Challenges in vehicular communications for impactive systems - Dynamics, Doppler, and Delay

C.F. Mecklenbräuker¹, A. Paier¹, J. Karedal², N. Czink³,⁴, H. Hofstetter⁴,
C. Dumard³, T. Zemen³, F. Tufvesson², A.F. Molisch²,⁵

¹ Inst. f. Nachrichtentechnik u. Hochfrequenztechnik, TU Wien, Vienna, Austria
² Department of Electrical and Information Technology, Lund University, Lund, Sweden
³ Forschungszentrum Telekommunikation Wien (ftw.), Vienna, Austria
⁴ mobilkom Austria AG, Vienna, Austria
⁵ Mitsubishi Electric Research Labs, Cambridge, USA

Abstract:

Traffic telematics applications are currently under intense research and development for making transportation safer, more efficient, and cleaner. Communication systems which provide “always on” connectivity at data rates between 1 and 10 Mb/s to highly mobile surface traffic (cars and trains) are urgently required for developing traffic telematics applications and services. This contribution presents a description of an extensive measurement campaign during April 2007 in Lund, Sweden, in an urban scenario, a rural scenario, and on a highway. We measured car-to-car and car-to-infrastructure channels in 4×4 multiple-input multiple-output (MIMO) configuration in the 5.2 GHz band with high Doppler resolution. Here, we discuss the estimated pathloss behaviour, power-delay profiles, and delay-Doppler spectra from selected measurement runs, and their implications for vehicular peer-to-peer networks for increased safety.