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Abstract-We introduce a new method for quantization 
noise reduction in oversampled filter banks. This method is 
based on predictive quantization and achieves much better 
noise reduction than the best existing methods for noise re- 
duction in overcomplete representations. It is demonstrated 
that the proposed oversampled predictive subband coders are 
well suited for subband coding applications where low reso- 
lution quantizers have to be used. In this case, oversampling 
combined with linear prediction improves the effective res- 
olution of the subband coder at the cost of increased rate. 
Simulation results are provided to assess the achievable quan- 
tization noise reduction and resolution enhancement. 

1 INTRODUCTION A N D  OUTLINE 

Recently, oversampled filter banks (FBs) [1]-[7] have re- 
ceived increased attention, which is mainly due to their noise 
reducing properties and increased design freedom. In this pa- 
per, we introduce a new technique for quantization noise re- 
duction in oversampled FBs. This technique is based on pre- 
dictive quantization. The corresponding oversampled sub- 
band coders can be viewed as extensions of oversampled pre- 
dictive A/D converters [8, 91 and of critically sampled predic- 
tive subband coders [lo]-[12]. Our coder exploits two types 
of redundancies: the natural redundancy inherent in the in- 
put signal and the synthetic redundancy introduced by the 
oversampled analysis FB. The latter redundancy has previ- 
ously been exploited for noise reduction by means of noise 
shaping [6, 7, 131. 

We show that predictive quantization in oversampled FBs 
yields better noise reduction (at the cost of increased bit 
rate) than the best methods previously proposed for noise 
reduction in overcomplete representations [14]-[16]. Over- 
sampled predictive subband coders allow to trade bit rate 
for quantizer accuracy, and they are therefore well suited for 
subband coding applications where for technological or other 
reasons quantizers with low accuracy (even single bit) have 
to be used. The practical advantages of using low-resolution 
quantizers at the cost of increased rate are indicated by the 
popular sigma-delta techniques [8, 91. Using low-resolution 
quantizers in the digital domain increases circuit speed and 
reduces circuit complexity. One-bit codewords, for example, 
eliminate the need for word-framing [lo]. 

This paper is organized as follows. Section 2 introduces 
the new subband coder. In Section 3, we show how the opti- 
mum MIMO prediction system can be calculated. Section 4 
presents examples demonstrating the benefit of oversampling 
and interchannel prediction. Finally, simulation results are 
provided in Section 5. 
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2 OVERSAMPLED PREDICTIVE 
SUBBAND CODERS 

A block diagram of the proposed oversampled predictive 
subband coder is shown in Fig. 1. A major difference from 
oversampled predictive A/D converters [8, 91 is that here 
we have to deal with a vector prediction problem, i.e., the 
predictor is a MIMO system. 

The coder uses an oversampled, uniform FB [17, 18, 4, 21 
with N channels (subbands), subsampling factor M < N ,  
analysis filters hk[n] f) Hk(z) ,  and synthesis filters fk[n] f) 
Fk(z) (L=O,l, ..., N-1). The analysis FB is represented by 
the N x M analysis polyphase matrix [17, 181 E(z) defined as 

sis FB is represented by the M x N synthesis polyphase ma- 
trix R(z) defined as [R(z)ln,k = c,"=-, fk [mM + n] z - ~ .  
The analysis FB (see Fig. l(a)) produces the N x 1 vector of 
subband signals v[m] with z-transform 

[E(z)]k+ = E,=-, 00 hk[mM-n] z - ~ .  Similarly, the synthe- 

00 

V(Z) = v[m] z - ~  = E(a)x(z), (1) 
m=-m 

where X(Z) = [XO(Z) XI(Z) ... X M - I ( Z ) ] ~  with the poly- 
phase components Xn(z) = E:=-, z [ m M  + n] z-,. The 
quantizer (labeled 'Q' in Fig. l(a)) is modeled as additive 
noise q[m] with z-transform q(z) = E,"=-, q[m] z-,. 

The linear predictor uses the past quantized (i.e., noise- 

Q > 

I J 

(b) 

Fig. 1. Oversampled predictive subband coder: 
(a)  encoder, (b)  decoder. 
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contaminated) subband signal vectors v[m - Z] + q[m - Z] 
( I  = 1,2, ..., L )  to produce an estimate +[m] of the current 
subband signal vector ~ [ m ] ,  

L 

+[m] = GI [ ~ [ m  - I] + q[m - z]] , (2) 
1=1 

with the L predictor coefficient matrices GI of size N x N .  
The predictor is a strictly causal N x N MIMO system of 
order L, with transfer function matrix 

L 

IN - G(z) e Glz-" (3) 
I = 1  

Here, IN denotes the N x N identity matrix, and G(z) = 
IN - Glz-' is the prediction error system. The pre- 
dictor coefficient matrices GI will in general not be diagonal, 
so that we are performing interchannel prediction in addi- 
tion to intrachannel prediction. We note that a reduced-cost 
predictor may be obtained by restricting the interchannel 
prediction to a given number of adjacent channels (where 
interchannel correlations are expected to be strongest) [13]. 

The input to the quantizer is the prediction error e[m] = 
v[m] - C[m]. Increasing the FB's oversampling factor N / M  
causes more synthetic redundancy in the subband signals. 
This results in improved prediction accuracy, i.e., smaller 
prediction error e[m] and thus smaller dynamic range of the 
quantizer input. From Fig. l(a), the z-transform of e[m] is 

4.) = G(z)v(z) - [IN - G(z)]q(z). (4) 
The decoder (see Fig. l(b)) operates on the quantizer out- 

put c[m] = e[m] + q[m]. It consists of the same predic- 
tor IN - G(z) described above and the synthesis FB R(z). 
The decoder's output is the reconstructed signal k[n]. Defin- 
ing the polyphase vector k(z) = [XO(Z)  X l ( z )  ... X M - ~ ( Z ) ] ~  
with &(z)  = E:=-, 2[mM + n] z - ~  and using (1) and 
(4), we obtain the overall input-output relation 

a(.) = R(z) [E(z)x(z) + q(z)l. 
Assuming a FB with perfect reconstruction (PR), i.e., 
R(z)E(z) = IM, this simplifies to 

k(z) = ~ ( z )  + R(z)q(z) . 

The reconstruction error, k(z) - ~ ( z )  = R(z)q(z), here 
equals the reconstruction error in a non-predictive subband 
coder using a PR FB. Thus, the use of prediction does not by 
itself yield improved accuracy. However, since the dynamic 
range of the quantizer input, e[m] = v[m] - +[m], will be 
smaller than that of v[m] (the quantizer input in the ab- 
sence of prediction), it is possible to improve the quantizer 
resolution for a fixed number of quantization intervals. 

Since according to (2) the predictor uses the quantized 
past subband signals, we have to deal with a noisy vector 
prediction problem. In the case of high-resolution quantiz- 
ers, the effect of quantization noise can be neglected, i.e., 
+[m] x EL1 Gp[m - I]. However, here we are primarily 
interested in the case of low-resolution quantization. 

The MIMO system G(z) is said to be minimum phase or 
minimum delay if all the roots of det G(z) = 0 lie inside 
the unit circle in the z-plane. This condition ensures that 
the inverse filter G-l(z), and hence the feedback loop, will 
be stable [19]. In the noiseless case (q(z) = 0 ) ,  it is shown 
in [19] that G(z) is minimum phase if the process v[m] is 
stationary and nondeterministic. Although we were not able 
to prove the minimum phase property of G(z) ,  we always 
observed stability of G-l(z) in our simulation examples. 
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3 OPTIMUM PREDICTION SYSTEM 

We now derive the optimum prediction system IN - G(z). 
The input signal z[n] is assumed to be a real-valued, wide- 
sense stationary, zero-mean random process with autocor- 
relation function C, 11 = E{z[n]z[n - I]} ( E  denotes the 
expectation operator\. We consider the FB input vector 
x[m] = [z[mM] z[mM+l] ... ~ [ m M + M - - l l ] ~  with corre- 
lation matrix function C,[Z] = E{x[m]xT[m-Z]} and power 
spectral matrix S,(z) = Cp"=-, C,[Z]z-'. We note that 

Assuming for simplicity a FB with real-valued filters, the 
N x N correlation matrix function of the subband signal 
process v[m] is obtained as 

[C,[Z]]i,j = C,[ZM+i~j] ( i , j  = 0,1, ..., M-1). 

-00 m 

a=--03 j=-w 

(5) 
where El is defined by E(z) = cp"=-, E1z-l. The power 
spectral matrix of v[m] is 

-00 

Su(z )  = Cu[Z]z-' = E(z)S,(z)E(z), (6) 
l=-w 

where E(z) = EH(l/z*). 
The quantization noise q[m] is assumed to be uncorrelated 

with z[n], zero-mean, and wide-sense stationary with power 
spectral matrix S,(z). With (4) and (l), the power spectral 
matrix of the prediction error e[m] is obtained as 

Se(z )  = G(z)Sv(z)G(z) 
+ [IN - G(z)]S,(z)[Iiv - G(z)]. (7) 

The optimum predictor minimizes the prediction error 
variance defined as 

where Tr{.} denotes the trace of a matrix. Inserting (3) and 
(6) into (7) yields after straightforward manipulations [7, 131 

i=l 1=1 

where we have used Cf[-Z] = Cu[Z] and CT[-Z] = C,[Z]. 
We shall next calculate the optimum predictor coefficient 

matrices GI. We assume real-valued GI for simplicity. Set- 
ting % = 0 for i = 1,2, ..., L, and using the matrix differ- 
entiation rules in [ZO , we obtain the following block Toplitz 
system of equations 17, 131, 

L 

I=1 

Using (9) in (8), the minimum prediction error variance is 
obtained as 

where Gl,opt is the solution of (9). Note that the noise statis- 
tics are not explicitly contained in this expression, although 
they do influence via Gl,opt. 



In the noiseless case, i.e., C,[Z] 0, (9) reduces to 
L 

E C , , [ l - i ] G T =  CF[i], i = l , 2  ..... L .  (11) 
I=1 

This can be solved efficiently using the multi-channel Levin- 
son recursion [21]. Another important special case where this 
is possible is the noisy case with white (but possibly corre- 
lated) quantization noise, i.e., C,[l] = C,[O]S[Z]. Here, (9) 
reduces to (11) with C,[O] replaced by C,[O] + C,[O]. We 
finally note that the above derivation can easily be extended 
to incorporate correlations between v[m] and q[m]. 

4 EXAMPLES 
As a simple example, let us consider a paraunitary two- 

channel FB (i.e., N = 2) with M = 1 and, hence, oversam- 
pling factor N / M  = 2. The analysis filters are the Haar fil- 
ters Ho(z) = &(l+z-')  and Hl(z) = &(l-z- ' ) ,  and the 
PR synthesis filters with minimum norm are &(z) = g &(z) 
and FI(z) = +fi l (z) .  The input signal is modeled as an 
AR-1 process [22] defined by 24.1 = az[n - 11 + 4.1 with 
a = 0.5 and white driving noise U[.] with variance 1. With 

. . .  

. . . .  
0 :  

. . . . . .  .- . . 
C,[-1] = CT[l], and C,[l] = 0 otherwise. 
In the absence of prediction (i.e., L = 0 or e[m] = v[m]), 

the variance at the input of the quantizer is obtained as 
U," = U: = 4/3 x 1.33. We shall now evaluate the variance 
reduction achieved by the optimum first-order (i.e., L = 1) 
predictor 12 - Gopt(z) = Gl,optz-l in various situations. 

No quantization noise. We first consider the case of 
no quantization noise (noiseless prediction). Here, it follows 
from (9) that the optimum coefficient matrix GI is deter- 
mined by C,[O]GT = Cf[l], which yields 35- 

-40- 

4 5  
The corresponding minimum prediction error variance is ob- 
tained from (10) as a:,,in = iTr{C,[O] - C,[l]G~opt} = 
0.5. (This should be compared with a," a 1.33.) 

Uncorrelated, white quantization noise. We next as- 
sume uncorrelated, white quantization noise with variance 1 
in each channel, i.e., C,[l] = I~6[l]. From (9), 

. . .  . .  .. ,,: 
. . . . . . . . . .  . . .  '.-. - . i , - . - ,  - - . - . - .- . - -. -. - . - . . .  

. . . .  . . . . .  
. . : . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . .  . .  

...................................... 

The minimum prediction error variance is obtained from (10) 
as a:,min = gTr{C,[O] - C,[l]G~,pt} = 5/6 x 0.83, which 
is still better than a," x 1.33. 

No interchannel prediction. Still assuming C,[l] = 
IzS[Z], let us compare the last result with that of a predic- 
tor without interchannel prediction. Replacing GI with a 
diagonal matrix Gf = diag{a,P}, it follows from (8) that 
u z = $ - i a + $ + i a 2 + $ p 2 .  S e t t i n g g = O a n d g  ag = O  
yields aopt = 1/2 and popt = - l / l O ,  so that 

Note that the diagonal elements of GfOpt equal those of 
Gl,opt in (12). The prediction error variance is obtained as 
a&.,in = 0.95. A comparison with the result obtained further 

above with interchannel prediction, a:,,in $;: 0.83, shows the 
benefit of exploiting interchannel correlation. 

5 SIMULATION RESULTS 
The performance of oversampled predictive subband cod- 

ers will now be further analyzed using simulation results. 
Exploiting synthetic redundancy. Our first simulation 

exaplple demonstrates the predictor's ability to exploit the 
synthetic redundancy introduced by the oversampled analy- 
sis FB for improving prediction accuracy and hence for en- 
hancing resolution. 

We used a paraunitary, odd-stacked, cosine-modulated FB 
231 with N = 16 channels, normalized analysis filters (Le., 

hhkll .= 1> of length 64, and various oversampling factors K. 
The input was white noise (no natural redundancy). Hence, 
all the prediction gain is due to the synthetic redundancy. In 
particular, this means that there will not be any prediction 
gain in the special case of a critically sampled paraunitary 
(orthogonal) FB (which does not introduce synthetic redun- 
dancy). For the sake of simplicity, we considered the case of 
no quantization (noiseless prediction). 

Fig. 2(a) shows the theoretical minimum prediction er- 
ror variance 10 log calculated according to (lo), as 

. - . - 6 4  

. . . .  
- - - - -  . . . . .  ..-. ~ . . . . . . . . . . . . . .  ? E 5 0 8  ?.:.,..*: - - - - _ _ _  . . . . . . . . . .  

4 -101 

--"1 2 
System order 

(b) 

I 

Fig. 2. Prediction error variance 10 logv$,,in for a white 
noise input signal and no quantization noise as a function 
of the predictor order L f o r  various oversampling factors 

K = N / M :  (a) theoretical, (b) measured. 
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a function of the predictor order L for various oversampling 
factors K = N / M .  For increasing L, is seen to de- 
crease up to a certain point, after which it remains constant. 

Fig. 2(b) shows the corresponding measured prediction er- 
ror variance obtained for an implemented coder. This result 
was obtained by averaging over 5 realizations (of length 1024) 
of the input process. For predictor order L > 3 (not shown), 
the performance of the implemented coder deteriorated sig- 
nificantly. This is probably due to the near-singularity of (9) 
for L > 3, which introduces numerical errors in the computa- 
tion of the prediction system. Note that for critical sampling 
( K  = l ) ,  there is in fact no prediction gain. 

Improving effective quantizer resolution. Our next 
simulation example demonstrates that oversampling com- 
bined with linear prediction is a powerful means to improve 
the effective resolution of a subband coder. We coded real- 
izations of an AR-1 process with length 1024 and correlation 
coefficient a = 0.5 using a critically sampled, paraunitary, 
16-channel, odd-stacked, cosine-modulated FB and quantiz- 
ers with 152 quantization intervals (8-bit quantizers) in each 
channel. The resulting SNR = -s2 was 32.49dB. Next, 
we coded the same signal using an oversampled FB with over- 
sampling factor K = 4 and a predictor with order L = 10 
(designed under the assumption of uncorrelated and white 
quantization noise). Here, quantizers with only 15 quantiza- 
tion intervals (4-bit quantizers) achieved an SNR of 32.51dB. 
Hence, oversampling and prediction allowed us to save 4 bits 
of quantizer resolution in each of the 16 channels, of course at 
the cost of increased sample rate. For oversampling factor 8, 
quantizers with 15 quantization intervals (4-bit quantizers), 
and a predictor with order L = 15, we obtained an SNR of 
50.48dB. In order to achieve an SNR of 50.43dB with a crit- 
ically sampled subband coder without prediction, we had to 
use 1219 quantization intervals (11-bit quantizers). Hence, 
oversampling and prediction here saved 7 bits of quantizer 
resolution. Table 1 summarizes these results. 

Table 1 .  Improving the effective resolution of a subband 
coder by means of oversampling and prediction. (NQ 

denotes the number of quantization intervals required.) 

6 CONCLUSION 
We introduced a new method for quantization noise re- 

duction in oversampled filter banks. This method is based 
on predictive quantization; it can be viewed as an exten- 
sion of oversampled predictive A/D converters. We demon- 
strated that predictive quantization in oversampled filter 
banks yields considerable quantization noise reduction at the 
cost of increased rate. The combination of oversampled filter 
banks with linear prediction improves the effective resolution 
of subband coders and is thus well suited for applications 
where-for technological or other reasons-quantizers with 
low resolution (even single bit) have to be used. Using low 
resolution quantizers in the digital domain increases circuit 
speed and allows for lower circuit complexity. 
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