RFID Reader Frontends for a Dual-Frequency (13 MHz and 868 MHz) Rapid Prototyping Environment

Robert Langwieser, Michael Fischer and Prof. Dr. Arpad L. Scholtz

EEEfCOM 2008, Ulm
Outline

- Reader – Tag Communication
- Analog Frontends for Rapid Prototyping Environments
- HF-Frontend
- UHF-Frontend
Reader – Tag Communication

- Tag is powered by the reader
- Energy transfer from reader to tag during the entire communication
- Energy transfer happens at the carrier frequency of the data signal
- Cross talk from transmitter to receiver at the reader
Analog Frontends for a Rapid Prototyping Environment

- As much functionality as possible should be realized by the digital baseband
- Frequency conversion, filtering and amplification are the tasks of the RF-frontend
HF-Frontend: Requirements

- Frequency: 13.56MHz
- Communication range: a few centimeters
- Inductive coupling between reader and tag
- Load modulation
- HF-power of 1 W
- Interface with the DSP-hardware
 - frequency: 13.56MHz
 - power levels: determined by ADCs and DACs
- Carrier to sideband ratio improvement
HF-Frontend: Carrier Suppression Principle
HF-Frontend with Tag-Emulator
HF-Frontend: Verification

- Laboratory setup with tag-emulator
- Optimal tuning
- Modulation signal enhanced by 34 dB
Measurement with Commercial Tag

Distance between tag and transmit coil $d = 24\,\text{mm}$
Magnetic field at tag position (without Tag) $H = 2.4\,\text{A/m}$

Transmit coil voltage

Carrier-suppressed output voltage of the HF-Frontend
UHF-Frontend

- Requirements
- Rx/Tx crosstalk
 - Antenna configurations
 - Active Rx/Tx decoupling
- Frontend concept
- Verification measurement
Requirements

• Frequency: 865MHz - 868MHz
• Communication range: up to 10m
• 2 Watt linear output power
• Interface with the DSP-hardware
 • frequency: 867MHz not directly possible → frequency conversion necessary
 • power level: determined by ADCs and DACs
• Carrier to sideband ratio improvement (carrier suppression)
Separate Rx/Tx Antenna

Rx/Tx isolation: 30 to 40 dB

two antennas

Rx/Tx isolation depends on:
- antenna spacing
- antenna radiation pattern

Rx/Tx isolation depends on:
- antenna spacing
- antenna radiation pattern
Single Rx/Tx Antenna

Rx/Tx isolation: 20 to 30 dB
single antenna

Rx/Tx isolation depends on:
- circulator
- return loss of antenna

circulator insertion loss: 0.4 – 1 dB
Active Rx/Tx Decoupling

-27dBm Coupler
 ↓
 I-CTRL
 ↓
 Q-CTRL
 ↓
 Vector Modulator
 ↓
 Amp.
 ↓
Rx Coupler
 ↓
+13dBm

Tx (+33dBm)

S21

coupling 20dB

Christian Doppler Laboratory for Design Methodology of Signal Processing Algorithms
UHF Transmitter
Measurement Setup

Christian Doppler Laboratory for Design Methodology of Signal Processing Algorithms
Scenario: Corridor 5th Floor

Power amplifier: $P_{out} = 33.4$ dBm
Losses (cable, coupler..): 2.75 dB
Antenna gain: ~ 5 dBi (~ 2.85 dBi)
Transmit power: ~ 33 dBm ERP
Received Tag Answer

Screenshot at maximum communication range of ~11m
Summary

- Frontends for Rapid Prototyping
- Current implementations for RFID
 - HF-Frontend
 - Rx/Tx decoupling
 (34 dB carrier suppression achieved)
 - Measurements
 - UHF-Frontend
 - Rx/Tx decoupling
 (antenna configuration, vector modulator)
 - Concept and verification
 (∼11m comunication distance achieved)
Thank you!