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Frame-Theoretic Analysis of
Oversampled Filter Banks

Helmut Bolcskei, Member, IEEE Franz Hlawatschiviember, IEEE and Hans G. Feichtinger

Abstract—We provide a frame-theoretic analysis of oversam- and oversampled FB’s, the theory of frames is similarly
pled finite impulse response (FIR) and infinite impulse response appropriate for oversampled FB's. The use of frame theory
(IR) uniform filter banks (FB’s). Our analysis is based on a for the study of oversampled FIR FB's was first proposed

new relationship between the FB’s polyphase matrices and the L .
frame operator corresponding to an FB. For a given oversampled by Cvetkovt and Vetterli [11], [12], [20] and has also been

analysis FB, we present a parameterization of all synthesis FB's discussed in [13]-[19].
providing perfect reconstruction. We find necessary and sufficient  In this paper, we present a frame-theoretic approach to

conditions for an oversampled FB to provide a frame expansion. oversampled FB'’s [14]-[17] that is based on an extension of
A new frame-theoretic procedure for the design of paraunitary e 7ij|ski-Zeevi method for the analysis of continuous-time

FB’s from given nonparaunitary FB'’s is formulated. We show -
that the frame bounds of an FB can be obtained by an eigen- Weyl-Heisenberg frames [34]-{36]. Our approach extends

analysis of the polyphase matrices. The relevance of the frame Previous work reported in [11]-[13] and [18] and leads to

bounds as a characterization of important numerical properties several further original results that include

of an FB is assessed by means of a stochastic sensitivity analysis. , 5 narameterization of all synthesis FB’s providing perfect

We consider special cases in which the calculation of the frame . . . .

bounds and synthesis filters is simplified. Finally, simulation reconstruction (P_R) fqraglven oversampled analysis FB;

results are presented. ¢ methods for estimating the frame bounds of an FB,
constructing paraunitary FB’s from nonparaunitary FB’s
and calculating approximations to PR synthesis FB’s;

* a stochastic sensitivity analysis for oversampled FB'’s

involving the frame bounds.

| INTRODUCTION In addition, we show that certain results formulated in
NIFORM filter banks (FB's), i.e., filter banks with [11]-[13] and [18] for the FIR case also hold in the IIR
the same decimation factor in each channel [1]-[7¢ase. Our approach is based on the fact (to be shown in
correspond to a class of discrete-time signal expansiotise paper) that the FB’s polyphase matrices provide matrix
The relation between discrete-time signal expansions argpresentations of the frame operator corresponding to an FB.
maximally decimated (or critically sampled) FB’s has beefhis fundamental result allows an efficient frame-theoretic
studied in [1], [2], [8], and [9]. It has also been recognized thanalysis of oversampled FIR and IIR FB's.
oversampled=B’s [2], [4], [7], [10] correspond taedundant ~ We shall now outline the paper’'s organization and main
signal expansions [2], [11]-[21]. Oversampled FB’s hawesults. Section Il briefly reviews oversampled FB’s and their
recently received increased attention due to their improvednnection to frames. Section Ill shows that the polyphase
design freedom [17], [21]-[23], and noise immunity [21]-[23]matrices provide matrix representations of a FB's frame,
These advantages of oversampled FB’s come at the expeasalysis, and synthesis operators; these matrix representations
of increased computational cost. Thus, oversampled FRBidll furnish a basis for most of our subsequent results. In
allowing an efficient implementation, such as oversampletkction IV, a parameterization of all synthesis FB’s providing
DFT FB’s [4], [7], [11], [16], [21], [24], [25] and oversampled PR for a given oversampled analysis FB is presented, and
cosine modulated FB’s [21], [24], [26], are of particulala condition for completeness is given. Section V formulates
interest. necessary and sufficient conditions for an oversampled FIR
The theory of frames[25], [27]-[33] is an appropriate or IIR FB to correspond to a frame. A stochastic sensitivity
mathematical framework for redundant signal expansions. Daealysis highlighting the importance of the frame bounds is
to the correspondence between redundant signal expansiprvided, it is shown how the frame bounds can be estimated
Manuscript received March 1, 1996; revised April 22, 1998. The associaf{é)m the polyp_hgse matrices, and the approxmz_atlve_ construc-
editor coordinating the review of this paper and approving it for publicatichon of the minimum norm PR synthesis FB is discussed.
Wa: I:I)Br':|ggllferi]aar|1<(:?\llzaClﬁ’;iu’/vatsch are with the Institiir Nachrichtentechnik In Section VI, we show that oversampledraunitary FB's
und'Ho(z:hfrequenzte.chnik, Vienna University of Technology, Vienna, Austr%orreSpond t_dlght fram.es’ and we prop_ose a new met_hOd
(e-mail: hboelcsk@aurora.nt.tuwien.ac.at; fhlawats@email.tuwien.ac.at). TOr constructing paraunitary FB’s from given nonparaunitary
H. G. Feichtinger is with the Department of Mathematics, NUHAGFR's, Section VII considers important special cases where the
U”F',‘I’J%rlfs'tg e?flt\grin%aé n\t/i'ffgr”g' ﬁ)%sg_rg%g‘;gg')'éggg@g%‘?he'mat'“”'v'e'ac'at)' calculation of the minimum norm synthesis FB and the frame
LFor the sake of brevity, we shall use the tefilter bank (FB) instead of POUNdS is simplified. Finally, simulation results are presented
uniform filter bank in Section VIII.

Index Terms—Filter banks, frames, oversampling, polyphase
representation.
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Fig. 1. N-channel uniform filter bank. . . . .
The N x M analysis polyphase matrik(z) is defined as

[E(2)]k,n = Ek n(z). The synthesis filterd(z) can be

Il. OVERSAMPLED FILTER BANKS AND FRAMES Simi|ar|y decompOSed as
In this section, we briefly review oversampled FB’s and M—1
their relation to frames i (Z). We discuss the type of frames Fi(z) = Z Ry (M)
corresponding to FB’s, and we show that if the analysis frame o ’
is of that type, then so is the dual synthesis frame. with
A. Oversampled FB'’s R, n(2) = Z JulmM +nlz""

m=—0o<

We consider aV-channel FB (see Fig. 1) with subsampling _ _ _
by the integer factoit/ in each channel. The transfer functionghe M x N synthesis polyphase matriR(~) is defined as
of the analysis and synthesis filters ak.(z) and Fi.(z) [R(2)ln,x = Ri,n(2).

(k=0,1, ---, N—1), with corresponding impulse responses
hi[n] and fi[n], respectively. The subband signals are giveld. Uniform FB Frames
by If the FB satisfies PR with zero deldy,e., #[n] = z[n],
vi[m] = (Ex)[m, k] then (2) yields
=) N-1 oo
= > z[nlhi[mM —n] =3 Y (e, b ) frmlnl-
n=-—00 k=0 m=—oc

= h‘rn,’ If:O,].,,N—]. 1 . .
(@ o, m) @) This shows that a PR FB corresponds to an expansion of

with Ay m[n] = hi[mM —n] (k=0,1,---, N — 1, —00 < the input signalz[n] into the function set{ i ..[n]} (k =

m < oc), and the reconstructed signal is 0,1,--+, N—1, —o0o <m < o0) [1], [2], [43]. In general,
el e the set{ fi ..[]} is not orthogonal; therefore, the expansion

coefficients, i.e., the subband signalgjm] = (x, hi m),

&ln] = (Bv)[n] = Z Z vr[ml]fr,mln] (2) are obtained by projecting the signaln] onto a “dual”

=0 m=me set of functions{hs_ ,[n]}. Critically sampled FB'’s provide
with  fi.m[n] = fi[n — mM] and v[m] = orthogonal or biorthogonal signal expansions [43], whereas
[vo[m] wi[m] --- wy_i[m]]¥. Here, E and R denote oversampled FB’s correspond to redundant (overcomplete)
the FB analysis and synthesis operator, respectively. expansions [2], [11]-[21].
In thecritically sampled/or maximally decimatgccaseN = The theory of frameq25], [27]-[33] is a powerful vehi-

M, the subband signals,[m] contain exactly as many sample<le for the study of redundant signal expansions. The set
(per unit of time) as the input signaln]. In the oversampled {hs [n]} is said to be dramefor (%(Z) if3

caseN > M, however, the subband signals are redundant Nel oo
in that they contain more samples (per unit of time) than AllzlI? < R 2 < Bllel2
the input signalz[n]. Oversampled FB’s offer more design l=l)” < Z Z [, ol < Bl
freedom and improved numerical properties as compared 9
with critically sampled FB’s, and they have noise-reducing Valn] € 15(Z) (3)
properties [17], [21]{23]. The design freedom is increasggiith the frame boundsA > 0 and B < oc. The frame
since for a given oversampled analysis FB, there existShgunds determine important numerical properties of the FB
whole class of synthesis FB's providing PR (see Section I\gs discussed in Sections V-C and V-D. If the analysis set
A). The noise-reducing properties of redundant representatiqns _ 1n]} is a frame fori?(z), then PR can always be

[21]-[23], [28], [37] allow a coarser quantization of theschieved, and a particular synthesis set providing PR is given
subband signals at the cost of increased sample rate [21]-[83] (see [28] and [30])

(see Section V-C).

Our frame-theoretic analysis of oversampled FB’s will be Frym[n] = (8™ hi ) 7] (4)
based on the, well-knowrpolyphase representatlo[i], [2], 2We note that our theory can easily be extended to PR with nonzero delay.
[5], [38] of FB’s or, equivalently, thg .dlscrete Zak trar_lsfc_)rm SHere, 12(Z) denotes the space of square-summable functidng, i.e.,
[39]-[42]. The polyphase decomposition of the analysis filtefs>2.___ |z[n]]? < <.

n=——oo

k=0 m=—o0
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Here,S~! is the inverse of thérame operatorof {4 ,,[n]} A. Matrix Representation of the Frame Operator

defined as The following result extends the Zibulski-Zeevi represen-

N-1 oo tation of continuous-time Weyl-Heisenberg frame operators
(Sz)[n] = Z Z z, M) e, m[n]- [34]-[36].
k=0 m=—0c0 Lemma 3.1:Let y[n] = (Sz)[n], where S is the frame

The frame operator is a positive definite, linear operator th@@erator corresponding to a UFBF. Then, the polyphase com-
mapsi2(Z) onto{2(Z). It can be written as§ = E*E, where PonentsY(z) =37 y[mM + n]z~™ of Y(z) and the
E is the analysis operator in (1), adé* is its adjoint [44]. Ppolyphase componentX,, (z) = >°7_  x[mM +n'lz™"
The frame boundst and B are the infimum and supremum,0f X(z) are related as
respectively, of the eigenvalues 8f[28], [30]. M1
If the analysis s_e{hk,m[n]} is_ a frame, then the synthesis Yo(z) = Z Sy, (2) X (2) (5a)
set {fx, m[n]} defined by (4) is also a frame (the “dual’
frame) with frame operato$~! and frame bounds’ = 1/B,  with

B’ = 1/A. A frame is calledsnugif B/A = B'/A" = 1 N-1
andtight if B/A = B’/A’ = 1. For a tight frame, we have Sp,n(2) = Z Ey o(2)Ex v (2) (5b)
S™! = (1/A)I, wherel is the identity operator oh?(Z); k=0

hence, there is simplyy ».[n] = (1/A) N, m[n].
The analysis and synthesis frames corresponding to (uor equivalently, using }he polyphasi vectors:) = [Xo(2)
form) FB’s have a s 1(z) o Xua (] and y(z) = [Yo(z) 1i(2)
pecific “shift invariant” structure smceYM (]F
hkjm[n] = hi[—(n — mM)] and fi ,[n] = fu[n — mM],
i.e., they are generated by uniformly time shifting the FB y(z) = S(2)x(2) with S(z) = E(z)E(z) (6)
|mpulse responses;[—n] and fi[n]. A frame with such a
shift-invariant structure will be called aniform filter bank whereE(z) = E#(1/z*) denote$ the paraconjugate df(z)
frame(UFBF). Such frames have also been considered in [1£1].
[13], [19], and (in a continuous-time setting) in [45]. Proof: Evaluating the polyphase components(z) =
FB’s whose analysis functionsy. ,.[n] satisfy the frame >...___ y[mM + n]z~™ of the signaly[n] = (Sz)[n] =
condition (3) and whose synthesis functiofs,[n] are cho- S0 'S (, hy ), m[n], (5) is obtained after sim-
sen as the dual frame & ,[n] provide UFBF expansions. ple manipulations. 0
If {h«,m[n]} is @ UFBF, then the dual framgfi ..[n]} as  Thus, the frame operato§ can be expressed in the
defined by (4) is again a UFBF, i.e., it is generated by unpolyphase domain by thé/ x M UFBF matrix S(z) =
formly time shifting a dual set of functions given bfy[n] = E(2)E(z) defined in terms of the analysis polyphase matrix
(S 'hy,)[n] with hx[n] = hi[—n]. This can be seen as follows.E(z).
Introducing the unitary time-shift operat®,, as(T’,, z)[n] = Specializing to the unit circléz = ¢27%), we next show
z[n — mM], we can writehy ,,[n] = (Tpnhi)[n]. Using that the polyphase matri(c’27?) can be used to establish
T.T,w = Tmyny andT,, = T_,, (with T, denoting a matrix representation [44] of the frame operagrMost
the adjoint ofT’,,), it is easily shown that both the frameof our subsequent discussion of FB's will be based on this
operatorS and its inverseS~! commute with the time-shift matrix representation.
operatorT’,,, i.e., TS = ST,, andT,,,S ' = § 'T,,. We Theorem 3.1:Let S be the frame operator corresponding to

then otitginfkjm[n] = (8, m)[n] = (S‘lrnliik)[n] = a UFBF. Then, theM x M matrix
gnghk)%)[ﬂ] = (T fi)ln] = fuln — mM] with fi[n] = S(e7278) = BH (o270 )E( o279

Even though our frame-theoretic approach is valid both f
oversampling and critical sampling, in this paper, we restri
our attention to oversampled FB’s and the correspondi
UFBF’s. We just note that the frames corresponding to critl-
cally sampled FB’s arexact i.e., orthogonal or biorthogonal
function sets [8], [43].

N positive definite for allg; furthermore, it is the matrix
Fépresentatlon of the frame operaﬂ)wnh respect to the basis
L. e[n']} of 12(Z) given by ¢, o[n'] =300 80’ —n—

M] q2m(@/M)(' =) (p =01, - M —1,0<6<1).
Proof: Using X, (e 127"’) = (a: en,¢), it follows after
straightforward manipulations that

IIl. M ATRIX REPRESENTATIONS M1

. : : . (S Sy (2N (@, €r 6)-
Important problems in frame theory include the inversion T5 en,0) Z (e (@) enr,0)

of the frame operato$ and the calculation of frame bounds

A, B. In this section, we will show that the FB's frameThis shows tha8(c/?™?) = Ef (¢/279)E(e/2™%) is the matrix

operator S, analysis operato#s, and synthesis operatdi® representation ofS with respect to the basis, ¢[n/]. The

can be expressed in terms of the FB’s polyphase matrices, S H stands f ot "

Thus, the inversion of the frame operator and the calculation, | "c SUPerscript’ stands for conjugate transposition. _
This baS|s induces the polyphase representation on the unit circle:

of the frame bounds can be reduced to operations involvipg ¢, ) = X, (e/27%) = Y% z[mM + nle=4274™ _ Equivalently,

m=

the polyphase matrices. (z, en. 6)) is the Zak transformof «[n] [39]-[42].
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positive definiteness &(e/2?) then follows from the positive condition for completeness of the analysis $ét. ,,[n]},
definiteness of. O which is a prerequisite for PR. In this section, we do not
An important consequence of Theorem 3.1 is the identity assume that the FB corresponds to a frame, even though close
the eigenvalues of the frame operator with the eigenvaluesrefations to frame theory will become evident.
its matrix representation: the UFBF matrix.
Corollary 3.1: Let A\, (#) with » = 0,1,---, M — 1 A. Parameterization of All Perfect
denote the eigenvalues of the UFBF mat®c’?™®) = Reconstruction Synthesis FB's

Hy j2x6 j2nw6 i T i i
EZ (e E(e/7), which are defined by the eigenequation |, 1o oyersampled casevV(> M), the synthesis FB pro-

S(e2 Y u, (6) =\ (6)un(6) viding PR for a given analysis FB is not uniquely determined.
This nonuniqueness entails a desirable freedom of design that
n=0,1,---,M—1,0<6<1. 1T = . :
does not exist in the case of critical sampling. The following
Any eigenvalue), () is simultaneously an eigenvalue oftheorem provides a parameterization of all PR synthesis FB's
the frame operatoS. Conversely, any eigenvalue o« is corresponding to a given analysis FB.

simultaneously an eigenvalue 8fc/27?). Theorem 4.1:Let E(z) denote the analysis polyphase ma-
Proof: Using (6), it can easily be shown tha&f = trix in an oversampled FB, and assume tl&tz) has full
Z718(e97) 2, where 2: . — X, (¢/*™) = (z, e, ) = rank, i.e, rankE(z)} = M, almost everywhere (a.e.). Then,

S x[mM+n]e=i27%™ denotes the polyphase transforn@ll synthesis polyphase matric®(~>) providing PR can be

(Zak transform) operator, i.e., the operator mapping a signalitten as

to the polyphase domain witk = ¢/27¢ Since Z is a _ (0 _ 0

unitary transformation [39], it follows tha$ and S(c/2¢) R(z) = RO(2) + U(2) Iy — E(=)R"(2)] (7)

are unitarily equivalent. Therefore and S(c/>~%) have the where R(®(z) is any particular PR synthesis polyphase

same eigenvalues [44]. O matrix, i.e., any left inverse ofE(z), and U(z) is an
It follows that the eigenanalysis of the frame operafor M x N matrix with arbitrary element§U(z)],, » satisfying

(a matrix of infinite size) is equivalent to that of the UFBR[U(¢’?7%)],. x| < oo. A special choice forR(%(z) is the

matrix S(e?2*%) [an M x M matrix indexed by a real-valued para-pseudoinverse @&(z), which is defined &s

parameterd € [0, 1)]. Since S(c?27?) is a positive definite X 3 1

matrix, its eigenvalues are positive. These results will be used R(z) = [E(Z)E(Z)} E(z). (8)

for the estimation of frame bounds in Section V-A. ) .
Proof: It is well known that an oversampled or critically

B. Matrix Representation of the Analysis sampled FB provides PR (with zero delay) if and only if

and Synthesis Operators R(z)E(z) =1. 9)

_According to (1), the analysis operatdl maps the input |, e gyersampled casgV > M), the matricesE(z) and
signal z[n] into the subband signals,[m]. Transforming (1) R(z) are rectangular x M and M x N, respectively), and

into the z-transform domain yields thus, the solutioR(z) of (9) [for givenE(z)] is not uniquely

v(z) = E(2)x(2) determined,; in fact, ankeft inverseof E(%) is a valid solution.
Specializing results from linear algebra [47, p. 46], it follows

where v(z) = Y >____v[m]z™™ and x(z) = thatany left inverse oE(z) can be written as in (7), where

[Xo(z) Xi(2) - Xu_1(»)]F with X,(z) = RO(2)is any particular solution of (9). It is straightforward

S zlmM + n]z=™. Thus, the analysis polyphaseto verify that the para-pseudoinverse in (8) satisfies (9) and is,

matrix E(z) provides a polyphase domain representatidhus, a valid solution. O

of the analysis operato#s. Comparing S = E'E with Expression (7) is a parameterization Bf(z) in terms of

S(z) = E(2)E(z), it is furthermore clear that the adjointthe AN parameter§U(z)],., s that can be chosen arbitrarily.
analysis operatoE™ is represented by the paraconjugﬁ)t(e:). Note that the family of PR synthesis polyphase matrices
In a similar manner, transforming (2) into the polyphasB(z) corresponds to a family of PR synthesis filtefign].
domain yields The importance of the parameterization (7) lies in the fact
that once we know some left inver&®(®)(z) [such as the

x(2) = R(z)v(2) para-pseudoinverdg(z) = [E(z)E(z)]~*E(z)], the optimum

wherex(z) = [Xo(2) X1(2) - Xp—1()]T with X, (2) = design of the PR synthesis FB for a given oversampled analysis
% Z[mM + n]z~™. This shows that the gynthesisFB can be performed using amconstrainedoptimization.

operator R is represented in the polyphase domain by thE"@t is, the PR property need no longer be explicitly incor-
synthesis polyphase matriR(z). porated in the optimization as a side constraint. This leads to

considerable simplifications in optimum FB design.

The particular PR synthesis FB corresponding to the para-
pseudoinverseR(z) = [E(2)E(2)] *E(z) can be given an

We will now derive a parameterization of all synthesis g . . .

, - . . We note that on the unit circle, the para-pseudoinverse in
FB’s providing PR for a given oversampled analysis FB8) becomes the conventional pseudoinverse [4B](ei270)
Furthermore, we will formulate a necessary and sufficief®? (¢/27¢)E(e/279)|~ EH (e/277),

IV. PERFECT RECONSTRUCTION AND COMPLETENESS
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interesting frame-theoretic interpretation, which has previously Proof: Assuming completeness ¢t ,[n]}, it follows
N-1

been described for the important class of oversampled HRat (Sz, z) = >3 5 Yoo @, hi,m)|> > 0 for all
FB’s in [12]. For given analysis filter impulse responsg$n], z[n] # 0 and, hence, the eigenvalues $f[simultaneously
consider the particular synthesis filter impulse resporfseg  the eigenvalues.,(6) of S(c/**?); see Corollary 3.1] satisfy
provided by frame theory via (4), i.efx[n] = (S™*hx)[n] A.(6) >0ae.foro0<# <1landn=0,1,---, M —1. This
with hyfn] = hj[—n], or in other words{fx m[n]} is the shows thatS(e’2*) has full rank a.e., i.e., rafB(c’2%)} =
UFBF that is dual to{hx ,[n]}. From hi[n] = (Sfx)[n], M a.e. Using rankS(c’2"%)} = rank{E(¢/2"%)} [47], it

it follows with (6) that E(z) = E(z)E(2)R(z) [simply set follows that ranKE(c’>*®)} = M a.e. onf € [0, 1).

z[n] = fr[n] andy[n] = hy[n]in (6)fork =0, 1, ---, N—1]. The converse statement is shown by reversing this line of
This implies R(z) = [E(z)E(z)]"'E(z) = R(z). Thus, reasoning. O

the para-pseudoinverse (=) corresponds to the particu- With rank{S(¢’?7%)} = rank{E(c’**%)} [47], it immedi-

lar PR synthesis FB provided by frame theoithis frame- ately follows that an equivalent condition for completeness is
theoretic solution hasninimum normin the sense that it rank{S(c’>™?)} = M a.e. onf € [0, 1).

minimizeszfj‘:o1 |l f%|I*> among the class of all PR synthesis It is intuitively obvious that FB’s cannot satisfy the PR
FB's [28], [30]. Using S(z) = E(z)E(z) and R(z) = property in the undersampled cade < M since there are
[E(z)E(z)]1E(z), it furthermore follows that the matrix fewer subband samples (per unit of time) than input samples.
representation of the inverse frame operaft' is given Indeed, forN < M, the set{A, m[n]} is incomplete in?(Z).

by S—1(z) = R(2)R(z). We note that the relation betweenNiS i sojgica'use fov < M, the rank of th?ﬁex M
pseudoinverses and frames has been established in a diffefafrix E(¢’*™") is maximally N. Hence, rankS(c’*™")} =

context in [48] and [49]. rank{E(¢’*™)} < M, and using Theorem 4.2, it follows that
The parameterization (7) can be reformulated in the timid#, m[7]} is incomplete ini(Z).
domain as

V. FRAME-THEORETIC PROPERTIES

© Nl o © As mentioned in Section II-B, FB’s providing UFBF ex-
felnl = £, [n] + ur[n] — Z Z (fi s hom)ue, m[n] pansions are always PR FB’s. Besides the fact that the frame
=0 m=—o0 property implies the PR property, it is also desirable since
it guarantees a certain degree of numerical stability (see
where thef,io) [n] are the PR synthesis filter impulse responséle stochastic sensitivity analysis in Section V-C). This sec-
corresponding to the polyphase matrR(®(z), wu;[n] is tion discusses frame-theoretic aspects of FB's in terms of

the impulse response of the filter with polyphase comp#he matrix representations developed in Section Ill. We will
nents[U(2)].. %, i-€., Up(?) = ZM—l 27" [U(2M)],..x, and present a method for estimating the frame bounds and con-

n=0

ug, m[n] = ux[n — mM]. In the z-transform domain, (7) can ditions guaranteeing that an FIR or IIR FB corresponds to a
be reformulated as UFBF expansion. Furthermore, a stochastic sensitivity analysis

involving the frame bounds will be provided, and the approx-

1 ML ‘ imative construction of the PR synthesis FB with minimum

F(2) =FO %) + Up(2) — i ST EY W) norm will be discussed.
1=0
N-1 . A. Frame Bounds

' lz_% H(zW)Uilz) Since the frame bounds describe important numerical prop-

erties of a FB, their calculation is of interest. The next corollary

P L states that the frame bounds follow from the eigenvalues of
where Wy, = ¢72/M_, Thus, all PR synthesis filters ar'%he UFBE matrix.

parameterized in terms of th¥ filters u,[n] < Ui(z) that

can be chosen arbitrarily. In the following, we will mainly  o¢ 5 Fg providing a UFBF expansion are given by the essen-
use theminimum norm synthesis '_:B“(ZO) or, equivalently, s infimum and supremum, respectively, of the eigenvalues
{fx[n]}, which is obtained by settin®R(”(z) = R(z) and An(6) of the UFBF matrixS(e/27) — EH (ci270)E(ci20);

U(z) = 0 in (7).

Corollary 5.1: The (tightest possible) frame boundsand

A= ess inf An(6)
6€[0,1),n=0,1, -, M—1
B. Completeness Condition B= ess sup An(6).
The next theorem states a condition for toenpletenesef 6El0, 1), n=0,1, -+ M =1
the analysis sefhy., [n]}. The completeness dfy. ,..[n]} is Proof: It is well known [28], [30], [33] that the (tightest
a necessary condition for PR, as well as a necessary condi®@gsible) frame boundsl and B are the essential infimum
for the frame property (cf. Section V-B). and the essential supremum, respectively, of the eigenvalues
Theorem 4.2:The set {hy m[n]} With Ay n[n] = of the frame operato§. Hence, Corollary 5.1 follows using
RilmM — n] is complete ini*(Z) if and only if the Corollary 3.1. O
analysis polyphase matridE(c/2%¢) has full rank, i.e.,  Similarly, we haved’ = ess infejo, 1), n=0,1, -, M—1 A5 (6)

rank{E(c/?™)} = M, a.e. ond € [0, 1). andB’ = €SS SUP, (9, 1), n=0,1, .., m—1An(0), Where theX’,(6)
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are the eigenvalues of the inverse UFBF mafix (¢/27%) = Lemma 5.1: The analysis sefhx .[n]} has an upper frame
R(c/2™)RH (¢/27%), Note that in practice, the frame bound$ound B < oo, i.e.,
have to be estimated by sampling the mas’?*?) on the n_1 Nol oo
unit circle and performing an eigenanalysisSiie’2~/ ) for Z Z luk[m]|? = Z Z (2, hie. )| < Bllz|?
[=0,1,---, L—1.In Section VII, we will discuss situations i—y m=—oc b0 me=—oo 7
where the frame bounds can be calculated without performing Va[n] € 1(2)
an explicit eigenanalysis. ,

An interesting consequence of Corollary 5.1 is the followint§ and only if the polyphase component ,,(c/*™) are all
corollary, which has been formulated for the FIR case in [1®ounded a.e., i.e|Ey, »(¢/?™)| < K < oo a.e. on [0, 1) for

and is extended below to the IIR case. k=01, N-1,n=0,1,--, M-1
Corollary 5.2: Let {hs ,.[n]} be a UFBF forl?(Z) with Proof: Let |E; .(¢/*")] < K < o ae. It fol-
frame boundsA and B. Then lows that the entries of the UFBF matri$(c/?™) =

Ef(c727%)E(¢27%) are bounded a.e., which implies that

1 Nl ) the A,(¢) are bounded a.e. Using Corollary 5.1, we
As 7 Ihel” < B. (10) conclude thatB < oco. We next prove the converse. Let
k=0 B = ess sup(g, 1), neo, 1, ., M—1An(0) < co. It follows that

M-1 : . .. .
In particular, in the case of a tight UFBF (where = B), > o énge) is bounded a.e. With (11), this implies that the
Ey, (e?*7%) are bounded a.e. O
we have : -
We are now ready to formulate a necessary and sufficient
;N1 condition for an FB to provide a UFBF expansion. The
— Z ||he||* = A. following theorem has previously been given for the important
M b=0 special case of FIR FB'’s in [12].
Theorem 5.1:An oversampled FB with bounded-input
Proof: The trace of the UFBF matrix satisfiesbounded-output (BIBO) stablenalysis filtershy[n] provides

tr{S(c’27)} = M SN LB (¢7270)?, and, further- a UFBF expansion i#2(Z), i.e., the analysis st .[n]} is

n=0 =

more, t{S(c27)} = Y M1 (6) so that a UFBF for/2(Z) if and only if the analysis polyphase matrix
E(z) has full rank on the unit circlg,.e.,
M-1 M-1 N-1 ' jomeNy
Z A(8) = Z Z IEk,n(e’Q’Te)IQ- (11) rank{E(e W'=M for0<6<1.
n=0 n=0 k=0 Proof: From hi[n] € [*(Z), it follows that the

Ey. . (e’**%) are bounded, and hence, we conclude from
From ~Corollary 5.1, we conclude thatMA < |emma 5.1 that an upper frame boud#l < cc exists. It
> n=o An(0) < MB, and with (11),MA < >° ;' >.,—5  remains to be shown that a full rark(c/2*) is necessary
|Er,n(c¢”™)]? < MB. Integrating both sides of thisand sufficient for the existence of a lower frame bound
inequality with respect to the frequency parameterand 4 |f E(¢/27¢) has full rank on [0, 1), therS(e/27¢) =

using S0 " o 1Bk, (€27)[2 df = ||hi]|? [39], we obtain EH (¢i27)E(ci27%) has full rank on [0, 1), which means
(10). O that\,(f) >0for0 <6 <landn=01,---, M —1.
If we normalize thehx[n] such that|[h.||> = 1 for k = Fromhy[n] € I*(2), it follows that theA,,(6) are continuous
0,1,---, N —1, then ;" '||h&]|*> = N, and (10) yields functions of§, and therefore, we can conclude that =
the following inequality relating the frame bounds with thess iNfepo, 1), n=o, 1, -, M—1An(8) > 0. We next prove that,
oversampling factorV/M conversely, a full-raniE(¢?2™) is necessary for the existence
of A > 0. Suppose thaE(e’2"%) does not have full rank on
a<Npn (12) [0, 1). It follows thatS(c72"%) does not have full rank on
- M~ [0, 1). This implies that there is at least one eigenvalue with
] ) ) . Ax(8) = 0 on a measurable set with positive measure. Hence,
In particular, for a tight UFBF (corresponding to a paraunltarlysing Corollary 5.1, we conclude that= 0. 0
FB; see Section \(I), it follows that the frame bounds are equa'AIternativer, it can be shown that an FB corresponds to
to the oversampling factor a UFBF fori?(Z) if E(¢/>*) has full rank for0 < 6 < 1,
N and the Ey. ,,(¢/27?) are continuous and bounded functions
A=B=__. (13) of 6. Yet another condition, which is phrased in terms of the
M eigenvalues of the UFBF matri(c’2?), follows easily from
. Corollary 3.1:
B. Frame Conditions
] N "BIBO stability means thab[n] € 11(2), i.e, X020 __ |hi[n]] < oo
We shall now derive conditions for an oversampled FB torx =0, 1, ---, N — 1.

provide a UFBF expansion #(Z). The next lemma discusses °We emphasize thdk (=) is here required to have full raréverywhereon

the existence of the upper frame boufdl < oo, which the unit circle. In contrast, the completeness condition in Theorem 4.2 merely
R N . rﬁquiredE(:) to have full ranka.e.on the unit circle.

guarantees that the subband signals have finite energy if t %-or a continuous function, the essential infimum is the infimum (this is,

input signal has finite energy. however, not relevant to this proof).
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alz) where tr denotes the trace. With the idealizing assumption
that the noise signalg,[m] are uncorrelated and white with
identical variances? = £{|qgx[m]|*}, i.e., C,[l] = oZIn 0[]

x(2) :$> B R(z) > x(2) and$,(z) = oIy [1], the error variance becomes

2 1
2_ Y4 j2mo\ H [ j2r6
Fig. 2. Adding noise to the subband signals. e = o tr{R(CJ R (7T )} de. (14)

Corollary 5.3: An oversampled FB provides a UFBF ex- We will now restrict our attention to the PR synthesis
pansion ini%() if and only if the eigenvalues..(¢) of the "B corresponding to the dual frame, i.d(z) = R(z).

UFBF matrix S(c/27%) = E7 (e/27)E(c/2%?) satisfy With tr{R(e/>")RY (e27)} = 53" N, (6), where
_ AlL(8) denotes the eigenvalues of the inverse UFBF matrix
sefo,1) ess |1nf M1 An(6) >0 S—1(e?27%), and usingA’ < X, (8) < B’ (see Corollary

5.1) or equivalentlyl/B < X/ ( 1/A, we obtain

8) <
and I ! - =
ess sup (8 < M/B < tr{R(e/*™)R"(/?*%)} < M/A. Inserting this
6C[0, 1), ms0, 1, ) M—1 in (14), we further obtain
Proof: It is known [28], [30], [33] that{hy, ..[n]} is a 1 o 1 (15)
frame if and only if ess inf > 0 and ess sup. < oo, where B~o27 A

{A} is the set of all eigenvalues of the frame operaioDue ) . . .
o i.e., the reconstruction error varianeg is bounded in terms

to Corollary 3.1, the eigenvalues 6f equal the eigenvalues X .
An(6) of S(¢727), which completes the proof. of the frame boundsi, B. Let us assume normalized analysis

Using the fact that FIR filters are inherently BIBO stabidlters. i-e.. [[2x]| = 1 for & = 0,1,..-, N —1. Then,
and, thus, one of the conditions of Theorem 5.1 is here alway<) Yields 1/B < 1/K < 1/A, where K = N/M is
satisfied, it follows that an oversampled FB with FIR analys e oversampling factor. Hen.ce, ,fm ~ B or equivalently
filters provides a UFBF expansion IA(Z) if and only if the £/4 ~ 1 (snug frame), (15) implies

analysis polyphase matri&(z) has full rank on the unit circle, o2 1 A N
; JoTONY _ i £~ ith K = —
i.e., ranKE(e’*™%)} = M for 0 < 6 < 1. This result has been 2 K wi Vi

previously reported by Cvetkaviand Vetterli [12].
which means that small perturbations of the subband signals

C. Sensitivity Analysis yield small reconstruction error. We note that the design of
Important numerical properties of the UFBE;. ,,[2]} and, FB’s with B/A ~ 1 (and ggditipnal d_esirable properties sugh

thus, of the associated FB as well, are determined by its frafie900d frequency selectivity) is easier for larger oversampling

boundsA and B [28]. Let us investigate the sensitivity offactor (see Section VIII).

oversampled FB's to (quantization) noiggim] added to the ~ FOr & paraunitary FB withj/, || = 1, we haved = B = K

subband signalsy[m] = (z, hx, ) (k = 0,1, -+, N — 1), [see (13)], and hence, (15) becomes

We collect the noise signaig[m] in the N-dimensional vector a2 1

noise procesg[m] that is assumed to be wide-sense stationary — = K

and zero-mean. Th& x N power spectral matrix ofj[m] is 1

defined ass,(z) = 32 _ C,[l]>~" with the autocorrelation Thus, in the paraunitary case, the reconstruction error variance

matrix C,[l] = E{q[m]q®[m — ]}, where & denotes the is inversely proportional to the oversampling facfér which

expectation operator [1]. means that more oversampling entails more noise reduction.
It is convenient to redraw the FB in the “polyphase doSuch a 1/K behavior” of the reconstruction error variance

main,” as shown in Fig. 2 [1]. Here, the polyphase vectolsas previously been observed for oversampled A/D conversion

x(z) and x(z) are defined as in Section IlI-B, ang{z) = [50], for tight frames in finite dimensional spaces [28], [51],
> .qlm]z=™ is the z-transform of the noiseq[m]. and for reconstruction from a finite set of Weyl-Heisenberg

Assuming a PR FB, we have (see Fig.®)z) = x(z) + (Gabor) or wavelet coefficients [28], [37]. Recently, under
R(z)q(z) so that the reconstruction errefn] = #[n] — z[n] additional conditions, a/K? behavior has been demonstrated
is given by for Weyl-Heisenberg frames [20], [37], [52].

e(z) = X(2) — x(2) = R(2)q(2). S . -
D. Approximative Construction of the Synthesis Filter Bank
The reconstruction erroe[n] is again wide-sense stationary

and zero-mean, with/ x M power spectral matrix [1] The calculation of the minimum norm, PR synthesis FB

N (para-pseudoinversd}(z) = [E(z)E(z)]" E(z) requires the
Se(z) = R(2)S,(»)R(z) inversion of the matrixE(z)E(z), which is a cumbersome
task in general. If the FB corresponds to a UFBF, then an
L approximative calculation of the minimum norm synthesis
o2 = %/ tr{S.(e72°)} do FB (which is analogous to the approximation of dual frames
0

‘ described in [33]) can be based on a series expansion of

and variance
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S~1(z) = [E(2)E(2)] L. Indeed, applying the Neumann seA. Equivalence of Oversampled Paraunitary
ries expansion [44] to the matrf(z)E(z)]~!, the minimum Filter Banks and Tight Frames

norm synthesis FB is expressed as The analysis UFBF Ay ,,.[n]} is tight if A = B. From
frame theory, we know that her§,= ATl [28]. With (4), this

sy 2 S 2 - 1= implies that the frame-theoretic (i.e., minimum norm) solution
() = A+ B ; <IM T A+ B E(Z)E(Z)) E(2). for the PR synthesis FB is
(16) ) .
The convergence of this series expansion follows from frame fr[n] = a1 hi[—n]

theory [28] using the correspondence between the frame

operatorS' and the UFBF matriS(z) = E(z)E(z); it will be 5 equivalentlyR(z) = (1/A)E(z). This is precisely the rela-

faster for shugger frames, €., for closer frame bOL_’AdSB' tion between the synthesis and analysis filters in a paraunitary
By truncating the expansion (16), the synthesis FB Cgfg 1] |n fact, we can formulate the following theorem that
be approximated with arbitrary accuracy. Estimates of tgenqs 4 result previously reported in [12] for the FIR case
resulting reconstruction error are available [28]. We shall hegg, 4 i, [54] for the case of complex modulated (DFT) FB's.
restrict our attention to the zero-order approximatiorRdf:) Theorem 6.1:An oversampled FB provides tight UFBF

obtained by retaining only the= 0 term in (16) expansion in?(Z) if and only if it is paraunitary; i.e.,

. 2 . = -
) = . S(z) = E(2)E(z) = Al
Ro(2) A+ B E(z)
_ o o The frame bound is given byd = S, .(2) =
which corresponds to an approximation of the minimum nor@fc\"_—ol By n(2)Ex n(2).
synthesis filtersfi[n] as Proof: From S(z) = Aly, it follows with (6) that
v(z) = Ax(z), which impliesy[n] = Ax[n]. Hence, com-
frioln] = —— hi[-n]. (17) paring with y[n]. = (8z)[n], we conclude thaS = AT, i.e.,
A+B {h&, m[n]} is a tight UFBF with frame boungl. The converse
) _ ) o statement is proven by reversing this line of reasoning. Com-
The reconstruction error resulting from this approximation &hning S, . (2) = i\’_—ol B, (2)En.n(2) andS(z) = ALy,

be bounded in terms of the frame bountisind B. With Zo[n] i tollows that 4 — S () =N B (DE (). O
denoting the signal reconstructed using the above “Zero'ordebaraunitary FB's ;’rg élso kngvT/% a;%grtﬁogggalvlz'B’s How-
synthesis FB"{ fy; 0[]}, we have the error bound [33] ever, the name “orthogonal” is justified only in the critical

case since critically sampled paraunitary FB’s provide decom-
Iz (18) positions into orthogonal UFBF's. In the oversampled case,
A/B+1 paraunitary FB’s correspond to UFBF's that are tight but not

orthogonal.

We see that the reconstruction error is smallByA =~ 1, i.e.,
when th_e l_mderlying UFBF isnug Thus, in the snug cgse,_theB' Construction of Paraunitary FB's
synthesis impulse responsgso[n] are a good approximation
to the true minimum norm, PR impulse responggf:], in
the sense that the resulting reconstruction effiy — «|| is

We next describe a procedure for the derivation of a parau-
nitary FB from a given nonparaunitary FB. From frame theory,
small. In the tight case wherB/A = 1, the reconstruction we know tha}lﬁfplication of the positive definite operator
error becomes zero altogether, and indeed, the approximatl are rootS_ to each of the frame functionsy ]
is here exact a§k ofn] = fk[n] — (1/A)hi[-n] produces a tight frame [28], [30]. Using the correspondence

‘; _— 9 —_— k . 1 p——

Besides the trivial zero-order approximation discussx%e'[Ween the frame operatét and the UFBF matrbS(z) =

above, the series expansion (16) also allows the iterati é_ff%E(z ), tr%ezf.ocllow[ndg resuItFlé obtained. dina t UFBE
calculation of the minimum norm synthesis filtegg[n]. eorem ©.2.Lonsider an corresponding 1o a

Sophisticated algorithms for this iteration have been propos ar}\?on, ta_nd lefh)(fh) §>e2 an lnéertll%e, parﬁ-He]ramma@lﬁ,
in [53] in a frame-theoretic setting. Using the correspo X M matrix such thaP™(z) = E(z)E(z), whereE(z) is

dences established further above, the reformulation of théE% Fi’s analy?_s polyphase matrix. Then, the FB with analysis
algorithms in the present FB framework is straightforward. polyphase matrix

E?(2) = E(z)P~*(2)

VI. OVERSAMPLED PARAUNITARY

. . . g @ —
FILTER BANKS AND TIGHT ERAMES is paraunitary with frame boundi 1, i.e., S®P)(z)

E®(:)E®)(z) = I,. If, moreover, in the case of critical
In this section, we show that oversampled paraunitary FBsampling the original FB is biorthogonal, then the FB with

provide tight UFBF expansions iff(Z), and we discuss a analysis polyphase matrE(P)(z) is orthogonal.

frame-theoretic method for constructing paraunitary FB’s from

given nonparaunitary FB’s. 10A matrix P(z) is said to be para-Hermitian P(z) = P(z) [55].
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Proof: We have S@(z) = E®(E®P(z) = matrix S(z) = E(z)E(z), reduces to simple divisions in the
P1(2)E(2)E(z)P~1(2). Insering E(z)E(z) = P2(z) polyphase domain.
in the right-hand side and usinB(z) = P(z), it follows Using the fact that the eigenvalues of the diagonal matrix
that E®) (2)E®)(z) = T,;, which shows that the FB with S(¢/27) = EH# (c/27)E(c727%) are given by
polyphase matrixE®)(z) is paraunitary with frame bound
A= 1.

From frame theory [28], [30], we know that by applying the
procedure described above to an exact frame (corresponding to
a biorthogonal FB), an orthogonal function set (corresponditigfollows from Corollary 5.3 that the FB corresponds to a
to an orthogonal FB) is obtained. Note that a UFBF can B&FBF if and only if

N-1
A(8) = Sy (770 = Z |Ex (7272
k=0

exact only in the case of critical sampling. O inf g 276

The matrix P~!(z) can be calculated by performing a 96[071)7(32%7'1?_"71\4_1 nn () >0
factorization of P~2(z) = R(z)R(z). A detailed study of and
such a factorization problem for both polynomial and rational ess sup S, n(ej27re) <00

matrices is given in [56]. Alternatively, the approximative 6c[0,1),n=0,1, -, M—1
calculation of P~1(z) can be based on a series expansion ) )
similar to (16): Using the correspondence between the frarid according to Corollary 5.1, the frame bounds are given by

operatorS and the UFBF matriS(z) = E(2)E(z), we have A= ess inf S n (927,
[57] #€[0,1),n=0,1, -, M—1 ’

ad ; B = ess sup Sy n(e27).
P~(2) —\/T E : COL 6C[0,1),n=0,1,--, M—1
A+ B part 22i(41)2

In particular, the FB is paraunitary with frame bourdf and
2 - ‘ only if
NIy ———EX)E(2) ) .
(1 - 75 BER)

N—-1
Snn(2) = D Ex n(2)Ex,n(2) = A
VIl. SPeCIAL CASES k=0
In this section, we discuss FB’s whose frame operator forn=0,1,.--, M —1.

becomes a simple multiplication operator in the polypha . . , .
domain or in the frequency domain, i.e., the polyphase r’s?_\e construction of paraunitary FB’s from nonparaunitary

resentation or the Fourier transform “diagonalizes” the fra 43 s (see Theorem 6.2) simplifies as well. Consider an FB

operator. This class of FB's comprises integer oversampl&t anaIySQis polyphase components; ,(z), and define
or critically sampled DFT FB's, nondecimated FB's, andn(*) Ey Pnl(z).: Sr,nr(]Z) with P, (z) = P, (). Then, the
bandlimited FB's. We shall see that the calculation of the® With analysis polyphase components

;ynthes_is FB, _of thg fra_lme bounds, and of paraunitary FB’s £ By a(2)

is drastically simplified in these cases. k,n(z) = T(?)

A. Diagonality in the Polyphase Domain is paraunitary withA = 1, i.e., E®)(2)E®(z) = I),. Thus,
the matrix factorizationE(2)E(z) = P?(z) reduces to a
factorization of polynomials irx (in the FIR case) or rational
anctions inz (in the IIR case).

Integer oversampled or critically sampled DFT FB’s [4],
, [71, [11], [16], [24], [39], [54], [58] are an important

According to Lemma 3.1, the frame operaifiris repre-
sented in the polyphase domain by the UFBF magix).
Consequently, a FB corresponding to a UFBF is “diagonal
the polyphase domain” if the UFBF matrix is a diagonal matrii%]

S(z) :E(z)E(z)zdiag{Sn,n(z) j‘j;ol example of FB’s that are diagonal in the polyphase do-
N—1 main. The corresponding UFBF type is the important class
with S,, ,(z) = Z B n(2)Eg n(2). of Weyl-Heisenberg framg46], [25], [28],_[3Q], [33], [34],
Pard [39], [59], [60]. In a DFT FB, the analysis filters are mod-

] o ulated versions of a single analysis prototype fili¢s], i.e.,
It follows from (8) that the polyphase matrix of the mMINIMUNY,, 1p] = Rp]W 3" with Wy = e=727/N_ The minimum norm

norm synthesis FB is given by synthesis FB has the same structure, ifgfn] = f[n]W 3"
M-1 [16]. The polyphase components are

R(z) =diag ———— E(»
( ) g{ Sn,n(z) }nzo ( ) Ek,n(z) = W]’{,"En(zWAgk)
» _ Ek,n(z) .
Rk,n(z) - Sn7n(2') . (19) Wlth
We can see that the calculation of the minimum norm synthesisEy (z) = Z himM —n]z"™" n=0,1,---, M -1

FB, which in general requires the inversion of the UFBF m=—00
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and Two important classes of FB’s that are diagonal in the fre-
A £ Mk quency domain arewondecimatedFB’s, i.e., FB's with no
Ry n(2) = WM R, (zW{F) decimation in the subbantdsor A/ = 1, andbandlimitedFB’s,
with i.e., FB's whose analysis filters have bandwidth /M. We
o note that nondecimated FIR FB’s have been studied previously
Rn(z) _ Z f[mM—l—n]z_m,n —0,1, -, M—1. by Cvetkovt and Vetterli in [12].
With (20), it follows that thez-transforms of the minimum
norm synthesis filters are obtained as

In the important cases of integer oversampling € KM
with K € IN, K > 2) and critical sampling§ = M, i.e,, . Hy(2)
K = 1), the DFT FB is diagonal in the polyphase domain with Fi(z) = G(z) "

K-1
Sun(z) = MY En(zWi)En(zWi)
1=0

Furthermore, (21) implies that the frame condition can be
reformulated as

and ess infG(’?™%) > 0 and ess sui(¢’?™?) < 0.
. 6c[0, 1) 6c0,1)
M(0) = S (@20 S ‘En (6j27r(0—(1/1()))‘2.

=0

With G(e27®) = (1/M) Yo s |Hr(e727)[2, the lower
bound means that the set of analysis filters has to “cover”
Hence, all results presented further above for diagonal FBise entire frequency interval [0, 1). This condition is
apply to integer oversampled or critically sampled DFT FB'satisfied if and only if the analysis filters have no zeros in

In particular, (19) simplifies to common on the unit circle. The upper bound is automatically
X B(2) satisfied for BIBO stable filters, i.ehi[n] € [*(Z) for
R, (2) = 5"7() k=0,1,---, N — 1. The frame bounds are given by
n, n\%

_ H j2we _ J276
In [5] and [6], it has been shown that for critical sampling, <= EES[%"{)"‘G(@J ); B = eai[so Sll)JpG(@J )-

a DFT FB with PR and FIR filters in both the analysis and the

synthesis section is possible only if all the polyphase filteraraunitarity with frame bound implies
are pure delays. This leads to filters with poor frequency

selectivity. In the oversampled case, this restriction is relaxed. 1= - _
For K = 2, for example, a paraunitary DFT FB with FIR filters G(z) = M Z Hy(2)Hi(2) = A
can be constructed by using polyphase filters that satisfy the k=0
power symmetry conditions [1] which means that the analysis filtel&, () arepower comple-
. . A mentary[1]. Paraunitary FB’s with frame bound = 1 can be
En(2)En(2) + En(=2)En(=2) = M constructed by solving the factorizatid?(z) = G(z) with
forn=0,1,---, M —1. P(z) = P(z); the paraunitary analysis filters are then given by
It is well known that this can be achieved with FIR filters HP(2) = Hy,(2)
D(z) =

corresponding to nontrivial polyphase filters [1]. Oversampled P(z) "

DFT FB’s with good frequency localization have also been
constructed in [11]. VIIl. SIMULATION RESULTS
We now present simulation results demonstrating the im-

portance of snug framesB(/A = 1) and the benefits of
An FB corresponding to a UFBF is “diagonal in the freoversampling. We consider a DFT FB (see Section VII-A)

B. Diagonality in the Frequency Domain

quency domain” if its frame operator is a simple multiplicatiomvith N = 64 channels and a 192-tap lowpass analysis
operator in the frequency domair-{ransform domain). With prototype filter 2[n]. The simulation results were obtained
y[n] = (Sz)[n], this means by performing all calculations within the framework of cyclic

N1 DFT FB'’s (cyclic Weyl-Heisenberg frames) [39] with period
Y(2) = G(2)X(2) with G(z) = 1 Z Hi(2)Hi(2) 192. The dual windows and the frame bounds we obtained
M o are, hence, approximations to the true (i.e., noncyclic) dual
(20) windows and frame bounds.

whereX(z), Y(z), andH(=) denote the-transforms of:[n], The analysis prototype filtek[n] is depicted in Fig. 3(a).
y[n], and hy[n], respectively. The eigenvalues of the UFBFFig. 3(b)—(d) shows the minimum norm synthesis prototype
matrix S(e’27%) are here given by filters for oversampling by the factors 2, 4, and 8, respectively.
| N The frame bound ratid®?/A was estimated as 33.258, 2.260,
)‘(9) = G(Gﬂwe) = M Z |H’“(GJ27T0)|2' (21) 11We note that nondecimated FB's are also trivially diagonal in the
k=0 polyphase domain.
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sampling). We see thaB/A is closer to 1 (i.e., the frame is
snugger) for increasing oversampling factor; /fAM > 5.33,
the FB is nearly paraunitary.

We caution, however, that if the prototygén] does not
“match” the time—frequency grid determined by the parameters
N and M, it is not guaranteed that the frame bound ratio will
improve for increasing oversampling factor [61]. Furthermore,
we note that paraunitary FB'’s (corresponding to tight frames,
i.e., A = B) can, of course, also be constructed in the case of
critical sampling. However, in the oversampled case, the filters
of a paraunitary FB tend to have desirable properties (such as
improved frequency selectivity). This is due to the fact that
in the design of an oversampled PR FB, there are fewer side
constraints to be satisfied than in the case of critical sampling.

IX. CONCLUSION

We have shown that the theory of frames is a powerful
vehicle for the analysis and design of oversampled filter
banks (FB’s). A key result on which most of our theory was

Fig. 3. Comparison of analysis and minimum norm synthesis prototygfased is the fact that the polyphase matrices provide matrix

filters for various frame bound ratios and oversampling factors. (a) Analy:
prototype h[n]. (b)-(d) Minimum norm synthesis prototypg[n] for (b)

Y&presentations of the frame operator. We demonstrated that

oversampling by 2 (resulting iBB/A = 33.258), (c) oversampling by 4 the frame bounds characterize important numerical properties
(B/A = 2.260), and (d) oversampling by 88/A = 1.107).

TABLE |
FRAME BounD RaTIO B/A As A FUNCTION
OF THE OVERSAMPLING FACTOR N /A

N|M|N/M B/A
64|64 (| 1.00|1.257-10*
64| 48| 1.33 144.186
64| 32| 2.00 33.258
64| 24| 2.66 28.411
64 16| 4.00 2.260
64 12| 5.33 1.107
64| 8| 8.00 1.107
64| 6| 10.66 1.102
64| 4| 16.00 1.102
64| 31 21.33 1.102
64| 21| 32.00 1.102
64| 11 64.00 1.102

of FB’s and that they can be obtained by an eigenanalysis of
the polyphase matrices. For a given oversampled analysis FB,
we provided a compact and useful parameterization of all syn-
thesis FB'’s providing perfect reconstruction, and we discussed
the perfect reconstruction synthesis FB with minimum norm
(i.e., the particular synthesis FB obtained from frame theory)
and its approximative construction. We formulated conditions
for an oversampled FB to provide a frame decomposition.
We also proposed a new method for constructing paraunitary
FB’s from given nonparaunitary FB’s. Finally, we presented
simulation results demonstrating the benefits of snug frames
and oversampling.
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and 1.107, respectively. Thus, more oversampling is seen to
result in snugger frames.

It is furthermore seen that for snugger frames (i.e., morei]
oversampling), the minimum norm synthesis prototype i?z]
increasingly similar to the analysis prototype. Approximating
the synthesis FB using the zero-order approximation in (17p]
(i.e., essentially using the analysis FB as synthesis FB) result%
in the following upper bounds = (B/A —1)/(A/B +1) on
the normalized reconstruction errpéo — || /||| [see (18)]: [

e b = 31.315 for oversampling by 2; [6]

e b = 0.874 for oversampling by 4;

* b = 0.056 for oversampling by 8. [7]
Thus, the reconstruction error can be expected to be negligible
if the oversampling factor is sufficiently large. 18]

For the DFT FB analysis prototype in Fig. 3(a), Table |
shows the frame bound rati@/A as a function of the g
oversampling facto®V/M (note thatV/M = 1 means critical
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