modeled sys-

DRAFT Page 1 January 26, 2006, 2:16pm DR A F T

2

tem and provides a simple functional verification. However, within the
design process of many of the above mentioned systems, much time is
spent for analyzing the impact of uncertainties introduced by different
realization variants:

m Static variations of operating conditions
(e.g. production tolerances)

m Dynamic variations of operations conditions
(e.g. temperature drift)

= Quantization and rounding in
digital signal processing and analog/digital conversion

» Physical effects in analog circuits (e. g. noise).

One big problem is, that some deviations are compensated and do not
have a large influence on some output of interest, while another deviation
of same value will be amplified and thus violates the specification.

The established analog or mixed-signal simulators at the electrical
level provide different methods that help designers to evaluate the impact
of deviations: noise analysis, sensitivity analysis, worst case analysis,
Monte Carlo analysis, AC analysis, and sometimes combinations thereof.
These analyses are either based on the fact that analog circuits have
a working point and can be linearized (AC analysis, noise analysis),
require monotonicity (sensitivity analysis), or use a very high number
of simulation runs to find corner cases (worst case simulation) and to
compute statistical properties at the outputs (Monte Carlo analysis).

Although these analyses are very useful, they have several drawbacks:
Methods based on linearizations are usually restricted to analog circuits
and are not applicable to mixed-signal systems or even DSP software.
In order to overcome these problems designers have to provide discrete
models and additional models that are used for AC analysis. Further-
more, time domain simulations are used in combination with FFT meth-
ods to get information about the spectral distribution of noise, for ex-
ample. Unfortunately, transient simulations and Monte Carlo methods
do not provide information about the contribution of single sources of
uncertainty to the total uncertainty at e.g. outputs in a direct and easy
way; usually the interpretation is rather difficult. A direct and easy in-
terpretation is of particular interest for the case of design automation at
system level.

The above mentioned classical analyses are aimed towards the electri-
cal level and are based on linearization and linear equation solvers. The
method proposed in this paper is intended for a system level simulation

DRAFT Page 2 January 26, 2006, 2:16pm DR A F T

Modeling Uncertainty in Nonlinear Analog Systems with Affine Arithmetic 3

with a discrete time static dataflow model of computation, which is im-
plied by the use of SystemC-AMS. One should be aware that there is no
automatic way to use the electrical level models at the system level or
vice versa, yet.

Compared with purely numerical simulation, the symbolic or formal
techniques provide designers with more information, e. g. about the ori-
gin of a deviation [Henzinger and Ho, 1995; Zhang and Mackworth,
1996; Henzinger, 1996; Hartong et al., 2002]. Unfortunately, symbolic
or formal techniques are far away from being applicable to the design
of complex and heterogeneous systems [Stauner et al., 1997]. In this
situation, semi-symbolic techniques are very attractive if they combine
advantages of symbolic techniques with the general applicability of sim-
ulation. A promising approach is the use of affine arithmetic [Andrade
et al., 1994] for semi-symbolic analysis [Fang et al., 2003; Lemke et al.,
2002] or even a semi-symbolic simulation [Heupke et al., 2003].

Fang and Rutenbar [Fang et al., 2003] are doing a static analysis of
rounding errors in DSP algorithms with affine arithmetic. In [Heupke
et al.,, 2003; Grimm et al., 2004a] we use affine arithmetic for semi-
symbolic transient simulations of complex signal processing systems.
The simulation result is a numerical output together with a symbolic,
affine approximation of the contributions of different (symbolic) sources
of uncertainty. An important advantage of the proposed method is the
safe inclusion of all reachable values by the affine expression, therefore
delivering reliable results. On the other hand the increasing number of
terms and the resulting over-approximation caused by each nonlinear
operation are a disadvantage. In this paper we introduce a method for
semi-symbolic simulation with affine arithmetic that efficiently handles
these approximation terms.

Section 2 gives a brief introduction to affine arithmetic and semi-
symbolic simulation with affine arithmetic as described in [Heupke et al.,
2003]. Section 3 introduces a method to handle the over-approximation
terms in semi-symbolic simulation based on affine arithmetic. This en-
ables affine arithmetic to reach the same asymptotic time complexity
conventional numerical simulation has. Section 4 demonstrates the ap-
plicability of the method by a simple example.

Figure 1.1 shows a system we implemented as a test in order to val-
idate the behavior by transient simulations with affine expressions as
data type.

It contains two elements that can be troublesome:

The first is feedback. Another range arithmetic, the interval arith-
metic, will not deliver a meaningful result for the simulation of systems

DRAFT Page 3 January 26, 2006, 2:16pm D R A F T

offset

error QQ

'Qo\‘b

S\
PI 6‘0 '\%o
- Ry

Input + 4

P . controller s

unprecise
model

AN
o
P @
& :
(S nonlinear)
R4 CX+CX
process

Figure 1.1. Simulated System with Nonlinear Block

with feedback, while affine arithmetic works fine in this respect [Heupke
et al., 2003].

The second is the emphasized nonlinear block in the system, which is
interesting, as it creates additional approximation terms in each iteration
through the loop. This results in a high number of terms, that would
slow down the simulation more and more, if nothing is done about that.

2. Semi-Symbolic Simulation with Affine
Arithmetic

Affine Arithmetic

Affine arithmetic [Andrade et al., 1994}, introduced by Comba et al.,
is a kind of improved interval arithmetic, and therefore allows us to
compute with uncertain values. In each affine expression the influence
of independent sources of uncertainty ¢ to a variable & with the central
value x(is represented by a symbolic sum of terms x;¢;. Noise symbols
€; represent arbitrary, but for one simulation run fixed values from the
interval [—1,1]. The partial deviations x; then scale these intervals. The
€; are a symbolic representation and a certain value is never assigned to
them.

n
i:a?o—FinEi, € € [—1,1]
=1

Basic mathematical operations are defined by

n

9= (votyo)+ D (zi tyi)e
i—1

DRAFT Page 4 January 26, 2006, 2:16pm DR A F T

Modeling Uncertainty in Nonlinear Analog Systems with Affine Arithmetic 5

and
n
cT = cxo + Z CT;€;
i=1

The operation rad() is the radius of the affine expression z.
n
rad(z) = Z |z
i=1

The results of linear operations give precise limits and have no over-
approximation (no unnecessary expansion of the error interval).

Note that the subtraction of two affine expressions which include the
same noise symbols €, may reduce the partial deviation of the result,
in contrast to the same values with different noise symbols. This allows
to model error cancellation, for example in feedback loops. In Table 1.1
the variables with a hat denote affine arithmetic variables while the ones
written with a capital letter are corresponding interval variables. The
diameter is obviously twice the radius for affine forms. In the case of
intervals the diameter is the difference between supremum and infimum
of the interval.

affine form diameter || interval diameter
T =17.34 2.5¢1 5.0 X =[14.8,19.8] 5.0

g =154+ 2.5¢; 5.0 Y =[12.9,17.9] 5.0
2=15.44 2.5¢e2 5.0 Z =[12.9,17.9] 5.0
z—9=19+0.0e; 0.0 X -Y =[-3.1,6.9] | 10.0
T—2=19425e1 —2.5¢2 | 10.0 X —-7Z=[-31,6.9] | 10.0

Table 1.1. Affine Expressions and their interval counterparts

Table 1.1 shows the difference between affine arithmetic and interval
arithmetic in the case of different or same source of uncertainty. The
variables z and y share an uncertainty caused by the same source of
uncertainty and therefore both have a term ¢;. For demonstration pur-
poses also the influence of this uncertainty is of same magnitude and
direction/sign. In contrast to that the variable z has a term ey that
shows that the uncertainty of z has a different source of uncertainty,
although both have the same magnitude in example given in table 1.1.
The effect shows up in the subtraction of x-y. Interval arithmetic in-
creases the interval diameter instead of bringing it to zero, while affine
arithmetic keeps the correlation and delivers the precise result. This
is because the information contained in interval arithmetic is too lim-
ited, as the range of values is not the only important information that
is needed to describe the influence of uncertainty.

DRAFT Page 5 January 26, 2006, 2:16pm DR A F T

This effect of interval arithmetic may be tolerated sometimes, but a
simulation of a control loop, where a too pessimistic result is fed back
over and over, results in a permanently increasing diameter and depend-
ing on the system will increase exponentially in the worst case. This
will deliver with interval arithmetic that the result is [—o00, +00] within
a limited number of simulation time steps [Heupke et al., 2003]. For sure
this is a safe inclusion, but would be useless pessimistic.

The concept in the form described in this paper can be extended to
dynamic uncertainties and therefore to analyze effects like colored noise
as described in [Grimm et al., 2004b].

An important aspect is the guarantee, that after each operation, the
result is a superset of all reachable values.

Therefore, for example, multiplication of two affine expressions is de-
fined by

m
-9 = wo-yo+ Y (To-yi+ i yo)e
i=1
+rad(z) - rad(9) - €m+1

In general, the error introduced by some nonlinear operation is over-
approximated by a new noise symbol €,,41.

All nonlinear operations introduce new noise symbols and therefore
some systems may present a problem, because of the permanently in-
creasing number of terms. But some systems include strategies to reduce
the influence of deviations (e.g. feedback). Caused by these strategies,
the influence of these noise symbols converges to zero and for a sta-
ble system they are absolutely summable. Section 3 describes how this
property delivers a solution for the problem of the increasing number of
terms.

SystemC-AMS based Implementation

For the implementation we chose SystemC-AMS, but the concept
mentioned below can be implemented in every language that supports
operator overloading, e.g. VHDL-AMS.

SystemC-AMS is an extension of the class library SystemC, aimed at
supporting the modeling of mixed-signal (analog and digital) systems.
It provides means to simulate analog, mixed-signal and signal process-
ing systems as a block diagram. Regarding the abstraction level it is
comparable to Matlab. In contrast SystemC allows us to immediately
reuse the code portion for these blocks, that have to be implemented
in Software later on. Additionally the code of the models, that will be
implemented in digital hardware, can be automatically synthesized to

DRAFT Page 6 January 26, 2006, 2:16pm D R A F T

Modeling Uncertainty in Nonlinear Analog Systems with Affine Arithmetic 7

create e.g. an ASIC or FPGA implementation. Only for the blocks,
that model analog behavior, there is no automatic way for implementa-
tion. These blocks are specified by transfer functions or static nonlinear
functions implemented in C++. Static dataflow is used as the model of
computation.

The implementation of the affine arithmetic is based on the libaa
library[Gay, 2003] which defines linear and nonlinear operations on affine
arithmetic variables in a class called AAF (affine arithmetic forms). It
allows us to model computations with uncertainties in general.

Using the AAF class with SystemC-AMS is very simple: In SystemC-
AMS, as in SystemC, signals are instantiated with a template parameter
T. This parameter specifies the value type of the signal. For example
by sca_sdf _signal<double> my_signal a signal with a value range of
a variable with double precision is instantiated in SystemC-AMS. Of
course, one can as well specify the template parameter AAF instead of
double. This small change is all that is needed with SystemC-AMS to
turn the numerical simulation into a semi-symbolic simulation based on
affine arithmetic. Instead of using operators defined for double values,
the compiler will use the operators defined in the AAF class, which over-
load the standard operators. The results of the simulation are affine
expressions that semi-symbolically represent possible deviations.

For example, one can write the following code:

AAF a(2.0), b(3.0), c(2.0), y;

// constructor which adds a noise symbol
// x_i with partial deviation 0.1:

AAF uncertainty(Interval(-0.1, +0.1));

a = a + uncertainty;

y = (a + b) * (c + uncertainty);

cout << "y =" << y << endl;

This simple program produces the following output:
y = 10 + (e1%0.7) + (e2%0.01)

So after the uncertainty is introduced one can use a variable of type
AAF like any other variable.

The advantage of semi-symbolic simulation compared with a numeri-
cal simulation becomes obvious if the uncertainties at the output of the
simulated system exceed some specified range. In this case, the symbolic
representation provides designers with the contribution of all sources of
uncertainty to the deviation at the output. It also models the effects
that are created by the combination of uncertainties. This together al-
lows the designer to identify sources of uncertainty where improvements

DRAFT Page 7 January 26, 2006, 2:16pm D R A F T

8

are most fruitful. As a long term perspective one day a mixed-signal
synthesis system can be directed this way, where further optimization is
needed.

3. Handling nonlinearity

Each nonlinear operation approximation creates an additional term,
as can be seen in the code example. These approximations are a problem
for the affine arithmetic, as potentially a high number of very small and
thereby insignificant terms in the symbolic expression is created.

This problems shows up especially if the system that is modeled con-
tains a loop and this system has at least one component that creates
an approximation in the path of this loop (e.g. by multiplication of two
affine expressions).

Then any kind of memory (e.g. some modeled energy storage) in a
block within the modeled system will contain most of the approximation
terms that are created in each simulation cycle of this loop. If there is a
constant number of approximations this means that in each simulation
cycle the number of terms increases by this constant number.

To cope with that, we introduce a method that ’cleans up’ the affine
arithmetic expression variables. It somewhat resembles the garbage col-
lection concept, used to free unneeded memory of variables, that is used
in some programming languages like e. g. Java.

If the number of noise symbols in the affine expressions increases above
a certain level, the simplification() method is called. For all variables
in the system, all terms smaller than a cut level [, set by the user, are
summed up separately by the ones with a positive and the ones with a
negative sign to two special noise terms.

Deleting the terms with an absolute value below this cut level could
potentially lead to inaccurate results in the case of a high number of
simulation time steps and certain functional blocks, e. g. integrators, be-
cause in this example they may grow to a big one over time. Therefore
it is better to sum them. This way it delivers a safe inclusion, but it
means that the correlation of the individual terms is lost. But it does
not exhibit the same problem like interval arithmetic does, as described
above, because the correlation of this sum is still valid for all AAF vari-
ables in the future time steps and the terms with different signs are kept
separate. Furthermore these uncertainties are usually far smaller than
the nominal values and if [again is far smaller than the other uncer-
tainties, any kind of over-approximation would not create a problem. So
the influence of approximations decreases below the level [after several
time steps.

DRAFT Page 8 January 26, 2006, 2:16pm D R A F T

Modeling Uncertainty in Nonlinear Analog Systems with Affine Arithmetic 9

Please note that if the simplification method would be called too often,
the unneeded over-approximation could potentially show up significantly
and in the above mentioned example the concept of feedback that makes
these terms converge to 0, would not work. On the other hand if called
not often enough, the computation time will increase significantly. Our
experiences has shown, that the choice of the time point, when to call
the simplification method, was for the example system not very critical.

The method resembles the typical strategy of leaving away smaller
terms. But with affine arithmetic we do not have to really leave the
smaller terms away, instead we can handle their sum as a new uncer-
tainty. So not only the modeled uncertainties of the real system, but
obviously also uncertainties caused by the modeling process, like these
simplifications, are analyzed.

Implementation of the simplification method

In the present implementation the simplification method is invoked
every 1.000th simulation cycle, but later on it might be automatically
invoked by some heuristic. For example the change in the highest index
of the noise terms since the last simplification could be used as a crite-
rion, when to call this method. The cut level [is set to a constant small
fraction of the smallest explicitly introduced uncertainty by the user.

The change in an affine expression can be seen by the following exam-
ple of a simplification with [= 1.0 - 10~4. First a variable was printed
immediately before the simplification:

28.9796 + (e1%2.9925) + (e5*0.000856951)
+ (e6%1.14971e-006) + (e7%1.11085e-006)
+ (e8%-1.34821e-007) + (e9%1.07968e-006)
+ (e10%-1.12145e-007)

After the simplification the printed variable changed to:

28.9796 + (e1%2.9925) + (e5*0.000856951)
+ (e34%3.34024e-006) + (e35%-2.46966e-007)

Usually this happens with far more terms, but for demonstration pur-
poses it would be difficult to show. In this case €34 sums up the positive
insignificant terms and eg5 sums up the negative insignificant terms.

By handling a list with pointers to all affine variables in the system,
it is possible to access all AAF variables. This list is added as a static
member of the AAF class, so that all AAF variables share it.

The AAF class saves the affine expression in one variable for the cen-
tral value zg and two pointers to dynamically allocated arrays called
coefficients and indices. In a first run across all AAF variables and

DRAFT Page 9 January 26, 2006, 2:16pm D R A F T

10

across all coefficients in these variables, the significant terms are col-
lected, based on the cut level . A term x; of an affine variable T is
significant if it fulfills the condition

|l’z| > [.

The second run goes again across all variables. For each of the variables
it is determined how many significant terms are contained, based on the
result of the first run. Then two new arrays for the coefficients and the
indices are allocated and the significant terms are copied to the new
arrays. After that the memory of the old arrays is freed.

Efficiency gained by the simplification

The following text analyses the effort to handle one variable. So the
total effort also scales with the number of variables for all similar simu-
lation methods.

Let us assume a system with a loop, n be the number of total sim-
ulation time steps and ¢ be a constant that describes the maximum
number of nonlinear operations, along the path of the loop. Remember
that these nonlinear operations add terms. Further let & be the number
of explicitly introduced uncertainties.

With conventional simulation based on the static dataflow model of
computation and with variables of type e. g. double the space complexity
is O(1) and the simulation time is O(n).

In contrast to that in the naive implementation the maximum memory
needed for each affine variable is

en+k CO(n)

because in each of the n steps ¢ uncertainties are added by over-
approximations and a maximum of k has been added intentionally at
the elaboration phase. This means that the space complexity is O(n).

Even worse is the resulting time complexity. This is because in each
simulation time step each term of an affine variable needs to be handled,
e.g. an arithmetic operation has to be performed for it by the CPU:

n
Z(ci +k) = en(n+1)/2+kn
i=1
= n?*/2+ (c+k)n
c oY)
System theory requires for every stable system that every bounded
input delivers a bounded output. Obviously every technically meaningful

DRAFT Page 10 January 26, 2006, 2:16pm D R A F T

Modeling Uncertainty in Nonlinear Analog Systems with Affine Arithmetic 11

system to be implemented is stable. Furthermore a discrete system is
stable if and only if the impulse response is absolutely summable:

o0

> (i) < oo

1=—00

This implies an important aspect: The impulse response of the opened
control loop converges to zero. So every introduced over-approximation
term will converge to zero with the number of iterations through the
control loop in the given example. This means that we can apply a trick
that copes with the terms caused by the over-approximation: From time
to time we sum up all approximation terms that got extremely small
(smaller than [) by a simplification method, thereby keeping the safe
inclusion, but reducing the number of terms. On the other hand, this
means, if the number of terms can not be reduced, we get a strong
indication that the system might be unstable.

This simplification method, if called every m simulation time steps,
is a substantial step forward regarding efficiency, because in the m time
steps between two simplification operations, a maximum of ¢ terms adds
in each time step. To this adds the number of k explicitly introduced
terms. As ¢, m and k are all constants, we get asymptotically the same
space complexity like pure numerical simulation:

em+k CO(1)

The time complexity of the simulation with the simplification method
needs cm + k computations in one simulation time step in the worst-case
of the time step before the next simplification method call. This happens
in the worst-case n times. To this adds the effort of the simplification
method, called n/m times. The simplification method itself needs in the
first and the second pass to touch every term. This gives a total time
complexity of O(n), also the same complexity numerical simulation has:

(em + k)n + 2n/m(em + k)

= (em+k+2(ecm+k)/m)n
C O(n)
4. Experimental Results

The system shown in Figure 1.1 was implemented in SystemC-AMS
and the AAF class. With this setup transient simulation runs were per-
formed.

DRAFT Page 11 January 26, 2006, 2:16pm DR A F T

12

number of computation time computation time
time steps || without simplification [s] | with simplification [s]
1,000 1 1

2,000 4 2

4,000 16 5

8,000 61 10
16,000 244 20
32,000 999 40
64,000 4083 79
128,000 - 159
256,000 — 319
512,000 — 640
1,024,000 — 1275

Table 1.2. Measured Computation Time

Table 1.2 shows the time needed for the simulation with and without
using the simplification method. The time interval that was simulated
was the same for all values in the table and was scaled to deliver time re-
sults that are easy to interpret. Only the step width in time was changed
for each row. The simplification method was called every 1,000th time
step, respectively never in the case of no simplification.

The table shows the clear advantage of the simplification method,
as the computation time increases linear with the number of simulated
time steps, if the simplification method is used. It is very clear to see
a quadratic increase of the needed computation time for the simulation
without the use of the simplification method, that shows up as a four
fold increase of the required computation time for a two fold increase
in the number of time steps. So it gets obvious, that affine arithmetic
would be much harder to use without this simplification method for long
simulation runs in the presence of feedback and nonlinearity.

For a visual representation, we convert affine expressions to intervals,
by use of the rad operator. These intervals can be plotted as shown in
Figure 1.2 as a range. In the case of an uncertainty that is substantially
smaller than the central value, two separate traces with different scalings
are plotted. We use for both types of plots the program gnuplot, as usual
waveform viewers do not support interval type signals. Figure 1.2 shows
the step response of a feedback loop that contains a nonlinear control
path, which is shown in Figure 1.1.

DRAFT Page 12 January 26, 2006, 2:16pm DR A F T

Modeling Uncertainty in Nonlinear Analog Systems with Affine Arithmetic 13

40

35
o [—

25
20
154
10

Setpoint [°C]
5 Control Variable [°C]

0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02

Time

Figure 1.2. System within the stable area

Figure 1.3 shows the step response close to the stability border and
Figure 1.4 the same system, but beyond the stability border. Interesting
to note are typical chaotic effects of nonlinear systems near the stability
border, that show up very clearly in the uncertainty and which are not
linear with the central value in Figure 1.3.

40

351
o il
251
201
15r
10

Setpoint [°C] m—m
5 Control Variable [°C]

0 002 004 006 0.08 0.1 012 014 016 018 02

Time

Figure 1.3. System near the stability border

5. Conclusion

Without the described method semi-symbolic simulation with affine
arithmetic has quadratic time complexity. On the other hand, with
the presented method, simulation with affine arithmetic has linear time
complexity, even in the presence of nonlinearities and feedback. This

DRAFT Page 13 January 26, 2006, 2:16pm DR A F T

14

40

351
——

] —

251

20}

151

10

Setpoint [°C]
5 Control Variable [°C]

Time

Figure 1.4. System beyond the stability border

means that affine arithmetic is feasible for simulation even with a large
number of time steps in nonlinear feedback systems.

Compared with purely numerical simulation these extensions allow
designers to analyze the noise and sensitivity to different sources of un-
certainty, such as thermal or quantization noise. Compared with analy-
ses in ‘analog’ simulators, the described method is applicable to digital
signal processing methods and to discrete time approximations of analog
circuits. This allows designers an analysis of heterogeneous systems that
include large fractions of DSP software. The symbolic representation of
the contributions to the deviations at the outputs can be interpreted
easily and delivers a safe inclusion, an important aspect for the design
of security critical systems, that could create otherwise dangerous situ-
ations if their deviation is too large.

Compared with formal approaches for model checking or property
refinement of hybrid systems [Henzinger and Ho, 1995; Henzinger, 1996;
Heupke et al., 2003] it allows us to model and verify properties such as
robustness or precision, that are key issues in the design of analog and
mixed-signal systems.

DRAFT Page 14 January 26, 2006, 2:16pm DR A F T

References

Andrade, M.V.A., Comba, J.L.D., and Stolfi, J. (1994). Affine Arith-
metic (Extended Abstract). In INTERVAL ’94, St. Petersburg, Rus-
sia.

Fang, C.F., Rutenbar, R.A., Piischel, M., and Chen, T. (2003). Towards
Efficient Static Analysis of Finite-Precision Effects in DSP Applica-
tions via Affine Arithmetic Modeling. In Design Automation Confer-
ence (DAC 2003), Anaheim, USA.

Gay, Olivier (2003). Libaa - C++ Affine Arithmetic Library for GNU /
Linuz. http://savannah.nongnu.org/projects/libaa.

Grimm, Christoph, Heupke, Wilhelm, and Waldschmidt, Klaus (2004a).
Refinement of Mixed-Signal Systems with Affine Arithmetic. In De-
sign, Automation and Test in Europe 2004 (DATE ’04), Paris, France.

Grimm, Christoph, Heupke, Wilhelm, and Waldschmidt, Klaus (2004b).
Semi-Symbolic Modeling and Analysis of Noise in Heterogeneous Sys-
tems. In Forum on Specification and Design Languages (FDL ’04),
Lille, France.

Hartong, Walter, Hedrich, Lars, and Barke, Erich (2002). Model Check-
ing Algorithms for Analog Verification. In Design Automation Con-
ference 02 (DAC 2002), New Orleans, Louisiana.

Henzinger, Thomas A. (1996). The theory of hybrid Automata. Pro-
ceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science (LICS 1996), pages 278-292.

Henzinger, Thomas A. and Ho, Pei-Hsin (1995). Hytech: The cornell
hybrid technology tool. In Antsaklis, Panos, Kohn, Wolf, Nerode, Anil,
and Sastry, Shankar, editors, Hybrid Systems II, volume 999 of Lecture
Notes on Computer Science, pages 265—293. Springer, Berlin.

Heupke, Wilhelm, Grimm, Christoph, and Waldschmidt, Klaus (2003).
A New Method for Modeling and Analysis of Accuracy and Tolerances
in Mixed-Signal Systems. In Proceedings of the Forum on Design Lan-
guages (FDL’03), Frankfurt, Germany.

DRAFT Page 15 January 26, 2006, 2:16pm DR A F T

16

Lemke, Andreas, Hedrich, Lars, and Barke, Erich (2002). Analog Circuit
Sizing Based on Formal Methods Using Affine Arithmetic. In ICCAD
2002.

Stauner, Thomas, Miiller, Olaf, and Fuchs, Max (1997). Using HyTech
to Verify an Automotive Control System. In Maler, Oded, editor, Hy-
brid and Real-Time Systems — International Workshop, HART ’97,
volume 1201 of Lecture Notes on Computer Science, pages 139-153.
Springer, Berlin.

Zhang, Ying and Mackworth, Alan K. (1996). Specification and verifi-
cation of hybrid dynamic systems with timed V-automata. In Alur,
Rajeev, Henzinger, Thomas A., and Sontag, Eduardo D., editors, Hy-
brid Systems III, volume 1066, pages 587-603. Springer, Berlin.

DRAFT Page 16 January 26, 2006, 2:16pm DR A F T

