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ABSTRACT

We propose a minimax robust time-varying Wiener filter
that is based on a novel uncertainty model for nonstation-
ary random processes. This filter maintains a certain per-
formance for all second-order statistics within prescribed
uncertainty classes. Furthermore, it requires less detailed
prior knowledge than the ordinary Wiener filter. We also
present an intuitively appealing time-frequency formulation
of the robust time-varying Wiener filter in which signal sub-
spaces are replaced with time-frequency regions.

1 INTRODUCTION

We consider the estimation of a random signal s(t) from a
noisy observation r(t) = s(t) + n(t) by means of a linear,
generally time-varying system H,
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where h(t,t') denotes the impulse response (kernel) of H.
Signal s(t) and noise n(t) are assumed to be uncorrelated,
real or circular complex, zero-mean, nonstationary random
processes with correlation operators’ R, and R, respec-
tively. As is well known [1, 2], minimization of the mean
square error (MSE) £?(H;Rs,R,,) £ E{||Hr — s||*} with
respect to H yields the (time-varying) Wiener filter

Hy 2 argrrgn62(H;Rs,Rn) =Rs(Rs+R,)"". (1)

Calculation of the Wiener filter requires complete knowl-
edge of the correlations Rs and R,,, which is rarely available
in practice. If the actual correlations R; and R, deviate
from the nominal correlations (hereafter denoted by R2 and
RY) for which the Wiener filter HY, = R2(R2+R%)~! was
designed, the filter’s performance may degrade significantly.

This paper proposes a robust time-varying Wiener filter
that maintains a certain performance for all correlations
within prescribed uncertainty classes and is thus insensi-
tive to limited deviations from the nominal operating con-
ditions. Our results extend a previously proposed minimax
robust time-invariant Wiener filter based on the so-called
p-point uncertainty model for stationary processes [3, 4].

The paper is organized as follows. Section 2 introduces a
p-point uncertainty model for nonstationary processes, and
Section 3 derives the corresponding minimax robust time-
varying Wiener filter. Intuitively appealing time-frequency
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IThe correlation operator Ry of a (generally nonstationary)
random process z(t) is the linear, positive (semi-)definite op-
erator whose kernel equals the correlation function rg(t,t') =
E {z(t) z*(¢')}. In a discrete-time setting, R, would be a matrix.

formulations are presented in Section 4. Finally, numerical
simulations are provided in Section 5.

2 NONSTATIONARY p-POINT
UNCERTAINTY MODEL

Generalizing the p-point uncertainty model for stationary
random processes [3, 4], we propose an uncertainty model
for nonstationary random processes which describes the
designer’s uncertainty about the actual correlations. Let
the orthogonal subspaces X;, ¢ = 1,2,...,N be a par-
tition of the space L.(R) of square-integrable functions,
ie, @i, X = L2(R) and X; L X; for ¢ # j. The as-
sociated orthogonal projection operators P; then satisfy
Ef’: 1 P; = I. The mean energy of a nonstationary process
x(t) in a subspace X&; is given by E{||Piz|*} = tr{P;R.},
where tr{-} denotes the trace. Note that E, 2 E{||z|*} =
Ef’zl tr{P;R, }. By definition, the p-point uncertainty class
U comprises all nonstationary processes z(t) (i.e., correla-
tions R;) having given mean subspace energies z; > 0,

U2 {R.: tr{PR.} ==, i=1,2,...,N}.

Note that this implies equal mean energies E, = vaz 1%

The p-point uncertainty model captures the prior knowl-
edge in a simple and flexible manner via the mean sub-
space energies z;. If a nominal correlation RY is given,
then z; £ tr{PiRg}. In the extreme case N = 1, i.e.
X1 = L2(R), only the total mean energy E, is determined,
corresponding to a minimal amount of prior knowledge and
a maximally wide uncertainty class U.

It is easily shown that the convex combination (1—a)R1+
aR; of two correlations R1 € U and R € U is again in U,
which means that the p-point uncertainty class i/ is a convex
set. This will be important in what follows.

3 ROBUST TIME-VARYING WIENER FILTER

Returning to our estimation problem, we assume that signal
s(t) and noise n(t) belong to p-point uncertainty classes
S ={R.: tr{PR;} =s;, i=1,2,...,N}, @
N ={R,: tr{PR.} =n;, i=1,2,...,N},
respectively, with given signal subspaces X; (identical for
S and N) and given mean subspace energies s; > 0 and
n; > 0. Adopting a minimax approach, we define the robust
time-varying Wiener filter Hg as the system that optimizes

the worst-case performance (i.e., maximal MSE) obtained
within the uncertainty classes S, N:

a : 217
Hr = a,rgngn{ max e (H,RS,Rn)}. 3)
Rn,EN
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This optimization problem is difficult to solve in general.
However, an important simplification occurs if

min max ¢’ (H;R;,R,) = max mine’(H;R;,R,)
H R.€S R,€5 H
RneN RneN (4)
éria)fg Emm (RS, Rn)
Rp,eN

where €2, (Rs, Ry) 2 ming e?(H;Rs,Ry). Let us assume
that (4) is valid. Since €2;,(Rs,Ry,) is achieved by the or-
dinary Wiener filter Hy = Rs(Rs+R.,)™"in (1), equation
(4) implies that Hg is equal to the ordinary Wiener filter

Hj, 2 RI(RI +R})™
obtained for those correlations RE, RL that are least

favorable in the sense that they lead to the maximal
e2in(Rs,Ry,) among all R, € S and R, € N, ice.,

(RERY) = arg max erin(Rs, Rn). (5)
Rn,EN

It can be shown [5] that the pivotal relation (4) is valid if
and only if there exist a filter Hz, and correlations RY, R
forming a saddle point of €*(H; R, R,,) in the sense that

e’(Hr; Ry, Ry) < °(Hz; RI RE) < *(H;RE,RL) (6)

for all H and R; € S, Rn € N. If Hy is chosen as Hy =
HY, = RE(RE +RE) 7! ie., as the ordinary Wiener filter
for the correlations RSL, Rﬁ, the rlght hand inequality in
(6) is trivially true (since Hiyj, minimizes ¢*(H;RZ, RL)),
and it only remains to find correlation operators RZ, RL
satisfying the left-hand inequality in (6):

£’ (Hiy; Rs, Rn) < €7 (Hiy; RE RE) = el (RE,RE). (7)

Using the convexity of the sets S and A (see Section 2), it
can be shown [6] that (7) is satisfied if and only if RZ, RZ
are chosen as the least favorable correlations in (5).
Hence, the robust Wiener filter Hr equals the ordinary
Wiener filter designed for the least favorable correlations,
and thus its construction essentially reduces to the easier
task of finding least favorable correlations. Using this sim-
plification, the following result is shown in the Appendix.

Theorem 3.1. For the p-point uncertainty classes S and
N in (2), the robust time-varying Wiener filter as defined
in (3) s given by

Hp=) P, ®)

and the MSE achieved by Hg for any Rs € S, R, € N is

SiNn;
si+n;

N
e?(Hp;Rs, Rp) = )

i=1

We see that Hr simply forms a weighted sum of the
orthogonal projections of the input signal onto the sub-
spaces X;. Thus, it treats all signal components lying in
a given subspace X; alike and it does not exploit cross-
correlations between process components in different sub-
spaces X;. Whereas in general the ordinary Wiener filter
Hyw is not even a normal operator, the robust Wiener filter
Hp, is self-adjoint and nonnegative definite. In the extreme

case N = 1 where only E, and E, are known, Hp reduces
to a simple gain factor, i.e., Hg = T +E I. Furthermore,
the MSE achieved by Hr does not depend on the actual
correlation operators Rs, R, as long as these lie in the
respective uncertainty classes S, N.

4 TIME-FREQUENCY FORMULATION

‘We shall now establish an approximate, intuitively appeal-
ing time-frequency (TF) formulation of the p-point uncer-
tainty classes S, N and the robust time-varying Wiener
filter Hr. Let Lu(t, f) denote the Weyl symbol of a lin-
ear time-varying system H [7]-[9] and Wy (t, f) the Wigner-
Ville spectrum (WVS) of a nonstationary random pro-
cess z(t) [10, 11]. Using [7, 8] tr{P;R.} = (Lp,, Wa) =
ftff Lp,(t, f)Wa(t, f) dtdf, a TF formulation of the p-
point uncertainty class S in (2) is obtained as {W.(t, f) :
<LP“WS> =s;, 1i=1,2,.. .,N}, and similarly for V.

For non-sophisticated [12] subspaces Xj, each X; corre-
sponds to a TF region R; such that Lp,(t, f) = Ir;(t, f)
and hence (Lp;, W) = (Ir;,W2) = [[, Wal(t, f)dtdf,
where I, (t, f) is the indicator function of R; [12, 13].
The TF regions R; form a partition of the TF plane, i.e.,
UY,Ri =R? and R; NR; = 0 for i # j [12, 14]. Hence,
approximate TF formulations of the p-point uncertainty
classes S, N are obtained as

.§={Ws(t,f):// Wa(t, f) dtdf = 5, i=1,2,...,N},

R;

N= {Wn(t,f):// Walt, f) dtdf = 7s, i:1,2,...,N}.
R.

Note that Em 18 = E, and E, L ni o= E,. The “TF

uncertainty classes” S N comprise all nonstatlonary pro-
cesses s(t), n(t) havmg prescribed amounts §;, 72; of mean
energy in given TF reglons Rl, which is quite intuitive.

If nommal WVS W t f), w, (t f) are given, then §;

ffR Wy (t, f)dtdf and 7; = ffR t (t, f)dtdf. If s;
tr{P;,R}} and n; £ tr{P;R} (cf. Sectlon 2), then we can
expect §; = s; and 7; = n; (cf. Table 1 in Section 5). In
practice, the “mean regional energies” (WVS integrals) §;,
fi; can be estimated from realizations of s(t), n(t) much
more accurately and efficiently than the WVS themselves
or the correlations. _

Next, we develop a TF designed approximation Hg to the
robust time-varying Wiener filter Hr by taking the Weyl
symbol of Hg in (8) and using Lyp; (¢, f) =~ Ir;(t, f) and
Si & Si, Ny N Nyt

(1> ||l>

LHRtf) Z tf)
ZH I f) 2 L, (0D )

Note that Lg (¢, f) is piecewise constant, expressing an
equal TF weighting of all process components lying in a
given TF region R; [9]. With (9), Hr is obtained as
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Figure 1. TF representations of signal and noise statistics and various Wiener filters: (a) WVS of s(t), (b) WVS of n(t),
(c) Weyl symbol of HY,, (d) Weyl symbol of Hg, and (e) Weyl symbol of Hr.

Here, the impulse response p;(t,¢') of P; is the inverse Weyl
transform [7, 8] of the indicator function Ix;(t, f), which
can be computed efficiently using FF'T methods. Note that
P; approximates P; but is not exactly an orthogonal pro-
jection operator [12, 13].

The prior knowledge necessary for designing this “robust
TF Wiener filter” Hp, is given by the mean regional energies
3;, n; of s(t), n(t) in the prescribed TF regions R;, which is
more intuitive and physically relevant than the mean sub-
space energies s;, n; required for the design of Hr. Note
also that the task of choosing a partition of L2(R) into
orthogonal subspaces X; has been replaced by the much
simpler and more intuitive task of choosing a partition of
the TF plane into disjoint TF regions R;. This partition
may have a regular structure (e.g., a rectangular or wavelet-
type tiling of the TF plane) or the R; may correspond to
individual components of the processes s(t), n(t) (if prior
knowledge about the TF localization of such components is
available). In the first case, efficient multi-window Gabor
or multi-wavelet implementations of the resulting robust
Wiener filter can be derived [6].

Since Hp is minimax robust for the uncertainty classes S,
N, and since furthermore Hg ~ Hg and S, N are approx-
imately equivalent to S, N/, the filter Hy is approximately
minimax robust? for the TF uncertainty classes S, N.

5 SIMULATION RESULTS

Figs. 1 (a), (b) depict the WVS of (TF designed [17]) nom-
inal correlations R? and R%. The Weyl symbol of the or-
dinary Wiener filter HY, = R2(R2 +R2)™! is shown in
Fig.1(c). Figs.1(d), (e) depict the Weyl symbols of the ro-
bust Wiener filter Hg and the robust TF Wiener filter Hg
obtained for p-point uncertainty classes S, N' and S, N,
respectively, both with N = 4. The rectangular TF regions
R; underlying the TF uncertainty classes S, N are clearly
visible in the Weyl symbol of Hg. Since the subspaces X;
underlying S, N were derived from the TF regions R; by
means of TF space synthesis [12]-[14], this rectangular TF
tiling is also visible in the Weyl symbol of Hg.

Table 1 compares the values of the mean subspace ener-
gies s;, n; and the mean regional energies §;, 7; as well as
the resulting coefficients of Hr and Hg. It can be verified
that the TF approximations are quite good.

Finally, Fig. 2 compares the performance (output SNR
E,/e’(H;R,,R,) vs. input SNR? E,/E,) of the ordinary

2For underspread processes [15], based on approximate TF
formulations of the ordinary Wiener filter and the MSE [16],

this can be verified via a derivation in the TF domain that is
analogous to the derivation given in the Appendix.

3The input SNR. was varied by scaling Ri.

: ~ ~ S S

v 8i 8i L i si+n; | 5+
1 5.272 | 5.283 1.602 | 1.582 0.766 0.769
2 1.579 | 1.608 2.690 | 2.731 0.369 0.370
3 0.602 | 0.589 4.848 | 4.836 0.110 0.108
4 1.634 | 1.608 2.747 | 2.715 0.373 0.371

Table 1. Comparison of the mean subspace energies s;, n;
and the mean regional energies 3;, N; as well as the resulting
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Figure 2. Performance of the ordinary Wiener filter HY,,
the robust Wiener filters Hr and Hg, and the trivial filter

Hyr. (The SNR curves of Hp at different operating condi-
tions all coincide with the SNR curve of Hg.)

Wiener filter HY, = RO(R2+R2)™!, the robust Wiener fil-
ter Hg, the robust TF Wiener filter Hg, and a trivial filter
Hr that suppresses (passes) all signals in the case of neg-
ative (positive) SNR. It was verified that the performance
of Hp is indeed independent of the operating conditions
within the uncertainty classes S, A'. For all possible op-
erating conditions, the output SNR obtained with Hr was
observed to be within 0,07dB of that obtained with Hg,
thereby confirming the quality of the TF approximation (9).
Furthermore, it is seen that at nominal operating conditions
HY, performs only slightly better than Hz or Hz but at its
worst-case operating conditions HY, performs much worse
than Hr or Hr or even H7. Hence, in this example, the
robust Wiener filters Hr and Hpr achieve a drastic perfor-



mance improvement over HY, at its worst-case operating
conditions with only a slight performance loss at nominal
operating conditions.

6 CONCLUSION

We have derived a minimax robust time-varying Wiener
filter that is based on a novel p-point uncertainty model
for nonstationary random processes. This filter is insensi-
tive to limited deviations from the nominal operating con-
ditions, and it requires less detailed prior knowledge than
the ordinary Wiener filter. Furthermore, we presented time-
frequency formulations of the uncertainty model and robust
Wiener filter which are particularly intuitive since they use
simple time-frequency regions instead of signal subspaces.
We note that a generalized theory of minimax robust time-
frequency Wiener filters is given in [6].

APPENDIX: PROOF OF THEOREM 3.1

According to Section 3, Hgr equals the ordinary Wiener
filter Hf, = R (RSL +RE )_1 obtained for least favorable
correlations RY, RL that satisfy the inequality (7). Let

N N
L A L A
Ry = E Rs,i, R, = E Rn,i;
i=1 im1

where R, i, Rns (1 = 1,2,...,N) are positive (semi-)defi-
nite operators with domain and range in A&j, chosen such
that n;Rs,; = s;Rp,;. (For finite-dimensional X;, we could
choose Ry i, Ry, ; to be proportional to P;.) RL and RY are
positive (semi-)definite and thus valid correlation operators,
and the Rs,;, Ry ; can be normalized such that RL € S,
RZ € N. We now show that RY, RL satisfy (7). The
ordinary Wiener filter for RE, RL can be written as

N N -1
Hj, =RI(Rl +R.) ' = ZRs,i[ (Rsj + Rn,j)]

N N N
Z Z Rs,j+Rn,j)#: ZRs,i(Rs,i‘l‘Rn,i)#

where (Rs; + Ry ;)# denotes the pseudo-inverse [2] on X;,

and the last identity holds since R ; (Rs,j +R,; )# =0 for
i # j. With n;R, ; = s;Rn,;, we obtain further
N

HW_ZR“[(1+ )R“]#=Z&+MR“R
- P
=X

The MSE obtained when applying H;, to processes with
correlations Rs € S, R,, € NV is given by
52(Hﬁ,; R, R,) = E{”Hé’yg +Hpn— s||2}

= B{||(— 1) s|*} + B{|HE 0]}

o (1- 1) Ro} + o (B ) Ra }
o[ o)

S ]tr{pRHz[

i=1

(10)

P;.
+ n;

] tr{P;R,}

N
. Zn s,+s n;g _Z S

- b)

(sitmi)> ' sitmn

which is constant for all R; € S, R, € N. Hence, inequal-
ity (7) is satisfied (with equality), and thus the Wiener filter
HE, in (10) equals the robust Wiener filter Hg.
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