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ABSTRACT

We introduce a reduced-detail paradigm for nonstationary statistical
signal processing with enhanced performance. Time-frequency lo-
calized subspace signal components (called robustons) are used as
atomic entities for statistical signal modeling and processing. Ro-
buston signal processing employs special time-varying filters that
allow an efficient on-line implementation, and statistical signal de-
scriptors that ¢can be estimated in a stable manner by means of intra-
subspace averaging. We develop the principles of robuston signal
processing and consider optimal nonstationary signal estimation as
a specific application. The performance advantages of the resulting
“robuston Wiener filters” are assessed by means of simulations.

1. INTRODUCTION

A statistical signal model or a method for statistical signal process-
ing is of little practical value if it is so detailed that the parameters
involved cannot be estimated with sufficient accuracy. This is es-
pecially true in nonstationary environments where averaging over
longer time periods cannot be used.

In this paper, therefore, we propose a reduced-detail paradigm
for nonstationary statistical signal processing with improved statis-
tical stability. Signals are decomposed into time-frequency local-
ized subspace components (termed robustons), and each robuston is
considered as an atomic entity for statistical signal modeling and
processing. Also, not all statistical dependencies between different
robustons are taken into account. The relevant second-order statis-
tics can be estimated by means of intra-subspace averaging, which
results in signal processing methods with enhanced statistical ro-
bustness. In fact, this robuston paradign generalizes a previously
proposed scheme that is robust in a minimax sense [1,2].

The paper is organized as follows. After a review of the robuston
subspace decomposition [1,2] in this section, Section 2 proposes ro-
buston filters that are the workhorse of robuston signal processing.
The statistical signal descriptors (robuston correlations) used and
their stable estimation are discussed in Section 3. Section 4 presents
a corresponding statistical signal model (robuston processes). Fi-
nally, Section 5 develops the application of robuston signal process-
ing to optimal nonstationary signal estimation (Wiener filtering) and
assesses the performance advantages of robuston Wiener filters.

Robuston decomposition. We use a decomposition of a discrete-
time signal x[n] into subspace components {robustons) £, ,[n,
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Figure 1: Time-frequency localization of the signal subspaces %, 9
with &, 1 blown up into its LCB functions (subspace dimension P =
4 assumed). Only positive frequencies are shown.

span{ui’:,) 1] }p=0 ..p—1 that is spanned by the following P local co-
sine basis (LCB) functions [3,4]:

uPin] = \/g cos(nW(n—kN)) win—kN),

with ke Z, 1 € [0,L—1], and p € [0,P — 1]. Here, N = LP is the
block length and wn) is a suitably chosen window with effective
time duration N [3,4]. As shown in Fig. 1, the robuston decompo-
sition corresponds to a uniform tiling of the time-frequency plane.
Specifically, ﬁk y—and, thus, the robuston x, [n e Z, —is effec-
tively localized within the time interval (block) [kN, (k+ 1)N] and
the frequency band [ ,LH'—IE} The LCB functions u(l’ [#] form
an orthonormal basis of /2(Z), and thus {Zthes Ie[OL 1
orthogonal partition of [2(Z). The robustons can be calculated as
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oo

o) = () = 3 sl ),

n=—oo

is an

x}(,l[ ] ;:,[) [ﬂ] H (2)

where

and P, ; denotes the orthogonal projection operator on 2 ;. We

note thatu p) [n] = u(P){n mN) and hence x, [n—mN] € 2, .
2. ROBUSTON FILTERS

Definition and expressions. Robuston filters (RFs) are the work-
horse of robuston signal processing. An RF H is a linear, time-

k=—ca [=0 varying filter that relates the robustons x, ,[n] of the filter input x[x]
d the robust f the filt t =
where k is a time index and / is a frequency index [1,2]. Each ro- and the robustons yk[[n] of fhe ffler ou puty[ | = {Ho)ln] as
buston x, ,[n] lies in a P-dimensional linear signal subspace 2 , = kM, ,
: ' n = Ay g X n— (k=K )N]. 3
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That is, , ,[n] is a weighted sum of the (suitably time-shifted) x,, ,[n]
located in the same (/th) frequency band—thus, there is no “Cross
talk” between different frequency bands—and within a local neigh-
borhood &’ € [k — M|,k +M,] of the current (kth) block. The filter
coefficient ¥l describes the mapping of x, [7] to Y, ,[n]. The fil-
ter length is given by M| + M, + 1. Note that an RF processes each
robuston as an entity, without dlsungmshmg between the individual
LCB components within the robuston.

Using y[nf =37 .. Z;";O' Y ln andxy [n] = (Pk,lx) [), the input-
output relation of the RF H defined by (3) is obtained as
o L} [ ktM,
i
=23 2 Z hkk’ Py 2)ln—(k=k)N] | .
k=—co [=0 |X'=

Introducing the block time-shift operator S,, as (S,,x)[n] = x[n—
mN|, we can write the RF operator as

L- kM,
Z szl’ with H, | = Y S wPiy- 4
= —eo [=0 K=k—M

The component system H, , is associated to 2, ; in that (H, .x) [7]=
YesIn] € 2, (cf. (3)). Because of (2) and u(P) (fr] =l P) [n = m),
the elementary systems S, _ Py, canbe cxpressed as

Pt

(St Pyy¥)in] =

)
],
p=U

with 0(’55) = (x,uiﬁ,)). (3
Fer M; = M, = 0, we obtain H, , = hk,k;l P“, and thus the RF
reduces to the weighted sum of projectors [1,2]

2 thklPkl

k== —oo i=()

for M| = M, = 0.

Implementation and complexity. RFs allow an efficient on-line
implementation. For the kth block of length N, this implementation
consists of the following three steps:

t. LCB analysis: Calculation of aIE":) = (x,u(p)).

Z’H‘Mz B el

“ gt i ”(P)
2. “Subband filtering .Calculat]onofa g, M O

3. LCB synthesis: Caleulation of y[n] = 2} £57 & g) u(P) .

Using efficient discrete cosine transform algorlthms for the LCB
analysis and synthesis steps [3,4], the computational complexity of
this implementation is & (N (2 log, ¥ + M| + M, )} per signal block
and thus £(2log, N + M| + M, ) per output signal sample. Another
practically attractive feature of RFs is that they allow easy control of
the physically important parameters time and frequency. This is due
to the time-frequency localization of the subspaces 2, ¥ (ef. Fig. 1),

Properties, Some theeretical properties of RFs are summarized in
the following. For notational convenience, we will use the coeffi-
cient matrices H; defined as [H,], &= ey

P, : The identity operator Lis an RF with coefficients by .., = Sk &
or equivalently H, = I (the identity matrix} for all .

: The adjoint HY of an RF H is an RF with coefficients A
ﬂ” (7 denotes Hermitian matrix transpose).

P, Kkl OT

Py A weighted sum (weighted parallel connection) H = aHV +
sH® of l\(n;? RFs ]Elz()l) and H? is(liin RF(gith coefficients
hijeq = ahyp, VPR or Hy = ali+ PH,

P,: The composition (series connecnon) H= H(z)H(’) of two RFs
1sanRFW1thhkk,[—Z,( AN orHy =HPHD,

P;: If the mverseH
matrices H

I of an RF H ex1sts, itisan RF wuh coefficient

3. ROBUSTON CORRELATIONS

Definition. Robuston processing is based on a reduced-detail de-
scription of the second-order signal statistics. For a zero-mean,
nonstationary random process x[n], the LCB expansion coefficients
aﬁ {x, u(P)) are zero-mean random variabies. A complete de-
seription of the second-order statistics of x[n] would generally in-
volve all coefficient correlations E{a a(” } In contrast, robus-
ton processing uses only the robuston correlatmns ksl defined as

the average of E{a a(P)*} (same !, same p)over p=0,---, P—1,

Texd = z E{a“’)a(p e 6

Thus, 7, ,..; can be interpreted as an integral measure of the corre-
lation of the two robustons x, ,[n] and x,, [#] located in the kth and
K'th time block and the Ith frequency band. In fact, one can show

1

7 E{ <xk.[’ Sk—k’xk’,l>} :

For &’ = k, we obtain "k “ = Ek i/ P with the mean robuston energy
Ekl *E{ 1“‘::1”2} E{|a(p) }

Estimation. An unbiased estimator of the robuston correlation r, 4.,
using a single realization of x[n] is given by (cf. (6))

Trwt =

Py = ﬁ g .r = %(xk,liskfk’xk’,.f)' 7
This estimate is more stable than the estimate o!F) aifﬂ) of an in-
dividual coefficient correlation E{a (P "’)*} because it uses aver-
aging over P orthogonal LCB components (intra-subspace averag-
ing). In particular, if a(p.') and a“’ ) are statistically mdependent for
P # pand cx(”)a(f’) has the same variance for p=0,- — 1, the

estimation va nance is reduced by a factor of P. Thus, the statisti-
cal descriptors used by robuston signal processing can be estimated
with improved stability. (Of course, additional averaging can be
used in all estimates if several realizations of x[n] are available.)

4. ROBUSTON PROCESSES

Definition and expressions. The robuston correlations Ty PO
vide a second-order description of x[#] that is incomplete in general
(though suffictent for robuston signal processing). This description
becomes complete if x[n] is a robuston process (RP} that is defined
by the following properties of the (zero-mean) coefficients aéﬂ):

r

. als”!) and algf’l’) at different frequencies (i.e., (I',p") # (I, p)) are
uncorrelated.

. aé’;) and ajgf’i) at the same frequency (same ({, p}) have equal cor-

relation for all p, i.c., E{ag)a‘gﬁ)*} =ry g forp=0,- P—1.
These properties can be summarized as
E{a(p yp } = rewa S8, - (8
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(Note that because E{a(V)a(‘”’)*} was assumed equal for all p, the
expression ry ., = E{cx(P) é{?*} is consistent with our previous
definition of ry ;. in (6).) Frorh (8) and (2), the cross-correlation of
two robustons x, ,[n} and x;, . [1] of an RP is readily obtained as

E{x“ e

’}} = Tygd Pryey (1, 7] 5,7,, ,

where P, ., [n, '] Zi;é ”l(cpf) {n] ui{’}‘[rl’] is the kernel of the oper-
ator 8, _ HP,‘,’ . This again shows that ry . describes the correlation
of x; ;[n] and x,, [n]; furthermore, robustons in different frequency
bands {/ # I’y are uncorrelated. Finally, with (1) the correlation
R[n,n'] := E{x[n]x*[n]} of an RP can be caiculated. The associ-
ated correlation operator (whose kernel is R[n,#']} is obtained as

w L=l k+-M
=2 zRua with Ry, = 2 TiwraSepPry- )
k=—oo (=0 W ek—M

Here, M denotes the robuston correlation length (ie., rypy =0for
|k— k'] > M, where M may be infinite). Comparing with (4), we see
that the correlation operator of an RP has the structure of an RF,
with the filter coefficients hy ,, given by the robuston correlations
It oy~ This structural equivalence of RFs and RPs has important im-
plications for robuston signal processing, as will be seen presently.

Properties. in the following summary of properties of RPs, we will
use the robuston correlation matrices R, defined by R, ¥ =T
Note that R{ =R, because rk,“ =y

P,: A stationary white process (i.e., R = 0'2 1} is an RP with robuston
correlations Yoy = 025 e OF R,= G2l forallf.

P,: A weighted sumx|n) = ax ') [n] +5x3 [r] (with a, b nonrandom)
of two uncorrelated RPs x{) 1] and x)[1] is an RP with Py =
lalr(!), + 18123 or R, ={al2R{V +[B2RP.

Pyt An innovations ﬁlrer for an RP x[n] (i.e., a systern H satisfying
HH' = R} is given by any RF whose coefficient matrices H,
satisfy H H1 =R,

By: A noise whitening filter for an RP x[n] (i.e., a system H satisfy-
ing HRH* =1) is glven by any RF whose coefficient matrices
H, satisfy H R Hl =1

5. APPLICATION TO SIGNAL ESTIMATION

As an example illustrating the application of the robuston scheme
in statistical signal processing, we now consider nonstationary sig-
nal estimation. Let s[n| and v[n] be mutually uncorrelated, non-
stationary signal and noise processes with correlation operator RO
and R(Y), respectively. We wish to estimate s[n] from the observed
(noisy) signal xjn] = s[r] + v[n] by means of a linear, time-varying
filter H. The filter minimizing the mean-square error (MSE) € =
E{}# —s}i2} with ${n] = (Fx)[n] is given by the equation HRY} =
R whose solution is the nonstationary Wiener filter [5,6]
HY = RORW-T wih RW =RY RV (1)
A robuston-type Wiener filter can be obtained by two alternative
approaches that wiil be seen to yield essentially the same result.

Wiener filter for robuston processes. In the first approach, we
model s[#] and v([n] as uncorrelated RPs with robuston correlation

matrices BSS) and RS"), respectively. Using the structural equivalence

of RPs and RFs (see Section 4) and the RF properties P;—P. from
Section 2, it then follows that the Wiener filter in (10) is an RF with
coefficient matrices

HY = RURM-! with R =R +R{". (11
Indeed, because R and R(Y) are RFs, also R = R() + R and,
in turn, R®-! and HY = RO IR are RFs. Note that the RF
structure of HY is a direct consequence of the RP structure of s[n]
and v{n]; no a priori assumption that H is an RF was used. The

coefficient equations corresponding 1o (11) read

x;mhk-"ﬂ rfﬁ(’;l = rl(c.“JZ’;l ! k’k’ €Z, (12
ith A% = 48 (v)
with =1 T i

Thus, we have ob[mned a nonstationary Wiener filter that is an
RF and whose design only requires knowledge of the robuston cor-
relations r("z 4 and rl(c‘;(), We finally note that the minimem MSE
achieved with HY can be calculated as £in = Lhe—oo El " 8}("}“,
with £2}" the kth diagonal clement of the matrix PR j')gff’ ! gg").
Optimatl robuston filter for general processes, In the second ap-
proach, we do not assume an RP structure for s[x] and v[n] but we
constrain H to be an RF of the form (4) with given length parame-
ters M|, M,. The RF coefficients hk yrp minimizing the MSE € can
be derived as follows. The MSE allows the decomposition

w L]

= X Y&, wih g, =E{[§, -5 I},
k= e (=0
where §, ,In] and 5, [n] are the robustons of f[n] and s[n], respec-
tively. From
k+M,

Sl = 2 hk,k’;l(sk—k’Pk’Jx)[n]
k=k—M,

(13)

we see that £, ; depends only on the coefficients k.., and not on
other coefficients Ay i Therefore, each g, can be minimized
separately with respec[ to the associated A .., Due to (13) and
the orthogonality principle [5, 6], each robuston error component
8 1[n] — 5, ,[n] must satisfy E{{, ,—$, ;. S, P xy}=0fork'e
[k—M, &+ M,]. With (13}, this yiclds the set of equations

kM,

(x) = )
> o T = T
K=k-M,

keZ, K e k=M k+M)], (14)

(x) - s (v)
with 7 = T b

RF requires only the robuston correlations rJ,(c ‘2 . and r( ) ahhough
s[n] and v{n] were not assumed to be RPs. We can wrlte (]4) as the

Remarkably, calculation of the optimal

system of equations of size (M| +M, + 1) x (M| + M, +1)
R.(X) ki = E(k)l >
with [ ( )]mm = ;E?m: k! [l—‘k,/}m = hk,k+m;l’ and [tsz,)!}m =

r;ErJLml (m m' € =M, M,]). The vector h,, contains the M, +

M, + 1 RF coefficients for the robuston index {(k,1}; it is given by
(13)

The resulting minimum MSE is glven bye =30 .. E, 0 E[ﬂim!
E( ) r(S)HR(*') ( ) w1thE ‘) = E{]IJHH }

where s“““
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Figure 2: Estimation of a speech signal: {a) Spectrogram of signal
sfn], (b} signal s[n), {c} noisy signal x|n] = s[n] + v(n] for an SNR
of 0dB, (d} estimate §n] obtained with RF H" (M, =M, =1,
N =256, P = 32), (e) estimate §[n] obtained with SWF HSWE,

It is interesting to note that the equations (14) are equivalent to
(12) except for the finite filter length and the finite &’ range. For
= M, = oo, our two approaches become altogether equivalent.

For M, = M, =0, on the other hand, the optimal RF becomes

ki IZh"P‘Pk, for M, =M, =0,

HOP —

where h°p‘ =r {s) /r‘(:zi = E(‘)/E(X E(S)/( E') +E(V)). This

fitter was prevmusly shown to be minimax robust with respect to
specific uncertainty classes for the correlations of s|n] and v[r| [1,2].

Simulation results. To assess the performance of robuston signal
processing, we apply the optimal RF HP in (15) to the estimation
of a speech signal. We used a recorded speech signal of length 4096
samples as a realization 5[} of a nonstationary signal process with
unknown statistics (thus, s{n] is not the realization of an RP). The
noise v[n] was a rcahzatlon of a stationary and white process with
known variance o2, The signal s[s] and its noisy version x[n] =
s[n] + v{n] (for an SNR of 0dB) are shown in Fig. 2(a)~(c).

For designing HP', an estimate ?J(ka)f- of r}(("z, , was calculated
from x[r] according to (7), and an estimate of r’(( I)d was then ob-

- 2 "
tained as r,(”)i 4= [ri(c"z, ;O 5k k’] (correspondmg to the positive

semlcleﬁmte part of the matrix R(s) RSXJ — ¢21). The RF used filter
lengths M, =M, =1 (i.e., total ﬁlter length M, +M, + 1 = 3), block
length N = 256, and robuston dimensions P €{1,2,4,8,...,256}.
For comparison, we also considered an RF with M, =M, =0
(i.e., total filter length 1) and P =1 (i.e., no averaging over sub-
bands). Here, each single subband signal sample (i.e., LCB expan-
sion coefficient aJEEJ") = {x,u )) is separately weighted by hk =

P(5 /P ") , with estimated subband sample powers P(X) = \ot )2 and
P(s = [|cx
mve and 0 0therw1se) This filter, hereafter denoted by HSWF canbe
viewed as a simple on-line “subband Wiener filter” (SWF) that does
not exploit the correlations of temporally adjacent & and does not

kA
employ intra-subspace averaging. Therefore, our comparison HP!

] (which is |0z(0 |2 - o2if [hlS nurnber is pos-

ASNR[dB)]

1 2 4 8 16 32 e4

—_— P
Figure 3: SNR improvement using H' (M, = M, = 1, N = 256)
vs. subspace dimension P, for three different input SNRs. For com-
parison, also the SNR improvement using HSVE s shown.

128 236

vs. HSWF shows the effect of temporal filtering (M M+ >
1) and subspace averaging (P > 1) on the estimation perfonna.nce
Note that we do not consider the fuil-blown Wiener filter HY in
{10) because the computational complexity of its design and imple-
mentation would be excessive for the given signal length of 4096
samples. Figs. 2(d) and (e) show the signal estimates §[r] obtained
with HP' (with M, =M, =1, N =256, P=32, and L = 8) and
HSWF, Clearly, the resuit of H°P! is much better than that of HSWF,
For a more complete performance comparison and analysis, we
repeated the experiment described above 40 times, using the same
speech signal s[»] but different notse signals v{r]. Fig. 3 shows the
SNR improvement (averaged over the 40 realizations) obtained with
H®P* vs. the subspace dimension P, for three different input SNRs.
For ali three input SNRs, the maximum SNR improvement is ob-
tained for P = 32 (e.g., 4.4dB at input SNR 0dB). For comparison,
also the SNR improvement obtained with HEWF i5 plotted {recall
that HSWF uges P = 1 and M, =M, =0). Itis seen that H? out-
performs HSWF by up to about 4dB These results demonstrate the
potential performance advantages of robuston signal processing.

6. CONCLUSIONS

We have introduced a new paradigm for nonstationary signal pro-
cessing in which subspace signal components (called robustons) are
used as elernentary atomic entities. The resulting reduced-detail sig-
nal modeling and processing methods employ intra-subspace aver-
aging to estimate the relevant statistics with improved stability. Ro-
buston signal processing allows efficient on-line implementations
with inherent localization in time and frequency The performance
advantages of robuston signal processing were demonstrated for a
nonstationary signal estimation application.
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