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ABSTRACT

In this paper, we describe a new and computationally efficient
adaptive system for the enhancement of autoregressive (AR)
signals which are disturbed by additive white or colored noise.
The system is comprised of an adaptive Kalman filter operating
as a fixed lag smoother and a subsystem for AR parameter esti-
mation. A superior performance is achieved by implementing a
feedback loop between the Kalman filter output and the param-
eter estimation. Accordingly, the AR parameters are obtained
from the enhanced signal and the influence of the disturbing
noise on the parameter estimation is damped down. Another
advantage of the adaptive Kalman filter is its tracking capabil-
ity for short-time stationary signals.

1. INTRODUCTION

Autoregressive (AR) models are an important parameterization
of many natural signals like speech, music, and seismic sig-
nals. In many practical situations, however, these signals are
corrupted by additive noise and must be enhanced for further
processing.

In this paper, we describe an enhancement algorithm which
is based on an adaptive Kalman fixed lag smoother. The key
point for the performance of such a signal enhancement system
is the estimation of the AR parameters in the presence of noise.
Since the AR model is built into the structure of the Kalman
filter, we must ensure that the estimated AR parameters yield
stable filters.

The novelty of our approach is the proper combination of a
Kalman filter and a parameter estimation procedure which al-
lows for tracking of nonstationary signals. Furthermore, our
system is designed to suppress white or colored noise. The
inclusion of colored noise is an extension to the system we
presented in [8]. The system can also be easily modified to
suppress impulse noise [9]. Our system does not require an
extended Kalman filter as used in [7] or an iterated parameter
estimation procedure [6]. It is computationally efficient and
may be implemented for real-time operation in the audio fre-

quency range using integrated digital signal processors.

We first present a computationally efficient set of Kalman
fixed-lag smoother equations fitted for use with AR signal and
AR noise models. Afterwards, the block diagram of the en-
tire signal enhancement system is discussed in some detail.
Finally, we present typical experimental results and show an
illustrative example.

2. KALMAN FIXED-LAG SMOOTHER FOR AR
SIGNAL AND NOISE MODELS

In this section, we characterize both the desired signal and the
disturbing noise by AR signal models. These models are then
used to devise a Kalman filter for optimal suppression of the
disturbing noise. At the moment we assume that all model
parameters are known. Later on we will show how these pa-
rameters can be estimated from the noisy signal.

Given the noisy signal by

y(n) = s(n) + v(n) ey

we represent the desired signal s(n) by a p’® order AR process

s(n+1) ag(n)s(n —k 4+ 1) + u(n)

I
e

2

aT(n)s(n) + u(n)

where a(n) = (a1(n),...,a,(n))? denotes the time depen-
dent AR parameter vector and the signal data vector is given
by s(n) = (s(n),...,s(n — p+ 1))T. Similarly, the addi-
tive colored Gaussian noise v(n) is modeled as a ¢* order AR
process

v(n = b (n)v(in — k w(n
(n+1) ;; (n)v( +1) + w(n) )

= bT(n)v(n) + w(n).
Normally, AR model orders are not known exactly, and select-

ingp=4...20and ¢ = 1...4 may be suitable in most prac-
tical situations. The driving noise sequences u(n), w(n) of the
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AR models are assumed to be zero mean white Gaussian noise
processes with variances o2 (n), and o2 (n), respectively. We
further assume that only the disturbing noise model parame-
ters o2 (n) and b(n) must be known in advance, i.e. they are
estimated during absence of the desired signal s(n). All other
parameters are supplied by our adaptive algorithm. We prefer
to use a Kalman fixed-lag smoother instead of the Kalman fil-
ter, since smoothing involves additional data in the estimation
procedure. As a consequence, the estimation error variance
is further decreased, and with a large lag length (delay) the
performance approaches that of a noncausal Wiener filter for
stationary signals [3].

In order to obtain a Kalman fixed-lag smoother we represent
the AR signal model (2) in state-space form

s(n+1) = A(n)s(n) + (u(n),0,...,0)". @

In contrast to (2), the d + 1 dimensional state vector s(n) now
consists of the current signal sample s(n) and d delayed sam-
ples where d > p is the smoother delay. Comparison of the
state-space model (4) with the scalar signal model (2) immedi-
ately unveils the following structure of the (d 4+ 1) x (d + 1)
signal state matrix A (n):

ai(n) ap(n) 0 0 0
1 0 0 0 0
A(n) = 0 1 0O -~ 0 0.
0 0 1 -+ 00
0 0 0O .- 1 0

Likewise, the noise model (3) can be written in state-space
form

v(n+1) = B(n)v(n) + (w(®n),0,...,0)" (6
with the ¢ x ¢ noise state matrix
bi(n) - bg-1(n) by(n)
B(r) 1 0 0
= ) 7
! : 0 : @
0 1 0

Introducing the augmented state vector x(n) and driving
noise vector w(n)

0 =(0) we-(e) e

we rearrange (1) - (3) as the following state-space equations:

x(n+1) = FTn)x(n) + Gw(n) ©
y(n) = c'x(n)

with F(n) = (45" 50,

unity vector e; = (1,0,...,0) has dimension d + 1, and e,
has dimension ¢, respectively.

Using the state-space signal model (9), we now design
a Kalman filter (smoother) which optimally suppresses the
disturbing noise v(n) provided that the model parameter set
{a(n),b(n),o2(n), o2 (n)} is known.

The Kalman filter order as given by the (d + 1+ ¢) x (d +
1+ ¢) state matrix F may be reduced by a suitable transforma-
tion of the state-vector or of the observation signal y(n) [2].
Unfortunately, the reduced order Kalman filter needs a more
complicated Kalman gain vector update. Thus, we decided to
stick to the increased order Kalman filter. In most practical sit-
uations, the order increase is small because the order ¢ of the
disturbing noise model is much less than the smoother delay d.

According to (9) the Kalman filter equations for estimation
of the state vector x(n) in (8) may be formulated as

),G = (es 0),0 = (&) where

0 e,

e(n) = y(n) — I F(n)x(n)
x(n+ 1) = F(n)x(n) + k(n)e(n)
S$(n—d) = &441(n).

(10)

Vectors §(n) and v(n) are estimates of the subvectors given in
(8). The enhanced signal sample §(n — d) is obtained by the
state vector component with index d + 1.

The computation of the Kalman gain vector k(n) can be
simplified due to the special structure of F(n), G, c. In the
following equations, we use a notation for submatrices which
can be easily converted to MATLAB syntax:

Let P = P(1.4,1.4) be a d x d matrix. We will use

P1p,1.) todenote the p x ¢ submatrix containing the
first p rows and first ¢ columns of P,

P(ly ) to be the first row vector of P,

P to be the first column vector of P,

Pan to be the first element of P, etc.

A similar notational convention will be used for subvectors
and single vector components. Splitting the Kalman gain vec-

tork(n) = (}:UEZ;) and introducing

S(1:q)(n) V(1:g-1)(n)

yields from (10)
_|_

12
n (12)

The standard Kalman equations as given e.g. in [2] can
be brought into a computationally efficient form by using the
above notational convention and a block form of the (d 4+ 1 +

S(n) X(n)).

q) % (d+14¢) error covariance matrix P (n) = (XT(n) Vin)
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p”(n) = a”(n)S(1p.1.a) (1)
S(n) = (PTu:p)(n)a(n) +62(n)

=

p’(n)
S(l:d,l:d)(n))
q"(n) = bT(n)V (n)

o (aTm)b(m) + 7% (n)
M )_< q(1:4-1)(n)
t7(n) = a(n) X1y, (n)

X n) = tT(n)b(n) tT(lzq—l)(n)
X(n) ~<X(1:d,:)(”)~b(”) X(l:d,1:q_1)(n))
f(n) = S(:,l)(n) =+ X(:,l)(n)

Q' (14-1)(n) )

V(liq—lyqu—l)(”)

13)

S(21d+1,2:d+1) (0) =

0
V(Z:q,Z:q) (0) =0

(14)
v(0) = 0.

Compared to the white noise case where P(n) = S(n) and
a(n) = 1/(f1)(n) + 62 (n)) the colored noise case requires
a lot more computational load. Therefore, we usually restrict
the noise AR model order ¢ to small values.

3. ADAPTIVE KALMAN FILTER AND AR
PARAMETER ESTIMATION

Up to now we have assumed that the AR model parameters
are known a priori. In practical applications, however, these
parameters must be estimated from noisy observations. There-
fore, the key point for the performance of our signal enhance-
ment system is the estimation of AR parameters in the pres-
ence of noise. In this context, we have studied two different
techniques to enhance noisy AR signals, and to obtain their
AR parameters, respectively. The first technique employs an
extended Kalman filter and deals with white noise and impul-
sive noise disturbances [7]. The extended Kalman filter works
well at moderate noise levels. However, for SNRs less than
10 dB this algorithm exhibits severe convergence problems. A
stalling phenomenon may be observed resulting in intermittent

signal segments and in slow convergence (as compared to the
convergence speed at higher SNRs).

The second approach is based on an iterated parameter esti-
mation and is suited for colored noise disturbances [6]. It is an
extension of an algorithm described in [1]. No suppression of
impulsive noise has been included in the proposed algorithms.
The AR parameters are estimated using an iterative procedure,
i.e. filtering of a signal block and parameter estimation are al-
ternated several times. Obviously, this approach results in a
high computational complexity. Additionally, in many cases
the system performance is getting worse after a certain num-
ber of iterations.

parameters of disturbing noise v(n)

Kalman
fixed-lag smoother

s | Jfam

AR parameter
estimation

Figure 1: Block diagram of the adaptive Kalman filter for the en-
hancement of AR signal s(n) disturbed by colored noise v(n).

The adaptive Kalman filter used in our enhancement system
offers a different approach and has been introduced in [8]. It
is based on the adaptive setup as shown in Fig. 1 and may be
designed to suppress combinations of colored noise and impul-
sive noise [9]. The enhanced signal at the output of the Kalman
filter is fed to the AR parameter estimation subsystem. At the
beginning of the system’s convergence period the noisy signal
is used for AR parameter estimation. However, after conver-
gence the parameter estimation is carried out on the denoised
signal. Convergence of our system is ensured as long as the
AR signal contains signal components which are stronger than
the disturbing noise. Since the Kalman filter operates as an op-
timum filter, it emphasizes strong signal components. Due to
the feedback loop the parameter estimation of the AR signal is
further improved.

We are using two alternative methods for the AR parameter
estimation subsystem in Fig. 1. Method I is a block processing
technique where the block length and overlapping is chosen in
accordance to the nonstationarity of the AR signal. The Levin-
son algorithm is applied to overlapping signal blocks for AR
parameter estimation [5]. On the contrary, method II employs
a recursive least-squares lattice (LSL) algorithm [4]. The LSL
algorithm operates on a sample per sample basis and in case
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of an exponential error weighting the time constant (forgetting
factor) determines the tracking behavior of the algorithm. The
performance of the adaptive Kalman filter shown in Fig. 1 and
the associated AR parameter estimation have been discussed
in [8]. The influence of white noise on the AR parameter es-
timation has been found to be the major performance limiting
factor. A similar result holds for colored input noise, since the
whitening property of the Kalman filter produces a white out-
put noise. Compared to the white input noise case investigated
in [8], however, suppression of colored input noise requires a
longer settling time of the Kalman filter and results in less SNR
improvements. These effects are supported by experimental re-
sults and are more pronounced in case of spectral similarities
between desired signal and colored noise.

4. EXPERIMENTAL RESULTS

We show the performance of our enhancement system by an
illustrative experimental example shown in Fig. 2. The clean
signal is composed of a p = 4 order AR signal (time interval
n = 0...499) and a p = 2 order AR signal (time interval
n = 500...969). A fixed AR model order p = 4 is used
by the enhancement system. The measurement of the colored
noise parameters o2 (n), b(n) is carried out before the desired
(clean signal in Fig. 2 (a)) is switched on. The disturbing noise
v(n) is an AR process of order ¢ = 1 giving rise to a strong
low frequency interference. By observing the enhanced signal
trace Fig. 2 (c) the ability of our system to track the signal non-
stationarity at n = 500 is clearly visible. The computational
complexity of this example system simulated with MATLAB
is 3711 FLOPS per sampling period.

5. CONCLUSIONS

A computationally efficient adaptive Kalman smoother for en-
hancing AR signals corrupted by colored noise has been pre-
sented. The system was originally designed for white noise
disturbances only. As shown in this paper, however, it can be
rather easily extended to cover more realistic types of noises.
The system requires a minimum a priori knowledge of signal
and noise parameters and is capable of tracking short-time sta-
tionary signals.
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Figure 2: Signal enhancement using the adaptive Kalman filter
(Levinson algorithm for AR parameter estimation with p = 4,
Kalman smoother delay d = 30, block length N = 300, new AR
parameters are computed every 10 samples, colored noise with g = 1
and SNR = 5 dB, pole location p o = 0.99.



