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ABSTRACT 
We introduce e reduced-detail paradigm for nonstationary statistical 
signal processing with enhanced performance. Time-frequency lo- 
calized subspace signal components (called robustons) are used as 
atomic entities for statistical signal modeling and processing. Ro- 
buston signal processing employs special time-varying filters that 
allow an efficient on-line implementation, and statistical signal de- 
scriptors that can be estimated in a stable manner by means of intra- 
subspace averaging. We develop the principles of robuston signal 
processing and consider optimal nonstationary signal estimation as 
a specific application. The performance advantages of the resulting 
"robuston Wiener filters" are assessed by means of simulations. 

1. INTRODUCTION 
A statistical signal model or a method for statistical signal process- 
ing is of little practical value if it is so detailed that the parameters 
involved cannot be estimated with sufficient accuracy. This is es- 
pecially true in nonstationary environment$ where averaging over 
longer time periods cannot be used. 

In this paper, therefore, we propose a reduced-detail paradigm 
for nonstationary statistical signal processing with improved statis- 
tical stability. Signals are decomposed into time-frequency local- 
ized subspace components (termed robustons), and each robuston is 
considered as an atomic entity f o r  statistical signal modeling and 
processing. Also, not all statistical dependencies between different 
robustons are taken into account. The relevant second-order statis- 
tics can be estimated by means of intra-subspace averaging, which 
results in signal processing methods with enhanced statistical ro- 
bustness. In fact, this robuston paradigm generalizes a previously 
proposed scheme that is robust in a minimax sense [1,2]. 

The paper is organized as follows. After a review of the robuston 
subspace decomposition [ 1.21 in this section, Section 2 proposes IO- 

buston filters that are the workhorse of robuston signal processing. 
The statistical signal descriptors (robuston correlations) used and 
their stable estimation are discussed in Section 3. Section 4 presents 
a corresponding statistical signal model (mbuston processes). Fi- 
nally, Section 5 develops the application of robuston signal process- 
ing to optimal nonstationary signal estimation (Wiener filtering) and 
assesses the performance advantages of robuston Wiener filters. 

Robuston decomposition. We use a decomposition of a discrete- 
time signal x[n]  into subspace components (robustons) xk,l [n], 

where k is a time index and 1 is a frequency index [1,21. Each ro- 
buston xk,l [n] lies in a P-dimensional linear signal subspace E,,, = 
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Figure 1: Timefrequency localization of the signal subspaces E,,,, 
with E,,1 blown up into its LCB functions (subspace dimension P = 
4 assumed). Only positive frequencies are shown. 

~ p a n { u ~ ) [ n ] } ~ = ( ~ , - , , , ~ - ~  that is spanned by the following P l o d  co- 
sine bask (LCB) functions [3,4]: 

with k E Z, 1 t (0,L- I],  and p E [O ,P-  I ] .  Here, N = LP is the 
block length and w[n] is a suitably chosen window with effective 
time duration N [3,4]. As shown in Fig. I ,  the robuston decompo- 
sition corresponds to a uniform tiling of the time-frequency plane. 
Specifically, %;,(-and, thus, the robuston x,, ,[n] E E,,,-is effec- 
tively localized within the time interval (block) (kN, (k+ I)N] and 
the frequency band [ g ,  q]. The LCB functions uk) [n] form 
an orthonormal basis of 1 2 ( Z ) ,  and thus {Ek,l}kFZ,lt,O~L~I, is an 
orthogonal partition of 12(Z).  The robustons can be calculated as 

P- I 

+ I ~ I  = P,.,*N~I = ~$$)cI (2 )  
p=O 

where 

and Pk,, denotes the orthogonal projection operator on E,,l. We 
notethatuKm,,[n] = u E ) [ n - m N ]  andhencext,,[n-mN] t Xk+m,l. 

2. ROBUSTON FILTERS 

Definition and expressions. Robuston filters (RFs) are the work- 
horse of robuston signal processing. An RF H is a linear, time- 
varying filter that relates the robustons ~ ~ , ~ [ n ]  of the filter input x[n] 
and the robustons yk,l[n] of the filter output y[n] = (Hx)[n] as 
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That is, yk,l  [n] is a weighted sum of the (suitably time-shifted) x~,, ,  In] 
located in the same (lth) frequency band-thus, there is no "cross 
t a l k  between different frequency hands-and within a local neigh- 
borhood € [k - M I ,  k + M2] of the current (kth) block. The filter 
coefficient h k K ; !  describes the mapping ofxk [n] toyk,,[n]. The fil- 
ter length is given by MI +M2 + 1. Note that an RF processes each 
robuston as an entity, without distinguishing between the individual 
LCB components within the robuston. 

Usingy[nI = Z ~ = ~ ~ Z f ~ ~ ~ ~ , ~ [ ~ l a ~ d x ~ . ~ [ ~ l =  (Pk;lx)Inl,theinput- 
output relation of the RF H defined by (3) is obtained as 

' , I  

Introducing the block time-shift operator S, as (S,x)[n] = x [ n -  
m N ] ,  we can write the RF operator as 

PA: The composition (series connection) H = H ( 2 ) H ( 1 )  of two RFs 

P5: If the inverse H-I of an RF H exists, it is an RF with coefficient 

is an RF with hk,t;l = ~ r h & h ~ , ~ , : l  orHI = H?)Hil). 

matrices 

3. ROBUSTON CORRELATIONS 

Definition. Robuston processing is based on a reduced-detail de- 
scription of the second-order signal statistics. For a zero-mean, 
nonstationary random process x[n] ,  the LCB expansion coefficients 
afi) = ( x , u ( P ) )  are zero-mean random variables. A complete de- 
scription of the second-order statistics of x [ n ]  would generally in- 
volve all coefficient correlations E{ ak)a$*}. In contrast, robus- 
ton processing uses only the robuston correlations defined as 
theaverageofE{a(P)a(p)*} k.1 k',I (same/,samep)overp=O,--.,P-I, 

k,I 

Thus, rk,t;l can be interpreted as an integral measure of the corre- 
lation of the two robustons xk,,[n] and ~ ~ , ~ [ n ]  located in the kth and 
k'th time block and the Ith frequency hand. In fact, one can show 

The component system Hk,l is associated to Xk,, in that (Hk,,x) [n] = 
yk,,[n] E Zk,, (cf. (3)). Because of (2) and ~ e ~ , ~ [ n ]  = u k ) [ n  - m N ] ,  
the elementary systems Sk-vPk,,l can be expressed as 

P- I 'k,k':I = f E { ( x k . l ,  s k - Y x k J . l ) } '  
(Sk-k,PY,l~)[n] = a t ) u k ) [ n ] ,  with a:) = (x,u,$)). (5) 

For MI = M, = 0, we obtain Hk,( = hk,klPk,l, and thus the RF 

p=u Fork' = k, we obtain rk kl = Ek, l /P  with the mean robuston energy 

Ek,l := E{IIxk,lllZ} = X~i~E{la$'}.  

Estimation. An unbiased estimator of the robuston correlation rk,k,;l 
using a single realization ofx[n] is given by (cf. (6)) 

> .  

reduces to the weighted sum of projectors [ 1.21 - L-I 
H = hk,k;l Pk,! for MI = M, = 0. 

1 1 P-I k=--  1-0 
F ~ , ~ ; ~  = afi)a!)* = - ( x k  , s p=U p ,I k - k J k V ~  ' (7) 

Imolementation and comolexitv. RFs allow an efficient on-line 
. I  

implementation. Forthe kth block of length N ,  this implementation 
consists of the following three steps: 

I .  LCB analysis: Calculation of ak) = ( x , & ) ) .  k.1 

This estimate is stable than the estimate aE)ajb)* of an in. 
dividual coefficient correlation E{afi)a&)*} because it uses aver- 
aging over P orthogonal LCB components (intra-subspace nverng- 

ing). In particular, if and ai:) are statistically independent for 
p ' # p a n d a f i ) a k ) *  hasthesamevarianceforp=O1...,P- I,the 
estimation va riance is reduced by a factor of P. Thus, the statisti- 
cal descriptors used by robuston signal processing can be estimated 

improved stability, (Of course, additional averaging can be 

2. "SubbandjiFltering": Calculation of 6$) = xtLT-M, h,,,,:, ai:). 

3. LcB synthesis: Calculation of Y k b l  = &; 1;:; E E )  $bl. 
Using efficient discrete cosine transform algorithms for the LCB 

this implementation is B ( N  (2 log, N + MI +M,)) per signal block 
and thus B(21og, N + MI + M,) per output signal sample. Another 
practically attractive feature of RFs is that they allow easy control of 
the physically important parameters time and frequency. This is due 
to the time-frequency localization of the subspaces Zk,( (cf. Fig. I). 

the following. For notational convenience, we will use the coefi- 

k,l  

analysis and synthesis steps [3,41, the computational complexity of used in all estimates if  several realizations of are av&lable,) 

4. ROBUSTON PROCESSES 

Definition and expressions. The robuston correlations rk,k,:l pro- 
vide a second-order description of x[n] that is incomplete in general 
(though sufficient for robuston signal processing). This description 

by the following properties of the (zero-mean) coefficients a(!'). 
k, l  . 

a ( p )  and a(p:) at different frequencies (i.e., ( / ' , P I )  # ( l , p ) )  are 

Some Iheoretical properties Of RFs are in becomes complete if x[n]  is a robuston process (Rp) fiat is defined 

cient marrices HI defined as [€Il]k,k, = hk>k,kl.  

P I :  The identiq operator I is an RF with coefficients hk.k,:l = Sk,k, k.1 @,I 
or equivalently HI = I  (the identity matrix) for all 1. uncorrelated. 

P2: The adjoint H+ of an RF H is an RF with coefficients h;,,k;l or 

Pj: A weighted sum (weighted parallel connection) H = OH(') + These Can be as 

ffg) and v.1 at the Same fWuencY (same ( l , P ) )  have equal cor- 
relationforallp,i.e., E{a:)af)*} =rkv: ,  f o r p = O : . - . , P -  1. ( H  denotes Hermitian matrix transpose). 

bH(') of two RFs H( ' )  and H(') is an RF with coefficients 
hk:V;l = a h ! f ~ , ; l + b h ~ ~ ; l  o r E l  =aHil)+bH?). E { a ( P ) a ( P ' ) * }  k, l  p,!! = ' k , t ; I  'l,lr 'p,p' . ( 8 )  
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(Note that because E { a k ! a $ ) * }  was assumed equal for all p ,  the 

expression rk,v;l = E { a ( P ) a ( P ) * }  is consistent with our previous 
definition of rk,k,:I in ( 6 ) )  From ( 8 )  and (21, the cross-correlation of 
two robustons xk,l [n] and xi,,,, [n] of an RP is readily obtained as 

k J  k',i 

E{xk,l lnl~;:/ ,[n'l}  = ~ k , L ~ ; l ~ k , v ; l ~ ~ ~ ~ ' l 4 , l ~  1 

where Pk.r,l[n,n'] = X P - l ~ ( P ) [ n ] u l f ; ) * [ n ' ]  P = o  l .1  is the kernel of the oper- 
ator Sk-L,Pk,,l. This again shows that rk,k,;l describes the correlation 
of xk:,[n] and ~ ~ , ~ [ n ] ;  furthermore, robustons in different frequency 
bands (1 f 1') are uncorrelated. Finally, with ( I )  the correlation 
R[n,n'] := E{x[n]x*[n']}  of an RP can be calculated. The associ- 
ated correlation operator (whose kernel is R[n,n'])  is obtained as 

- L-I X+M 

R = E R , . , ,  with Rk,, = rk,k,;lsk&'k,,l. (9) 
p=-- 1-0 k'=k-M 

Here, M denotes the robuston correlation length (i.e., rk,k,:l = 0 for 
Ik- VI > M ,  where M may be infinite). Comparing with (4), we see 
that the correlurion operator of an RP has the structure o fan  RE 
with the filter coefficients h,,,,:, given by the robuston correlations 
rk,k,;l.  This structural equivalence of RFs and RPs has important im- 
plications for robuston signal processing, as will tie seen presently. 

Properties. In the following summary of properties of RPs, we will 
use the robuston correlation matrices R I  defined by [$Ikc, = rk,v;l. 
Note that IXy = R I  because r;,.r:l = rk,L,;l. 

PI :  Astarionarywhitepmcess(i.e., R =  u'1)isanRPwithrobuston 
correlations rk,k,:i = 0*6,,~, or g, = a2i far all 1 .  

P,: A weightedsumx[n] = ~ x ( ~ ) [ n ] + b x ( * ) [ n ]  (withqhnonrandom) 
of two uncorrelated RPsx(l) [n] and x(') [n] is an RP with rk,,,;, = 
lal?r&,,, + l b l z r ~ ~ , ~ l  orRI = /a12B11) +lb12Ry). 

P3: An innovutionsfilter for an RPx[n] (i.e., a system H satisfying 
HH+ = R) is given by any RF whose coefficient matnces HI 
satisfy &$ = R I .  

P,: A noise whiteningfilter for an RP ~ [ n ]  (i.e., a system H satisfy- 
ing HRH+ = I) is given by any RF whose coefficient matrices 
f i l  satisfy E ~ I X ~ B ~  = 1. 

5. APPLICATION TO SIGNAL ESTIMATION 

As an example illustrating the application of the robuston scheme 
in statistical signal processing. we now consider nonstationary sig- 
nal estimation. Let ~ ( n ]  and v [n]  be mutually uncorrelated, non- 
stationary signal and noise processes with correlation operator R($) 
and R("), respectively. We wish to estimate s[n] from the observed 
(noisy) signal x[n] = s[n]  + ~ [ n ]  by means of a linear, time-varying 
filter H. The filter minimizing the mean-square error (MSE) E = 
E(J/s^-sJJ*} with ?In] = (&)[.I is  given by the equation HR(') = 
R(') whose solution is the nonsrarionmy Wienerfilter [5,6] 

HW = R(s)R(xl-t, with R(X) = R(") +R(V), ( I O )  

A robuston-type Wiener filter can be obtained by two alternative 
approaches that will be seen to yield essentially the same result. 

Wiener filter for robuston processes. In the first approach, we 
model ~ [ n ]  and v [n]  as uncorrelated RPs with robuston correlation 
matrices and By), respectively. Using the structural equivalence 

of RPs and RFs (see Section 4) and the RF properties PJ-P5 from 
Section 2, it then follows that the Wiener filter in (IO) is an RF with 
coefficient matrices 

HW - (s))R(")-t, with R(I) =R(') +R(') (11) 
-1 - E /  -1 -1 -/ ' 

Indeed, because R($) and R(") are RFs, also R(') = R(') +R(") and, 
in turn, R(')-' and HW = R(')R(.r)-' are RFs. Note that the RF 
Structure of HW is a direct consequence of the RP structure of ~ [ n ]  
and vi.]; no a priori assumption that H is an RF was used. The 
coefficient equations corresponding to (1 I )  read 

with r b )  = rb)  
k,k';i k , iA+r!?r ; l '  

Thus, we have obtained a nonstationary Wiener tilter that is an 
RF and whose design only requires knowledge of the robuston cor- 
relations and riyJ;l. We finally note that the minimum MSE 
achieved with HW can be calculated as E,~. = x;=-mxf:d E?. 

with E$" the kth diagonal element of the matrix P & k ? ) - l  Ky1. 

Optimal robuston filter for general processes. In the second ap- 
proach, we do not assume an RP structure for 31.1 and v [n]  but we 
constrain H to he an RF of the form (4) with given length panme- 
ten M I ,  Mz. The RF coefficients h,>,,:, minimizing the MSE E can 
be derived as follows. The MSE allows the decomposition 

where fk , i [n l  and s,,,[n] are the robustons of ?In[ and . [E] ,  respec- 
tively. From 

k+M2 

f k , I b l  = c hk,v;l (Sk-k.Pk:14["1 (13) 
k'=k-M, 

we see that E ~ , ,  depends only on the coefficients and not on 
other coefficients hg,r:p Therefore, each can be minimized 
separarely with respect to the associated hk,k,;l .  Due to (13) and 
the orthogonality principle [5,6], each robuston error component 
f k , , [ n ] - s k 1 [ n ]  must satisfyE{(?kx.l-sx,r,S,_,P,,~tx)} =OforI.'E 
[ k - M , , k + M 2 ] .  With (13),this yields the set ofequations 

with r f j , ; /  =I-&, +r!%;,. Remarkably, calculation of the optimal 

RF requires only the robuston correlations r& and r t 2 : l  although 
s[n] and vjn] were nor assumed to be RPs. We can write (14) as the 
system of equations of size (MI +M2 + 1) x (MI +M2 + I )  

with = 'Em,,k+,; ,3  [ h k . l l m  = hk,k+m;ls and [ $ ! l m  = 
rLj+m;l (m," E [-MI,M2]). The vector ha,, contains the MI + 
Mz + 1 RF coefficients for the robuston index ( k ,  1) ;  it is given by 
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Figure 2:  Estimation of a speech signal: (a )  Specrrogram of signal 
~ [ n ] ,  (b)  signal s[n] ,  (c )  noisy signal x[n]  = s[n] + v[n]  for an SNR 
of OdB, (d) estimate fin] obrained with RF Hopt (M, = M2 = I ,  
N = 256, P = 32). (el estimate f [ n ]  obtained with SWF Hsw. 

It is interesting to note that the equations (14) are equivalent to 
(12) except for the finite filter length and the finite k' range. For 
MI = M2 = m, our two approaches become altogether equivalent. 
For M, = Mz = 0, on the other hand, the optimal RF becomes - L-I 

k=-- I=' 
HOP' = hyq'Pk,l for MI = Mz = 0, 

where hop' = /#), = ,$"/Elx) = E(s)/(Efs) +E:; ) ) ,  This k,I k,kl k,kJ  k,l k, l ,  k,l  k.i  
filter was previously shown to be minimax robust with respect to 
specific uncertainty classes for the correlations of s[n] and ~ [ n ]  [1,2]. 

Simulation results. To assess the performance of robuston signal 
processing, we apply the optimal RF HOP' in (IS) to the estimation 
of a speech signal. We used a recorded speech signal of length 4096 
samples as a realization s[nJ of a nonstationary signal process with 
unknown statistics (thus, s[n] is not the realization of an RP). The 
noise v[n]  was a realization of a stationary and white process with 
known variance U:. The signal s[n] and its noisy version x [ n ]  = 
s[n] + v[n] (for an SNR of OdB) are shown in Fig. 2(a)-(c). 

For designing HOP', an estimate ifi;i of if?,:, was calculated 

from x[n] according to (7). and an estimate of r ~ ~ , ~ ,  was then ob- 
tained as i(') = [$) - U,? C T ~ , ~ , ] ,  (corresponding to the positive 

semidefinite part of the matrix &?) =&?I- u?U. The RF used filter 
lengths MI = M2 = I (i.e., total filter length MI +M2 + I = 3). block 
lengthN=256, androbuston dimensionsf'€ {1,2,4,8,...,256} . 

For comparison, we also considered an RF with MI = Mz = 0 
( k . ,  total filter length 1) and P = 1 (i.e., no averaging over sub- 
bands). Here, each single subband signal sample (i.e., LCB expan- 
sion coefficient d') = (x,u,$)) is separately weighted by h,,, = 

$y/k$), with estimated subband sample powers = la:;) I* and 

= [lafj)12-O;]+ (whichis la(0)12-u:ifthisnumberispos- k.1 

itive and 0 otherwise). This filter, hereafter denoted by HSWF, can he 
viewed as a simple on-line "subband Wiener filter" (SWF) that does 
not exploit the correlations of temporally adjacent a(') and does not 
employ intra-subspace averaging. Therefore, our comparison HOP' 

1,k':l k#;i  

k, l  

k J  

...... 

..- . 

-P 

Figure 3: SNR improvement using Hopt (MI = M2 = 1. N = 256) 
vs. subspace dimension P, for three different inpur SNRs. For com- 
parison, also the SNR improvement using HSWF is shown. 

vs. HswF shows the effect of temporal filtering (MI + M2 + I > 
1) and subspace averaging ( P  > 1) on the estimation performance. 
Note that we do not consider the full-blown Wiener filter HW in 
(IO) because the computational complexity of its design and imple- 
mentation would be excessive for the given signal length of 4096 
samples. Figs. 2(d) and (e) show the signal estimates S[n] obtained 
with HOP' (with MI = M2 = 1, N = 256, P = 32, and L = 8) and 
HswF. Clearly, the result of Hop' is much better than that of HswF. 

For a more complete performance comparison and analysis, we 
repeated the experiment described above 40 times, using the same 
speech signal 4x1 but different noise signals ~ [ n ] .  Fig. 3 shows the 
SNR improvement (averaged over the 40 realizations) obtained with 
HOP' vs. the subspace dimension P, for three different input SNRs. 
For all three input SNRs, the maximum SNR improvement is oh- 
rained for P = 32 (e.g., 4.4dB at input SNR OdB). For comparison. 
also the SNR improvement obtained with HSWF is plotted (recall 
that HSWF uses P = I and MI  = M2 = 0). It is seen that Hopt out- 
performs HSWF by up to about 4dB. These results demonstrate the 
potential performance advantages of robuston signal processing. 

6. CONCLUSIONS 

We have introduced a new paradigm for nonstationary signal pro- 
cessing in which subspace signal components (called robustons) are 
used as elementary atomic entities. The resulting reduced-detail sig- 
nal modeling and processing methods employ intra-subspace aver- 
aging to estimate the relevant statistics with improved stability. Ro- 
huston signal processing allows efficient on-line implementations 
with inherent localization in time and frequency. The performance 
advantages of robuston signal processing were demonstrated for a 
nonstationary signal estimation application. . .  
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