
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 10, OCTOBER 2007 1973

Multiuser Space–Time Algorithms
for Synchronization, Channel Estimation,

and Data Detection in an Interference Monitoring
System for UMTS/TDD Networks

Klaus Kopsa, Harold Artés, Member, IEEE, Gerald Matz, Senior Member, IEEE,
and Franz Hlawatsch, Senior Member, IEEE

Abstract—We present multiuser space–time receiver algorithms
for synchronization, channel estimation, and data detection in
the downlink of a universal mobile telecommunications system
(UMTS)/time-division duplex (TDD) cellular communication sys-
tem with multiple receive antennas. These algorithms were de-
signed for use in a network monitoring device that analyzes the
interference situation present, thereby allowing the operators to
improve their networks. For interference analysis, we decode the
broadcast channels (BCHs) of surrounding base stations. To cope
with the widely differing power levels of signals received from
different base stations, we combine multiuser space–time signal
processing techniques with reestimation and successive cancella-
tion schemes. Simulation results demonstrate that our algorithms
enable reliable BCH data detection even at low SINR.

Index Terms—Cellular communications, channel estimation,
cochannel interference, data detection, multiuser processing,
space–time processing, synchronization, time-division duplex
(TDD), universal mobile telecommunications system (UMTS).

I. INTRODUCTION

IN CELLULAR code-division multiple access (CDMA) sys-
tems, such as the third-generation universal mobile telecom-

munications system (UMTS) [4], operators have to carefully
balance cochannel interference to serve a maximum number of
users with satisfactory quality. Besides thorough network plan-
ning, monitoring of the interference situation using adequate
measurement devices is necessary to optimize the network. In
UMTS, widely used measurement devices are trace mobiles—
common mobile terminals equipped with additional measure-
ment software and interfaces—and scrambling code scanners.
These tools are useful for large-scale measurements, but in some
situations, their limited signal processing power does not allow
them to resolve the interfering signals with sufficient accuracy.
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Within the European Union Project ANTIUM [5], we partici-
pated in the development of a UMTS network monitoring device
that significantly outperforms conventional tools. For the time-
division duplex (TDD) mode of UMTS,1 we designed a receiver
chain consisting of synchronization, channel estimation, and
data detection components. This receiver performs interference
classification by determining the number of base stations (BSs)
contributing to the received signal, obtaining synchronization,
estimating the channels corresponding to the detected BSs, de-
coding the broadcast channel (BCH) data, and estimating the
power level for each detected BS.

In this paper, we discuss the design challenges of this re-
ceiver and describe the algorithms that we have developed
for synchronization, channel estimation, and data detection, as
well as their interdependencies. We address an unconventional
multiuser scenario, i.e., multiple access (by multiple BSs) in
the downlink. Usually, in cellular downlinks—apart from soft-
handover situations—the mobile station processes just one BS
signal, whereas here, even the weak signals of distant BSs are
processed. Multiple access is normally performed in the uplink
and involves only users within one cell, whereas in our down-
link situation, BSs from different cells are involved. Finally, our
network monitoring tool only listens, i.e., no bi-directional link
to the BSs is established, and no closed-loop power control is
performed.

This latter point makes the decoding task very challenging
because the power levels of different BS signals are widely
different (due to different path losses), and thus, extremely small
signal-to-interference levels can occur. To meet this challenge,
the ANTIUM design featured multiple (uncalibrated) receive
antennas and offline (batch) processing of the recorded receive
signals. This allowed us to apply sophisticated multiuser space–
time receiver algorithms that yield satisfactory performance in
spite of the adverse interference scenario.

Our choice of receiver algorithms was guided by the fol-
lowing considerations. A space–time rake-type receiver [7], [8]
would have poor performance due to the low spreading factor
of UMTS/TDD. A beamforming frontend followed by some
sophisticated temporal equalizer would require a calibrated an-
tenna array. Finally, a space–time maximum likelihood sequence

1See [6] for a discussion of receiver algorithms for the frequency-division
duplex (FDD) mode of UMTS.
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Fig. 1. Frame structure of a UMTS/TDD base station. One of the 15 timeslots
of a radio frame (here, e.g., timeslot #1) contains the BCH superimposed on
other CDMA channels.

estimator [9] would have excessive complexity even for offline
processing. Therefore, instead of these approaches, we adopted
space–time minimum mean-square error (MMSE) and decision
feedback (DFB) equalizers [10]–[12] as the cores of our receiver
algorithms. We embedded these equalizers in reestimation and
successive cancellation schemes to compensate for the missing
prior knowledge. Similar remarks apply to the synchronization
and channel estimation stages preceding the MMSE/DFB detec-
tors. A main contribution of this paper, in fact, is to demonstrate
how sophisticated estimation and detection techniques have to
be modified, augmented, and combined to make them work in
the difficult scenario considered, under real-world conditions
and without any unrealistic assumptions.

The paper is organized as follows. Section II describes syn-
chronization algorithms for determining the number of BS sig-
nals present and the temporal location of the corresponding
BCHs. In Section III, channel estimation algorithms are dis-
cussed that jointly estimate the channel impulse responses of all
BSs detected by the synchronization stage. Section IV presents
the data detection algorithms that equalize the channels and
detect the data transmitted on the BCHs. In Section V, the per-
formance of our algorithms is assessed through simulations.
Finally, some conclusions are provided in Section VI.

II. SYNCHRONIZATION

We first present a brief summary of the UMTS/TDD frame
structure. The frame structure of one BS is depicted in Fig. 1.
With UMTS/TDD [4], all BSs are synchronized, i.e., all radio
frames are transmitted temporally aligned. For a given BS, each
radio frame contains 15 timeslots that can be individually allo-
cated for uplink or downlink in a flexible manner [13]. In each
timeslot, CDMA is used. One of the 15 timeslots (in Fig. 1,
this is timeslot #1) contains the desired BCH and the synchro-
nization channel (SCH) superimposed on up to 12 additional
data channels. Each CDMA channel consists of two data parts
separated by a midamble and followed by a guard period. The
data parts are spread using a code with spreading factor 16 [14],
and scrambled (modulated [14]) using a cell-specific scrambling
code of length 16. The timeslot is then constituted by the sum
of all CDMA channels. The antenna array of the monitoring
device receives the superposition of all BS signals corrupted by
frequency-selective fading and additive noise.

Fig. 2. Structure of the synchronization channel (SCH) [13]. The SCH is
added to the data channels and the BCH present in the shaded timeslot (the data
channels and BCH are not shown).

The SCH is shown in Fig. 2. It consists of a primary code
sequence cp(n) and three (out of 12 possible) secondary code
sequences cs,i(n), each 256 chips long [14]. The SCH is added
to the data channels and the BCH present in the respective time-
slot. Because the SCHs of all BSs are transmitted in the same
timeslot and the primary code sequence is identical for all BSs,
each BS is assigned a different SCH time offset toffset,j to allow
the receiver to distinguish (locate) the SCHs of different BSs.
Each secondary synchronization code cs,i(n) is modulated with
a quadrature phase-shift keying (QPSK) symbol bi . The sum∑3

i=1 bics,i(n) is called secondary synchronization channel;
its composition [symbols bi and choice of the secondary code
sequences cs,i(n)] bears information on the BS’s scrambling
code, midamble, and time offset toffset,j .

The synchronization procedure that we propose consists of
two parts: 1) primary synchronization and 2) secondary syn-
chronization [1], [15]. For primary synchronization, the peaks
of a detection statistic γ(n) indicate the locations of the pri-
mary synchronization code cp(n). (Because cp(n) is the same
for all BSs, a single detection statistic suffices to locate the
primary synchronization codes of all surrounding BSs.) Then,
secondary synchronization performed at the obtained SCH loca-
tions yields the scrambling codes, midambles, and time offsets
of the different BSs via the secondary synchronization codes.
This information is used by the subsequent channel-estimation
stage.

A. Primary Synchronization

We present two alternative detection statistics for primary
synchronization, both of which are based on the generalized
likelihood ratio test (GLRT) principle [16, p. 187]. Hereafter,
x(n) denotes the M × 1 baseband signal vector received on the
M -element receive antenna array and sampled at the chip rate.

1) Spatial Detector: The first detector [17], [18] uses the
simplifying assumption of a one-tap channel described by the
single M × 1 vector h. Detecting the presence of the primary
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synchronization code cp(·) can be formulated as the following
binary hypothesis testing problem:

� H0 (absence of synchronization code):

x(n + ν) = w(n + ν), for ν = 0, . . . , N−1.

� H1 (presence of synchronization code):

x(n + ν) = h p(ν) + w(n + ν), for ν = 0, . . . , N−1.

Here, n is the time atwhich the two hypotheses are to be tested,
p(ν) is the reference sequence (primary synchronization code
cp(ν)) of length N , and w(n) summarizes the interference from
other BSs and the noise. We assume that w(n) is Gaussian and
temporally white with M × M spatial correlation matrix Rw.
Since Rw and h are unknown, we have to solve a composite hy-
pothesis testing problem. In the GLRT approach, we replace the
unknown quantity Rw by its conditional maximum-likelihood

(ML) estimates R̂
(0)

w (n) (under H0) and R̂
(1)

w (n) (under H1)
and the unknown quantity h by its ML estimate ĥ(n). Thus,
we obtain the generalized likelihood ratio of the two hypotheses
at time n as shown in (1), at the bottom of the page. The ML
estimates of Rw and h can be shown to be given by

R̂
(0)

w (n) = R̂x(n)

R̂
(1)

w (n) = R̂x(n) − N

‖p‖2
r̂xp(n) r̂H

xp(n)

ĥ(n) =
N

‖p‖2
r̂xp(n)

where ‖p‖2 =
∑N −1

ν=0 |p(ν)|2 and

R̂x(n) =
1
N

N −1∑
ν=0

x(n + ν)xH (n + ν) (2)

r̂xp(n) =
1
N

N −1∑
ν=0

x(n + ν) p∗(ν) . (3)

The logarithm of (1), with irrelevant terms removed, then yields
the detection statistic [18]

γ(n) =
1

‖p‖2
r̂H

xp(n) R̂
−1

x (n) r̂xp(n). (4)

Since more than one frame is recorded by the ANTIUM signal
acquisition unit, the performance of γ(n) as a detection statistic
can be improved through averaging over several frames.

2) Heuristic Space–Time Detector: The spatial detector (4)
assumed a one-tap channel (i.e., no multipath propagation). The
temporal interference caused by multipath propagation can be
taken into account by stacking successive received signal vectors
as x̃(n)

�
= [xT (n) xT (n +1) · · · xT (n + L0−1)]T, where L0

is the length of the temporal window considered. Formally sub-
stituting the ML0-dimensional vector x̃(n) for x(n) in (4) then

Fig. 3. False-alarm probability versus threshold η for the spatial detector and
the heuristic space–time detector using averaging over different numbers of
frames.

yields the “heuristic space–time detection statistic” (cf. [6])

γ(n) =
1

‖p‖2
r̂H

x̃p(n) R̂
−1

x̃ (n) r̂x̃p(n) (5)

where the ML0 × ML0 matrix R̂x̃(n) and the ML0-dimensional
vector r̂x̃p(n) are, respectively, given by (2) and (3) with x(n)
replaced by x̃(n). This detection statistic is “heuristic” as it does
not correspond to a GLRT for the stacked signal vector x̃(n),
but it exhibited excellent performance in our simulations (see
Section V-B). Again, the performance can be further improved
by averaging over several frames.

3) Choice of Threshold: A large value of the detection statis-
tic γ(n) in (4) or (5) indicates a high probability of presence
of the code p(ν). Therefore, the result of primary synchroniza-
tion is given by the “peak locations” ni where γ(n) exceeds a
threshold η. The choice of η is a tradeoff between high detec-
tion probability and low false-alarm probability. Fig. 3 shows
the (simulated) false-alarm probability versus η for the detection
statistics (4) and (5) using averaging over different numbers of
frames. This figure allows one to determine the threshold for a
prescribed false-alarm probability. A similar approach can also
be employed to determine the threshold for the GLRTs used in
Sections II-B, III-B, and IV-B.

B. Secondary Synchronization

The main goal of secondary synchronization is to extract the
scrambling codes, basic midambles, and time offsets toffset,j of
the different BSs (this will be termed parameter extraction in
the following). For this task, the reference sequence p(ν) in (4)
or (5) is chosen as the sum of the primary synchronization code

L(n) =

[
detR̂

(0)

w (n)
]N exp

(
−

∑N −1
ν=0

[
x(n + ν) − ĥ(n) p(ν)

]H
R̂

(1)−1

w (n)
[
x(n + ν) − ĥ(n) p(ν)

])[
detR̂

(1)

w (n)
]N exp

(
−

∑N −1
ν=0 xH (n + ν)R̂

(0)−1

w (n)x(n + ν)
) (1)
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Fig. 4. Synchronization for weaker BSs using time windows.

and three weighted secondary synchronization codes, i.e.,

p(ν) = cp(ν) +
3∑

i=1

bics,i(ν).

Since the UMTS/TDD standard allows 64 ways of composing
p(ν) by choosing the bi and cs,i(ν), we evaluate γ(n) at the po-
sition of the highest primary synchronization peak for all these
64 versions of p(ν). All the bi and cs,i(ν) corresponding to the
maximum of the resulting 64 values provide the information
about the BSs’ basic midambles, scrambling codes, and time
offsets via lookup tables specified in the standard [1], [15]. This
result for the strongest BS is quite reliable since the strongest
BS has a high signal-to-interference-and-noise ratio (SINR).
However, because it will heavily influence the subsequent syn-
chronization to the weaker BSs, we verify its correctness in a
synchronization verification stage that attempts to discriminate
between an actual SCH location and a false alarm [1], [15].
We use the extracted BCH midamble of the strongest BS as
the reference sequence p(ν) and check whether the peak of the
spatial detection statistic (4) at the position to be tested is above
a certain threshold. In the negative case, we repeat parameter
extraction and synchronization verification at the position of the
second strongest peak in the primary synchronization detection
statistic.

For secondary synchronization to the weaker BSs, we exploit
the fact that the timeslots of all BS signals are temporally aligned
upon transmission. The 32 possible synchronization code off-
sets toffset,j differ by multiples of 48 chips. Since adjacent BSs
use different time offsets, we know where to expect the syn-
chronization codes of weaker BSs. To allow for path-length
depending time delays, we search for these codes in a certain
time window around the expected locations, as shown in Fig. 4.
Thus, for synchronization to a weaker BS, we accept a peak of
γ(n) if and only if it both exceeds our threshold and is located
within one of the time windows (see Fig. 4). At each accepted
peak location, we then perform parameter extraction and syn-
chronization verification as described earlier for the strongest
BS.

Fig. 5 summarizes the steps of the total synchronization pro-
cedure [1], [15]. The upper part describes the synchronization
for the strongest BS, while the lower part describes the scanning
of the 32 different time windows for the SCHs of weaker BSs.

Fig. 5. Structure chart of the synchronization procedure.

III. CHANNEL ESTIMATION

Channel estimation is based on the midamble contained in
each UMTS/TDD timeslot (cf. Fig. 1). After the synchronization
stage, we know the temporal locations of the timeslots (and, thus,
of the midambles) and which basic midamble sequence is used
by a given BS. Because the BCHs of all BSs are transmitted in
the same timeslot and the UMTS/TDD network is synchronized,
the corresponding midambles are roughly temporally aligned at
the receiver (only “roughly” because of the different propagation
delays). Therefore, channel estimation can be performed for all
BSs jointly. On the other hand, for simplicity, we estimate the
channels corresponding to the individual antennas separately.
This is optimum if these channels are uncorrelated, and it was
observed to work well even if they are correlated.

Let K be the number of BSs detected by the synchroniza-
tion stage, and L the maximum length of all channel impulse
responses including propagation delays. We stack all data re-
ceived on the ith antenna during the midamble period into the
vector xi of length Nm + L − 1 (Nm = 512 is the midamble
length). The multiuser (i.e., containing the channels of all K
BSs) input–output relation then reads [2], [15]

xi = Chi + ni .

Here, the KL × 1 channel vector hi corresponds to the ith
antenna; it is defined by stacking the unknown L-tap channel
impulse responses of all the K BSs, and assumed Gaussian. Fur-
thermore, the (Nm + L − 1) × KL matrix C is constructed as
a row of K Toeplitz matrix blocks corresponding to the various
BSs. More specifically, each one of the L columns of the kth
matrix block is a delayed (shifted) replica of the midamble of
the kth BS, padded by zero entries. This structure of C accounts
for both the different propagation delays and the channel dis-
persion. Finally, ni is a white Gaussian noise vector. The mini-
mum mean-square error (MMSE) estimate of hi is then given by
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Fig. 6. Block diagram of the SC-MMSE channel estimator incorporating the
MMSE channel estimator (shaded box). The index of the (currently) strongest
BS is denoted by k.

[19, p. 389], [20, p. 327]

ĥi,MMSE = RhCH (CRhCH + σ2I)−1xi (6)

where Rh is the covariance matrix of hi (assumed not to depend
on i) and σ2 is the noise variance.

A. SC-MMSE Estimator

The second-order channel statistics Rh and σ2 (and also C,
cf. Section III-B) are unknown and have to be estimated. Be-
cause hi may contain the channel impulse responses of many
BSs with widely different power levels, accurate estimation of
Rh is crucial. To meet this requirement, we propose to embed
the MMSE channel estimator in a successive cancellation (SC)
loop. The resulting SC-MMSE channel estimator [2], [15] is de-
picted in Fig. 6, with its core, the MMSE estimator, highlighted
by a shaded box.

1) MMSE Estimator: The MMSE estimator consists of four
stages (see Fig. 6). First, an estimate Ĉ of the midamble matrix
C is calculated as will be explained in Section III-B. Second,
preliminary least-squares (LS) channel estimates [19, p. 225],

[20, p. 365] ĥi,LS = (Ĉ
H

Ĉ)−1Ĉ
H

xi are computed for several
successive frames. These are used in the third step to estimate the

channel statistics. Under the uncorrelated scattering assumption
[21], the elements of hi (channel taps) are uncorrelated. Thus, an

estimate of Rh is given by R̂h = diag{σ̂2
h(1), . . . , σ̂2

h(KL)},

where σ̂2
h(j) is the sample variance of the jth element of ĥi,LS

that is computed by averaging over all antenna elements and sev-
eral successive frames. Furthermore, an estimate σ̂2 of the noise
variance σ2 is obtained as the sample variance computed from
the noise vector estimate n̂i = xi − Ĉĥi,LS, again using aver-
aging over all antenna elements and several successive frames.
In the fourth stage, joint MMSE estimation of the channels of
all BSs previously detected by the synchronization procedure is
finally performed by using the estimates R̂h and σ̂2 in (6).

2) Successive Interference Cancellation: The successive in-
terference cancellation loop (see Fig. 6) attempts to prevent
the signals of strong BSs from impairing the estimation of mid-
ambles and channel statistics for weaker BSs [2], [15]. In the first
round, we jointly estimate the channels of all K BSs detected by
the synchronization stage but retain the channel estimate of only
the strongest BS. We then cancel the influence of the strongest
BS by subtracting its reconstructed midamble signal from the
received signal, i.e., x → x−x̂k (see Fig. 6), where x̂k is the
estimated midamble (cf. Section III-B) filtered by the estimated
channel. This enhances the SINR of the weaker BSs so that in
the second round, the midambles and channel statistics for the
remaining BSs are estimated more accurately. We again retain
the channel estimate of only the (currently) strongest BS and
cancel the influence of this BS from the received signal. This re-
cursive procedure continues until all channel impulse responses
have been estimated.

B. Estimation of Midamble Composition

It remains to discuss the calculation of the midamble matrix
estimate Ĉ used in the LS and MMSE channel estimators. There
are eight midambles m

(l)
k (n), l ∈ {1, . . . , 8} per BS k [13],

which are constructed from a cell-specific basic midamble code
that is known from the synchronization stage. The BCH always
uses m

(1)
k (n), and each data channel uses one of the six mi-

dambles m
(3)
k (n), . . . ,m(8)

k (n) (up to two data channels share

one midamble sequence). The midamble m
(2)
k (n) is reserved

for transmit diversity, which will not be considered here. The
“total midamble” transmitted by the kth BS is thus given by
a weighted superposition of the BCH midamble m

(1)
k (n) and

certain data channel midambles, i.e.,

mk (n) = aref m
(1)
k (n) +

∑
l∈Mk

a
(l)
k m

(l)
k (n). (7)

Here, the index set Mk ⊆ {3, . . . , 8} specifies the data channel
midambles, aref is the known amplitude of the BCH midamble
m

(1)
k (n) (the BCH midamble follows from the basic midamble

detected during secondary synchronization; cf. Section II-B),
and the a

(l)
k are the amplitudes of the data channel midambles

(which are unknown because they are affected by power
control).
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Channel estimation should use the total midambles mk (n)
in (7) because if only the BCH midamble m

(1)
k (n) is used, the

data channel midambles will act as interferers. Hence, prior to
channel estimation, we have to estimate the index sets Mk and
the midamble amplitudes a

(l)
k [2], [15]. With the estimates M̂k

and â
(l)
k , we can finally compute Ĉ via (7). We next describe

methods for calculating M̂k and â
(l)
k .

1) Detection of the Index Set Mk : A detection statistic for
detecting the presence of m

(l)
k (n) is given by the spatial detector

(4) with m
(l)
k (n) used as the reference sequence p(n)

γ
(l)
k =

1∥∥m
(l)
k

∥∥2
r̂H

xm
(l )
k

R̂
−1

x r̂
xm

(l )
k

, l = 3, . . . , 8. (8)

We then define M̂k as the set of indices l for which γ
(l)
k exceeds

a given threshold.
2) Amplitude Estimation: For amplitude estimation, we pro-

pose a maximum-likelihood (ML) technique. We can decom-
pose the M -dimensional received signal vector as

x(n) = Hkmk (n)aref + HkM k (n)ak + wk (n)

where Hk is the M × L channel impulse response matrix of the
kth BS, mk (n)

�
=

[
m

(1)
k (n) m

(1)
k (n − 1) · · · m

(1)
k (n − L +

1)
]T

is the BCH midamble vector, M k (n) is the L × 6 ma-
trix whose columns are the six data channel midamble vectors,
ak is the six-dimensional vector of the midamble amplitudes
a
(l)
k , and wk (n) summarizes all interference and noise. The

ML estimator for the amplitudes ak presupposes the knowl-
edge of Hk and Rw, which is unavailable prior to channel
estimation. To break this deadlock, we first calculate an in-
termediate channel estimate Ĥk using a preliminary ampli-
tude estimator. Temporarily assuming a one-tap channel vec-
tor hk , orthogonal midamble sequences m

(l)
k (n), and no noise,

(8) simplifies as γ
(l)
k = a

(l)2
k hH

k R̂
−1

x hk . Since the BCH mid-
amble uses the known reference amplitude aref , we also have

γ
(1)
k = a2

ref hH
k R̂

−1

x hk . Hence, γ
(l)
k /γ

(1)
k = a

(l)2
k /a2

ref , and a

preliminary estimate of a
(l)
k is given by

â
(l)
k,prel = aref

√√√√ γ
(l)
k

γ
(1)
k

.

With the estimates â
(l)
k,prel andM̂k , we now calculate interme-

diate channel estimates Ĥk by means of the SC-MMSE channel
estimator. The Ĥk , together with estimates R̂wk

of the inter-
ference/noise covariance matrices Rwk

(obtained from the in-
terference/noise estimates ŵk (n) = x(n) − Ĥkmk (n)aref −
ĤkM k (n)âk,prel), are then used as prior knowledge for the
ML amplitude estimator. Assuming that wk (n) is Gaussian
and temporally white, the ML estimate of ak is obtained as
[19, p. 186], [20, p. 238]

âk,ML =

[
N −1∑
n=0

F H
k (n) R̂

−1

wk
F k (n)

]−1 N −1∑
n=0

F H
k (n) R̂

−1

wk
yk (n)

with the M × 6 matrix F k (n)
�
= ĤkM k (n) and the vector

yk (n)
�
= x(n) − Ĥkmk (n)aref .

IV. DATA DETECTION

The BCH data carry most of the information required for
interference monitoring [4]. After synchronization and channel
estimation, all prior knowledge required to detect the BCH data
of the K BSs is available. We will now present a space–time de-
tection algorithm that uses decision-feedback equalization and
successive cancellation to mitigate the effects of cochannel in-
terference [3], [15].

A. SC-DFB Detector

1) MMSE Equalization: Stacking the BCH timeslots re-
ceived on all antenna elements into the vector x of length
M(UQ + L − 1), where U = 122 is the number of symbols per
timeslot (without the midamble) and Q = 16 is the spreading
factor, we can formulate the multiuser (all K BSs) input–output
relation as

x = GAd + n. (9)

Here, the 13·UK-dimensional vector d = [dT
BCH dT

DCH]T con-
tains the symbols of all BCHs and data channels of the K
BSs detected by the synchronization stage (recall that there are
one BCH and up to 12 data channels per BS, hence the factor
13); G = [GBCH GDCH] is the total channel matrix of size
M(UQ + L − 1) × 13 · UK that consists of the channel im-
pulse responses of the BSs convolved with the product of the
corresponding spreading and scrambling codes; the diagonal
matrix A of size 13 · UK × 13 · UK contains the known refer-
ence amplitude of the BCHs (we normalize A such that the
corresponding entries are equal to 1) and the unknown ampli-
tudes of the data channels; and n summarizes the interference
from BSs not detected by the synchronization stage and the
noise.

Adopting a space–time MMSE equalization approach (e.g.,
[10], [20]), we obtain the detected BCH data vector as

d̂BCH = Q{F MMSE x}. (10)

Here, Q{·} denotes componentwise quantization according to
the QPSK symbol alphabet, and F MMSE is the 13 · UK ×
M(UQ + L − 1) MMSE equalizer matrix given by F MMSE =
GH

BCHR−1
x (cf. (9); note that the BCH part of A does not ap-

pear because it is equal to I due to normalization). Assuming
the elements of d to be uncorrelated with variance 1, we have
Rx = GAAH GH + σ2

nI .
2) Successive Interference Cancellation: The data correla-

tion matrix Rx is unknown. In Section IV-B, we will propose a
structured estimator of Rx. Since this estimator works best for
the strongest BS, we embed the MMSE detector in a successive
cancellation loop. The resulting SC-DFB detector [3], [15] is
shown in Fig. 7. After calculating Rx for the strongest BS, the
data of this BS are obtained by a DFB version of the MMSE
detector (10) to be discussed in Section IV-C. (Although we
are ultimately interested in the BCH data only, we also need
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Fig. 7. Block diagram of the SC-DFB detector.

to detect the symbols of all data channels for the subsequent
cancellation step.) Next, the reconstructed signal of the strongest
BS is subtracted from the received signal so that the SINR for
the weaker BSs is improved. Thus, in the second round, the
correlation matrix of the cleaned version of x can be calculated
more accurately, and better detection performance is obtained.
This recursive process is continued until the data of all BSs have
been detected.

For the first round, we rewrite the received signal in (9) as

x =
K∑

l=1

GlAldl + n = GkAkdk + wk . (11)

Here, k denotes the index of the strongest BS. Furthermore, the
M(UQ + L − 1) × 13 · U matrix Gk , the 13 · U × 13 · U ma-
trix Ak , and the 13 · U -dimensional vector dk contain the entries
of G, A, and d corresponding to the BCH and data channels of
BS k. Finally, wk =

∑
l �=k GlAldl + n summarizes the inter-

ference from all other BSs and the noise. The elements of wk

are assumed uncorrelated. With (11), the MMSE detector for
the data of the strongest BS dk is obtained as

d̂k = Q{F k,MMSE x}, with F k,MMSE = AH
k GH

k R−1
x

(12)

where F k,MMSE is a matrix of size 13 · U × M(UQ + L − 1),
and Rx is now expressed by

Rx = GkAkAH
k GH

k + σ2
wk

I. (13)

B. Structured Estimation of Rx

Direct sample-mean estimation of Rx is inaccurate due to the
insufficient number of frames available for averaging. There-
fore, we propose to estimate Rx by exploiting the structure in
(13), based on suitable estimates of Gk , Ak , and σ2

wk
(as before,

k is the index of the strongest BS) [3], [15]. A rough estimate of
σ2

wk
can be obtained from the quantities computed during chan-

nel estimation. Unfortunately, estimates of Gk and Ak cannot
be similarly derived from the midamble set and amplitudes cal-
culated during channel estimation (see Section III-B) because
two different data channels may share one midamble sequence.

1) Estimation of Gk : As mentioned earlier, Gk consists of
contributions due to the BCH and the data channels of BS k;
these contributions are given by the channel impulse response
of BS k convolved with the product of the scrambling code
and the respective spreading code. The scrambling code and
channel impulse response are known from the synchronization
and channel estimation stages. To determine Gk , it thus remains
to detect which spreading codes are used by the different data
channels of BS k. In other words, we have to detect the index
set Dk of the data channels transmitted by the strongest BS.

A symbol-level model for the received signal in terms of the
data channels of the strongest BS is

x(u) =
∑
l∈Dk

a
(l)
k d

(l)
k (u) g

(l)
k + wk (u), u = 1, . . . , U.

(14)

Here, x(u) is an MQ-dimensional received vector associated
to symbol time u; a

(l)
k is the amplitude of the lth data channel;

d
(l)
k (u) is the QPSK symbol of the lth data channel at symbol

time u; g
(l)
k contains the channel impulse response convolved

with the product of the scrambling code of BS k and the spread-
ing code of the lth data channel and truncated to length Q = 16;
and wk (u) accounts for the BCH, contributions of weaker BSs,
interference from neighboring CDMA symbols, and noise. For
simplicity, we model wk (u) as uncorrelated, white, and com-
plex Gaussian.

When detecting the presence of the data channels in (14),
every possible set of data channels corresponds to a distinct
hypothesis. Since there are up to 12 parallel data channels in
a timeslot, we have 212 = 4096 different hypotheses; further-
more, the U = 122 transmit symbols d

(l)
k (u) per data channel

act as nuisance parameters. Clearly, the resulting composite
hypothesis test would have excessive complexity. To derive a
suboptimum detector with moderate complexity, we assume
that the vectors g

(l)
k for different l ∈ Dk are orthogonal so that

the presence of each data channel can be detected individually
rather than jointly. For each of the 12 possible data channels,
we now have a binary hypothesis test (data channel present or
not). A simple detection statistic for the binary hypothesis test
corresponding to the lth data channel is the incoherent matched
filter [16, p. 158]

Λ(l)
k =

U∑
u=1

∣∣xH (u) g
(l)
k

∣∣2.
The detected index set D̂k is then defined as the set of indices
l for which Λ(l)

k exceeds a certain threshold. We note that
the incoherent matched filter is suboptimum because the
distribution of the unknown QPSK transmit symbols d

(l)
k (u)

in (14) is not circularly symmetric [3], [16]. However, our
current task being to detect the presence of a data channel and
not the data itself, the actual data can be viewed as nuisance
parameters, and a good detector should be as invariant as
possible to them. The incoherent matched filter comes close to
this goal by ignoring the phase of the QPSK data symbols.
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2) Estimation of Ak : Having estimated Gk via the detected
data channel index set D̂k as discussed earlier, it remains to
estimate the diagonal amplitude matrix Ak containing the am-
plitudes a

(l)
k for all l ∈ D̂k . It can be shown that under ideal

conditions (only one BS, no noise, no intersymbol interference),
a
(l)
k equals a suitably normalized version of Λ(l)

k . Therefore, we

propose to initially use this normalized version of Λ(l)
k as an

estimate of a
(l)
k for detecting dk according to (12). For the sub-

sequent subtraction/cancellation step, however, a more accurate
amplitude estimate should be used. Indeed, once that d̂k and Ĝk

are available, we can compute the least-squares estimate of Ak

Âk,LS = arg min
Adiag.

‖x − ĜkA d̂k‖2.

This can equivalently be written as âk,LS = arg mina ‖x −
ĜkD̂ka‖2, where a is the 13·U -dimensional vector corre-
sponding to the diagonal matrix A, and D̂k is the diagonal
13 · U × 13 · U matrix corresponding to the vector d̂k (note
that Ad̂k = D̂ka). We then obtain [19, p. 225], [20, p. 365]

âk,LS = D̂
−1

k

(
Ĝ

H

k Ĝk

)−1
Ĝ

H

k x.

We now possess estimates of Gk , Ak , and σ2
wk

, and thus, we
are finally able to calculate an estimate of the correlation matrix
Rx according to (13).

C. DFB Detector

Following [10], we next develop a DFB modification of the
space–time MMSE equalizer (12) that has improved perfor-
mance [3], [15]. Inserting the estimates Âk , Ĝk , and R̂x derived
earlier into (12), we obtain an estimate of the MMSE equalizer
matrix F k,MMSE as

F̂ k,MMSE = Â
H

k Ĝ
H

k R̂
−1

x

= Â
H

k Ĝ
H

k

(
ĜkÂkÂ

H

k Ĝ
H

k + σ̂2
wk

I
)−1

.

The matrix inversion lemma [22, p. 50] yields F̂ k,MMSE =

(Â
H

k Ĝ
H

k ĜkÂk + σ̂2
wk

I)−1Â
H

k Ĝ
H

k . We next use the Cholesky

factorization [22, p. 143] Â
H

k Ĝ
H

k ĜkÂk + σ̂2
wk

I = UH U ,
where U is a 13 · U × 13 · U upper-triangular matrix. Finally,

we define Ũ
�
= diag{U}−1U , where diag{U} is the diagonal

matrix with the same diagonal as U . We note that Ũ corre-
sponds to a monic filter because its diagonal elements are all
equal to 1. The equalized vector (of dimension 13 · U ) can now
be written as

yk = F̂ k,MMSE x = Ũ
−1

diag{U}−2 Ũ
−H

Â
H

k Ĝ
H

k x.

Multiplying this equation by Ũ and rearranging the terms, we
obtain [10]

yk = diag{U}−2 Ũ
−H

Â
H

k Ĝ
H

k x − (Ũ − I)yk . (15)

Let yj
�
= (yk )j . Since Ũ − I is strictly upper triangular, yj

on the left-hand side of (15) only depends on yj+1, . . . , yJ on
the right-hand side, with J

�
= 13 · U . This allows a recursive

Fig. 8. Simulation scenario. The bullet • indicates the receiver position.

calculation of yk . The recursion is initialized with yJ , which
can be computed from x, U , Âk , and Ĝk alone.

This recursive procedure is still equivalent to the original
space–time equalization using F̂ k,MMSE. The DFB equalizer
is finally obtained by using quantized versions Q{yj+1}, . . . ,
Q{yJ } of the previously computed components to calculate yj

in every recursion step [10]. That is, (15) is replaced by

yk = diag{U}−2 Ũ
−H

Â
H

k Ĝ
H

k x − (Ũ − I)Q{yk}.

V. SIMULATIONS

To assess the performance of the proposed receiver algo-
rithms, we conducted Monte Carlo simulations for both a pedes-
trian environment and an indoor environment.

A. Simulation Setup

Assuming K BSs and channels with P propagation paths
(taps) each, the received baseband signal vector x(n) of size
M × 1 is given by

x(n) =
K∑

k=1

P −1∑
p=0

hk,p sk (n−p) + n(n)

where sk (n) is the signal transmitted by the kth BS with-
out power control, hk,p is the M × 1 channel weight vec-
tor associated to the kth BS and the pth path, and n(n) is a
noise vector. In our simulations, the channel weight vectors
were randomly generated using Clarke’s channel model [23]
hk,p = αk,p

∑Nk , p

q=1 b
(q)
k,p v

(q)
k,p . Here, αk,p is the amplitude of the

pth path, Nk,p is the number of subpaths of the pth path, the

b
(q)
k,p are independent identically distributed Rayleigh subpath

weights, and the v
(q)
k,p are steering vectors that are determined by

the array geometry and the incidence angles. The channel taps
hk,p are constant during one timeslot (666.67µs) but change

between timeslots; specifically, the coefficients b
(q)
k,p vary ac-

cording to a Jakes Doppler spectrum [24, p. 21] corresponding
to a mobile velocity of 5 km/h.

The receiver is located in the inner cell of a grid of eight
hexagonal cells (see Fig. 8). Thus, we receive one dominant BS
signal and seven weaker BS signals. We considered two propa-
gation environments called “pedestrian” and “indoor,” with cell
radii of 270 m and 30 m, respectively [25]. In addition, we used
two different channel parameter settings called A and B. Chan-
nel A has three taps with a maximum delay of only 2 chips
for both environments, whereas channel B has eight taps with
a maximum delay of 15 chips for the pedestrian environment
and four taps with a maximum delay of 3 chips for the indoor
environment.
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Fig. 9. System simulation results for the pedestrian environment. (a) Channel A. (b) Channel B.

Fig. 10. System simulation results for the indoor environment. (a) Channel A. (b) Channel B.

For an assessment of overall receiver performance, we con-
ducted joint simulations of all three receiver stages. To improve
the timing resolution, the sampling rate was chosen as twice the
chip rate. We employed the heuristic space–time detector for
synchronization, the SC-MMSE estimator for channel estima-
tion, and the SC-DFB detector for data detection. The thresholds
for primary synchronization, synchronization verification, and
detection of the midamble set (cf. Section III-B) were chosen
to obtain a false-alarm probability of 1%, 0.1%, and 1%, re-
spectively. Each of the 100 simulation rounds consisted of 16
frames of data, which were used for averaging the synchroniza-
tion detection statistic. After channel estimation, we subtracted
the SCHs of all BSs detected by the synchronization stage to
avoid their detrimental effect on the interference cancellation
performance of the subsequent SC-DFB detector. The actual

number of channel taps was not known to the receiver, only the
maximum channel length L was known.

B. Simulation Results

Figs. 9 and 10 depict the results of our simulations versus the
SINR (in decibels) of the different BSs. The graphs show four
bars per BS. The first three bars represent the synchronization
score (i.e., percentage of successful synchronization events), the
BCH data detection score, and for comparison, the hypothetical
BCH data detection score obtained with ideal (perfect) synchro-
nization and channel estimation. The fourth bar represents the
normalized MSE of the channel estimation stage averaged over
all timeslots where the corresponding BS was detected by the
synchronization stage.
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1) Pedestrian Environment: Looking at Fig. 9, we see that
the synchronization results for the pedestrian environment are
nearly perfect for channel A and for all but the weakest BSs for
channel B. For the weakest BSs for the more hostile channel B,
however, the synchronization score drops to about 40%.

The SC-MMSE channel estimator performs quite accurately
for channel A, where an MSE of about −10 dB is obtained even
for the weakest BSs with an SINR of −22 dB. For channel B, on
the other hand, the channel estimation MSE is about −4 dB for
BSs with an SINR of −18 and −22 dB. This is because channel
B has more taps and is, thus, harder to estimate than the shorter
channel A.

For channel A, the ideal data detection score of the SC-DFB
detector (i.e., assuming perfect synchronization and channel es-
timation) is above 80% down to SINR = −18 dB. It is even
better for the longer channel B, due to the increased diversity.
The real detection performance (with imperfect synchroniza-
tion and channel estimation) is similar to the ideal case down
to SINR = −11 dB. At −18 dB, however, the detection score
for channel A is reduced from about 80% (ideal case) to about
60%, even though the channel estimation MSE is relatively small
(about −13 dB). For the weakest BSs with SINR = −22 dB, a
similar loss occurs: the detection score drops from about 30% to
about 10%, the channel estimation MSE being about −10 dB.
For channel B, for a weak BS with SINR = −18 dB, the detec-
tion score even decreases by 55% from about 95% to 40%. This
can be explained by the poor channel estimation results (the
channel estimation MSE is about −6 dB). For the weakest BS
with SINR = −22 dB, where channel estimation accuracy has
dropped to an MSE of −4 dB, detection is virtually impossible.

2) Indoor Environment: In the indoor environment (see
Fig. 10), the synchronization stage works perfectly: a score
of 100% is achieved for all BSs. Also, the channel estimation
is quite accurate. For channel A, the channel estimation MSE
is well below −20 dB for practically all BSs. For channel B,
the MSE is a little higher, but the worst value of −18 dB is
still very low. The ideal detection score is over 80% down to
SINR = −17.7 dB. The detection performance is only a little
better for channel B, because channel B is just one tap longer
than channel A, and thus, the gain in diversity is small. Due
to the good performance of the synchronization and channel
estimation stages (which can be explained by the smaller num-
ber of channel taps for the indoor environment compared to the
pedestrian environment), the real detection performance of the
overall system is nearly equal to the ideal case. Only for the
weakest BSs (SINR = −17.7 dB), the detection score drops by
10%, but it is still around 70%.

VI. CONCLUSION

We presented receiver signal processing techniques for a
network monitoring device that analyzes the interference in
a UMTS/TDD system. The widely differing power levels of
the signals received from different BSs called for advanced
multiuser space–time algorithms for synchronization, channel
estimation, and data detection. To meet the challenges posed
by the large power differences and the partial lack of relevant

prior knowledge, we modified and combined sophisticated es-
timation and detection techniques, e.g., by embedding them in
reestimation and successive cancellation schemes.

Our simulations demonstrated good performance of the pre-
sented algorithms in the difficult real-world scenario considered.
Specifically, the synchronization stage almost always performed
satisfactorily. The channel estimation was very accurate for the
indoor environment and the strongest BSs in the pedestrian envi-
ronment, but much less so for the weaker BSs in the pedestrian
environment. This may be explained by the poor accuracy of
the least-squares channel estimates in these cases, which causes
the resulting estimates of the channel statistics to be inaccurate
too. Finally, we observed that for satisfactory performance of
data detection, a channel estimation MSE of −20 . . .−16 dB is
needed; with an MSE of −10 dB, the detection score must be
expected to be reduced by about 20%. We also observed that
the diversity advantage of longer channels is reduced by larger
channel estimation errors.

ACKNOWLEDGMENT

The authors would like to thank P. Loubaton and J.-M.
Chaufray for helpful discussions. They are also grateful to the
reviewers for their comments that have resulted in a clearer
presentation.

REFERENCES

[1] K. Kopsa, G. Matz, H. Artés, and F. Hlawatsch, “Space–time synchro-
nization algorithms for UMTS/TDD systems with strong co-channel in-
terference,” in Proc. IEEE Globecom 2002, Taipei, Taiwan, Nov. 2002,
pp. 254–258.

[2] K. Kopsa, H. Artés, G. Matz, and F. Hlawatsch, “Space–time algorithms
for multiuser channel estimation in the downlink of UMTS/TDD,” in Proc.
IEEE ICC 2003, Anchorage, AK, May 2003, pp. 2406–2410.

[3] H. Artés, K. Kopsa, and F. Hlawatsch, “A multi-antenna detection algo-
rithm for UMTS/TDD receivers in strong interference environments,” in
Proc. IEEE Globecom 2003, San Francisco, CA, Dec. 2003, pp. 819–823.

[4] http://www.umts-forum.org
[5] http://cordis.europa.eu/data/PROJ_FP5/ACTIONeqDndSESSIONeq1124

22005919ndDOCeq177ndTBLeqEN_PROJ.htm
[6] D. Depierre, F. Pipon, P. Loubaton, and J.-M. Chaufray, “Multi-sensor syn-

chronization and demodulation algorithms in the downlink of the UMTS
FDD mode,” in Proc. COST 273 Workshop Broadband Wireless Local
Access, Paris, France, May 2003.

[7] A. Naguib and A. Paulraj, “Performance of CDMA cellular networks with
base-station antenna arrays,” in Proc. Int. Zürich Seminar Digit. Commun.,
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