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Unbiased Scattering Function Estimators
for Underspread Channels and Extension

to Data-Driven Operation
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Abstract—We propose two methods for the estimation of
scattering functions of random time-varying channels. In contrast
to existing methods, our methods exploit the underspread property
of these channels to achieve good estimation performance and
low computational complexity. The first method uses a dedicated
sounding to measure the channel. The second method uses the
data signal of an ongoing data transmission as sounding signal and
thus allows estimation without dedicated sounding. Both methods
are effectively unbiased and can be implemented efficiently using
the Zak transform. The performance of our scattering function
estimators is studied both analytically by means of variance
bounds and experimentally through numerical simulation, and
their superiority over existing methods is demonstrated.

Index Terms—Channel sounding, doubly spread targets, fading
dispersive channels, mobile radio channels, scattering function es-
timation, underspread channels, WSSUS channels.

I. INTRODUCTION

THE scattering function (SF) characterizes the second-order
statistics of a random, linear time-varying (LTV) channel

(or doubly spread random target) that is wide-sense stationary
with uncorrelated scatterers (WSSUS) [1]–[3]. Knowledge of
the SF is required or at least helpful for a variety of tasks such
as optimum receiver design (e.g. [2], [3]), channel estimation
[4], [5], synchronization [6], performance evaluation [7], [8],
channel capacity analysis [9], and multicarrier system design
[10]–[12]. Thus, estimation of the SF is a problem of practical
importance.

Several methods for SF estimation are available. A simple
and practical SF estimator that is based on the interpretation
of the SF as a two-dimensional (2-D) power spectral density
is an averaged 2-D periodogram of the measured time-varying
transfer function. In [13], a more sophisticated method is pro-
posed that uses a cross-ambiguity function and is based on a
statistical input/output relation combined with equalization and
smoothing (a preliminary version of this method can be found
in [14]). In [15], an SF estimator using a so-called uncertainty
product function is presented; this estimator extends the twin
processor method previously proposed in [16], [17]. Finally,

Manuscript received January 10, 2003; revised May 22, 2003. This work was
supported by FWF grants P12228-TEC and P15156-N02. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Tulay Adali.

The authors are with the Institute of Communications and Radio-Frequency
Engineering, Vienna University of Technology, A-1040 Wien, Austria
(e-mail: hartes@aurora.nt.tuwien.ac.at; gmatz@aurora.nt.tuwien.ac.at; fh-
lawats@pop.tuwien.ac.at).

Digital Object Identifier 10.1109/TSP.2004.826181

in [18], estimation of the SF using a 2-D autoregressive (AR)
model is discussed.

Except for the averaged periodogram method, these SF es-
timation methods do not exploit the underspread property of
most practical mobile radio channels and radar targets [2], [3],
[19]–[21]; in fact, Gaarder [13] explains why his method has
greater variance in the underspread case than in the overspread
case. The averaged periodogram method exploits the under-
spread property in an implicit manner; however, it is generally
biased.

In this paper, we propose two SF estimators that explicitly
exploit the underspread property to achieve good estimation
performance (in particular, approximate unbiasedness) and low
computational complexity [22], [23]. The paper is organized as
follows. After reviewing discrete-time LTV channels in Sec-
tion II and channel sounding in Section III, the first SF estimator
is developed in Section IV. In Section V, a statistical analysis and
an MMSE-type modification of this estimator are presented. In
Section VI, the second estimator is developed and analyzed; this
estimator does not use a dedicated sounding and thus allows SF
estimation during an ongoing data transmission. Finally, in Sec-
tion VII, we present simulation results and compare the perfor-
mance of our estimators with that of existing estimators.

II. DISCRETE-TIME LTV CHANNELS

With a view toward practical implementation, we will con-
sider SF estimation in a discrete-time setting. The discretization
of a continuous-time channel is discussed in Appendix A.

A. Characterization of Discrete-Time LTV Channels

The input–output relation of a discrete-time LTV channel
with impulse response is

(1)

where is the maximum delay of the channel and [0,
] is the interval on which the output signal is considered.

We assume to be zero for and for
, i.e.,1 for

. We also assume that the input signal has finite
length , i.e., for , and that

(see Appendix A for background).

1For convenience, we assume one-sided support intervals. Other intervals can
easily be accommodated by suitable shifts.
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In analogy to the continuous-time case [1], [24], we define the
discrete time-varying transfer function as the discrete Fourier
transform (DFT) of with respect to :

(2)

with denoting discrete frequency. Note that here, the DFT
has been zero-padded to length since it uses in-
stead of . Similarly, the discrete spreading function

is defined as the DFT of with respect to (cf.
[1] in the continuous-time case)

where is a discrete Doppler shift variable. Hereafter, all signals
and their DFTs will be considered as being periodic with period

.

B. WSSUS Channels and Underspread Property

When the discrete-time LTV channel is random, then so are
, , and . We now consider the second-

order statistics of a random discrete-time LTV channel .
WSSUS Channels and Scattering Function: In analogy to the

continuous-time case [1], we will call a random, discrete-time
LTV channel wide-sense stationary with uncorrelated scat-
terers (WSSUS) if is zero-mean and its correlation func-
tion is of the form

. Two equivalent formulations are

(3)

with the (discrete) time-frequency correlation function

and

(4)

with the (discrete) scattering function (SF)

(5)

According to (3) and (5), is a 2-D wide-sense sta-
tionary process with correlation function and

power spectral density (the SF). According to (4), scat-
terers with different delay and/or Doppler are uncorrelated.
The time-frequency correlation function and the
SF are related via a 2-D Fourier transform and, hence,
are two equivalent second-order statistics of a WSSUS channel

.
Underspread Channels: Motivated by the underspread prop-

erty in the continuous-time case [2], [3], [19], we call a WSSUS
channel underspread if its SF is support-limited according to

for

with (6)

where is the maximum Doppler shift. According to (4),
(6) implies that, with probability one, the spreading function

also satisfies this support constraint. Thus, for an un-
derspread channel, the product of and is bounded by .
Although we have assumed a specific location of the SF support
in the -plane, the underspread definition in (6) can easily
be reformulated for arbitrary locations. Most practical channels
and targets satisfy the underspread property.

III. CHANNEL SOUNDING

Because the SF is the power spectral density of the
2-D process , existing algorithms for 2-D spectral esti-
mation—such as a 2-D periodogram or a 2-D AR estimator [18],
[25]—can be used for SF estimation. However, an important
difference from conventional spectral estimation is that realiza-
tions of the process can only be obtained by means of a
channel sounding procedure that generally introduces a system-
atic error (bias) [26]. Our SF estimation methods are also based
on channel sounding but in such a way that the corresponding
bias can be compensated. In this section, we review the channel
sounding technique we will use. This technique is motivated by
a theoretical “impulse-train” sounding scheme that was origi-
nally proposed in [27] and [28] in a continuous-time setting.

A. Impulse-Train Channel Sounding

Let be a discrete-time WSSUS channel with impulse
response , maximum delay , and maximum
Doppler shift . Let us use as the input (sounding) signal
an impulse train with impulse spacing and total length equal
to the block length (which is chosen as an integer multiple
of ):

(7)

Hereafter, we assume that the impulse spacing is matched to
, , and according to

(8)
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Note that this presupposes the underspread property
in (6). The output signal is then obtained from (1) as

where the last equation holds since the channel responses to the
individual impulses do not overlap (due to ). Thus, the
output signal consists of slices of the channel impulse re-
sponse . For fixed , is subsampled with respect
to by a factor of . However, is bandlimited with re-
spect to with bandwidth , and, due to our assumption
(8), the sampling period is small enough so that the missing
samples can be perfectly reconstructed by means of interpola-
tion. Therefore, using the impulse train sounding scheme, we
can indeed obtain the impulse response . It should be
noted that this is fundamentally based on the underspread prop-
erty (6).

B. Correlative Channel Sounding

Due to its high crest factor, an impulse-train sounding signal
(7) is undesirable in practice. Instead, most practical channel
sounders [29]–[31] transmit a general pulse-train sounding
signal

(9)

where the transmit pulse is chosen such that has a low
crest factor. The received signal is then passed through a
receive filter in order to achieve pulse compression. Let
denote the impulse response of the receive filter and assume it
has finite length . Including measurement noise , i.e.,2

, the output of the receive filter is

(10)

where is the filtered noise.
If the product of maximum Doppler shift and receive filter

length satisfies , it can be shown that the LTV
channel filter and the receive filter approximately com-
mute, i.e., we can consider the receive filter to be moved to the
transmitter side [26]. Thus,

for

with the “virtual sounding signal”

(11)

Inserting this approximation into (10), the output of the receive
filter becomes

(12)

2Here, (HHHx)[n] denotes the output signal of the LTV channel HHH corre-
sponding to the input signal x[n].

Note that would be obtained if we used the virtual
sounding signal as the channel input signal. With (9), the
virtual sounding signal is

In view of Section III-A, and must be chosen such that
(pulse compression), i.e., is approx-

imately an impulse train. Thus, we approximate an impulse-
train sounding, even though the actual transmit signal

has a small crest factor. In particular, we
can achieve by choosing for a max-
imum-length pseudonoise sequence and using a matched re-
ceive filter so that becomes the auto-
correlation of . We can then obtain a good estimate of slices
of the channel impulse response as

An estimate of can finally be obtained by interpolating
these slices.

IV. SCATTERING FUNCTION ESTIMATOR USING DEDICATED

SOUNDING SIGNALS

Because the SF is the power spectral density of , it
can be estimated (in the case of an underspread channel) by
means of the following three-step procedure (e.g. [30]).

1) A realization of is measured using correlative
channel sounding, as discussed above.

2) The corresponding realization of is calculated
according to (2).

3) A 2-D spectral estimator is applied to .
The performance of such an approach is limited by the channel
sounding. Specifically, application of correlative channel
sounding to fast time-varying channels (i.e., channels with
large ) requires a small receive filter length to keep the
“commutation error” (cf. (12)) small. However, a
small results in poor pulse compression, which also yields
systematic sounding errors [26].

We will now introduce a novel SF estimator that does not
employ the straightforward three-step methodology described
above. While our estimator also uses correlative channel
sounding, it is formulated in such a way that systematic
sounding errors do not result in systematic SF estimation er-
rors. Indeed, it is effectively unbiased even for nonideal virtual
sounding signals with poor pulse compression properties,
thereby admitting a wide range of sounding signals and, thus,
also supporting fast time-varying channels.

A. Initial Formulation of the SF Estimator

The proposed SF estimator can be motivated as follows [22],
[23]. Let the (discrete) ambiguity function be defined
as [32]
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where, as before, the length- signal is assumed to be peri-
odically repeated with period . For a (generally nonstationary)
random process , we denote by the
expectation of . We now consider correlative channel
sounding, as described in the previous section. It can be shown
(cf. [13] for the continuous-time case) that the relation

in (12), where is deterministic and
is random and statistically independent of , entails the

“statistical input-output relation”

(13)

Assuming approximate commutation of channel and re-
ceive filter so that according to (12),
we have . Inserting this into
(13), it follows that the time-frequency correlation
function can approximately be written as

,
provided that . This suggests that we define
an estimate of as

(14)

Here

(15)

is an estimator of that is calculated from different

channel output signals . These output signals are obtained
by sounding the channel times, as described in Section III-B.
(Due to the WSSUS assumption, the channel’s statistics do not
change over time, and hence, repeated sounding is not a problem
in general.) Furthermore, is assumed to be known.
Hereafter, we assume that the channel noise is white with
known variance var . It is then easily shown that

with

(16)
Finally, an estimator of the SF can easily be obtained
from in (14) by invoking the second Fourier trans-
form relation in (5).

A problem with the estimator (14) is that the divi-
sion by will amplify errors in the esti-
mate if is small for some
( , ). Unfortunately, from the relation

(a similar relation in the con-
tinuous-time case is known as the radar uncertainty principle
[33], [34]), we can deduce that there does not exist any signal

for which is approximately constant for all
.

B. “Subsampled” SF Estimator

This problem can, however, be fixed due to the channel’s
underspread property. We recall from (6) that is
confined to the support rectangle
with . Thus, can be reconstructed from a

subsampled version of the time-frequency correlation function
. Let us consider the subsampling defined by

, with , . With
(cf. (5)), one

can show the relation

(17)

Due to (8), the individual terms in (17)
do not overlap. Hence, can be fully reconstructed from

.
We are thus led to consider the following subsampled version

of our estimator (14):

(18)

with , . [Note
that we have incorporated (16).] Evidently, here, we just have
to find a virtual sounding signal for which is
sufficiently bounded away from zero for and

. From , an estimate of the SF can be
obtained by invoking (17) on the fundamental support rectangle,
which results in the following 2-D DFT:

(19)

(Note that is known to be zero for
.) If the length of the receive filter is smaller than

or equal to the pulse spacing, i.e., , we have
with . Here, the estimator (19) simplifies to

(20)
where , with

.
A bias/variance analysis of our SF estimator will be provided

in Section V-A; in particular, it will be shown that the estimator
is effectively unbiased even for a nonideal virtual sounding
signal .

Ideal Virtual Sounding Signal; Relation to Averaged Peri-
odogram Estimator: If the virtual sounding signal is an ideal
impulse train, i.e., , the
ambiguity function of is the “bed of spikes”

. In partic-
ular, the subsampled ambiguity function is constant:

(21)

Thus, for an ideal impulse train sounding signal, the “equaliza-
tion” corresponding to the division by in (20)
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reduces to a mere scaling operation, and our SF estimator be-
comes

(22)

Whereas for all , the impulse
train satisfies . Thus,

is maximized by . In Sec-
tion V-A, we will see that this is favorable for a low estimator
variance.

Consider now the averaged periodogram SF estimator, which
is defined as

(23)

where and are, respectively, the spreading
function and time-varying transfer function of the channel
measurement obtained from the th sounding. (Recall that

is the power spectral density of ; thus,
is indeed a

periodogram [25], [35].) It can then be shown that up to the
noise bias correction , the SF estimator for
in (22) is equal to the averaged periodogram SF estimator

, i.e.,

(24)

Conversely, we can say that in the general case, our SF estimator
in (20) is an extension of the averaged periodogram SF estimator
which adds i) an “equalization” that allows to compensate the
detrimental effect of a nonideal sounding signal and ii) a noise
bias correction. As we will see in Section V-A, these measures
cause our estimator to be effectively unbiased.

C. Efficient Implementation Using the Zak Transform

An efficient implementation of the SF estimator in (19) is
based on the discrete Zak transform, which is defined as [36]

Using the relations and
[36], it can be shown

that the subsampled ambiguity function can be expressed in
terms of as

Therefore, we can write the subsampled version of (15) as

with (25)

Inserting this expression into (20), we obtain an efficient imple-
mentation of the SF estimator. Indeed, a single Zak transform
can be computed efficiently using -point fast Fourier
transforms (FFTs), which corresponds to a computational com-
plexity of .
Taking all other operations into account, the overall computa-
tional complexity of the estimator in (20) is obtained as

.
We finally note that

provided that (8) is satisfied. This relation, combined with (25),
can be used to show (24).

D. “Subsubsampled” SF Estimator

Further computational savings can be achieved if the channel
is strongly underspread, i.e., if . Let us assume that

is an integer multiple of both and , i.e.,
and . Then, the time-frequency correlation func-
tion need only be calculated on the lattice ( ,

) that is sparser than the lattice ( , ) used pre-
viously. The corresponding SF estimator is given by

with

The “subsubsampled” ambiguity function estimate
can again be calculated efficiently

as

where

with the Zak transform
. The overall computational com-

plexity of this “subsubsampled” SF estimator is
.
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V. BIAS/VARIANCE ANALYSIS AND

MMSE-TYPE EQUALIZATION

We next analyze the bias and variance of the proposed SF
estimator in (19). We also present a modified estimator
that allows us to reduce the variance at the expense of a nonzero
bias.

A. Bias/Variance Analysis

For bias/variance analysis, we neglect the commutation error
caused by imperfect commutation of channel and receive filter
so that can be replaced by . However, we do not as-
sume perfect pulse compression, i.e., in general.

Bias: With (13) and
, it follows that the estimator in (19) is unbiased,

i.e., . This is due to the noise bias correc-
tion (subtraction of ) and
the “equalization” (division by ) in (18).

Variance: Next, we consider the average variance of

var (26)

We assume that and are circularly symmetric
complex Gaussian processes and are statistically independent.
We also assume that all channel measurements are statistically
independent, which requires that two consecutive channel
soundings are spaced farther apart in time than the channel’s
coherence time [2]. Even with these assumptions, a reasonably
simple closed-form expression of does not exist. However, it
is shown in Appendix B that is upper bounded as

(27)

Here

with and the path loss [2]
. The important

message of (27) is that the variance must be expected to be high
if contains small values, and it will be lower
for more averaging (i.e., a larger number of soundings, ).

For perfect pulse compression, i.e.,
(with some constant factor), we have

according to (21), and thus, the upper bound
(27) becomes

There is for any signal .
Thus, for fixed , the variance bound in (27) is minimized by

, in which case, .
We conclude that while our estimator is unbiased for any vir-

tual sounding signal, the variance bound will be smallest for an
ideal virtual sounding signal (perfect pulse compression). We

can thus expect that a nonideal virtual sounding signal leads to
a larger estimation variance. This is not a real problem, how-
ever, since the variance can always be decreased by more aver-
aging (i.e., a larger ). This will be verified experimentally in
Section VII. In contrast, a nonzero bias cannot be decreased by
averaging.

Finally, we note that the variance can be reduced by a
smoothing of . Such a smoothing is similar to certain
smoothing methods used in spectral estimation [25], [35].
Unfortunately, smoothing results in a nonzero bias that will be
small only if the SF is itself smooth. We will next describe an
alternative method for variance reduction.

B. MMSE-Type Equalization

Together with the noise bias correction, the division by
in (18) causes our estimator to be effectively

unbiased for any , and thus, this division can be viewed as
a “zero-forcing equalization.” However, as shown above, this
equalization must be expected to result in a larger variance if
some values are small, i.e., if has poor
pulse compression properties. If the number of soundings
is limited (e.g., because the channel statistics are not exactly
constant with respect to time), variance reduction by averaging
is limited as well. It may then be wise to replace the denomi-
nator in (18) with some other “equalization
function” that leads to a variance reduction at the
expense of a nonzero bias. Thus, we consider

from which a biased SF estimator is obtained via a 2-D
DFT as in (19).

Adopting a minimum mean-square error (MMSE) approach,
we would like to choose the that minimizes the average
mean-square error (MSE)

MSE

Unfortunately, this depends on the SF that is
unknown. We will therefore calculate the that
minimizes a simple upper bound on the MSE. We
have MSE with the average (squared) bias

and
the average variance defined in (26). It can be shown that

Furthermore, a bound on is given by (27) with
replaced by . Thus, we obtain

MSE
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Since all terms of this sum are non-negative, each term can be
minimized separately. The result is

Compared to the unbiased case where
, the additional term

stabilizes the estimator in the case of a poor
virtual sounding signal , where is partly
small. This additional term becomes smaller for a larger number
of soundings and for weaker noise (smaller ); however, it
does not vanish for . Note that depends on the
path loss , which
is unknown a priori but can be estimated quite easily.

VI. DATA-DRIVEN SCATTERING FUNCTION ESTIMATION

In this section, we extend our SF estimator to online opera-
tion during data transmission [23]. Here, a segment of the data
signal actually transmitted is used as the sounding signal .
This signal is assumed to be known at the receiver (i.e., it is as-
sumed that the corresponding data symbols have been detected).
The advantage of such a data-driven SF estimation is that the
SF can be continually estimated (monitored) during an ongoing
data transmission, with no need for separate sounding phases.
However, a difficulty is that typical data signals do not lead to
appropriate virtual sounding signals that are similar to a peri-
odic impulse train. To overcome this problem, we propose a
“matched filterbank” (see Fig. 1) that performs the twofold task
of pulse compression and periodization.

A. Data-Driven Channel Sounding

In the following, we model the data signal as a stationary
random process with autocorrelation

of correlation width (i.e., is effectively zero for
).

Matched Receive Filters: Consider the receive filters

rect

where rect is 1 on the interval [0, ] and 0 else-
where. Thus, is matched to the segment of the data signal

located in the interval [ , ]. Again, we will
consider to be periodically continued with period . The
filter length is chosen short enough so that the commuta-
tion error (incurred by commuting the receive filters and the
channel ; see Section III-B) is negligible.

The output signals of the various receive filters are given by
[cf. (12) and Fig. 1]

(28)

Fig. 1. Matched receive filterbank for data-driven sounding.

with the filtered noise and the virtual
sounding signal [cf. (11)]

Here, is an
unbiased estimate of the autocorrelation . If is small
so that is narrow and if is sufficiently large so that

, then will be a reasonable approxi-
mation to an impulse at .

The choice of the receive filter length is governed by
two conflicting requirements: For small commutation errors,

should be small, whereas for , should
be large. However, we will see in Section VI-C that for data-
driven SF estimation, sounding errors resulting from a small
can be compensated by more averaging.

Noise-Suppression Windowing: We will next explain the
windows in Fig. 1. Consider the output of the th
receive filter in (28). The channel is causal and has max-
imum delay . Let us assume that , and
recall that for . It follows that the term

in
(28) is approximately zero outside the interval [ ,

]. Hence, outside this interval, is
essentially noise. We can suppress this noise and thus reduce
sounding errors by windowing according to (see Fig. 1)

where is a window whose effective support contains
[ , ].

While a more general window will be allowed further
below, here, we assume a rectangular window rect

for simplicity, i.e., is 1 on [ , ]
and 0 elsewhere (we assume that so that the
interval [ , ] is contained in the interval
[ , ]).

Matched Receive Filterbank: Under the assumptions stated,
approximates an impulse at . To obtain a virtual

sounding signal that approximates a periodic impulse train, it
thus suffices to add the outputs of all matched receive filters
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(see Fig. 1). The output signal of the resulting matched receive
filterbank is

(29)

with the filtered and windowed noise

Because the windows approximately pass the
“signal” components , we obtain

with the virtual sounding signal

If the assumption is not well
satisfied, sounding errors will occur. Moreover, the
noise-suppression windowing may truncate parts of

and thus cause ad-
ditional sounding errors. However, in Section VI-B, we will
present a statistical input–output relation showing that these
errors cancel on average.

Noise Power: For later use, we calculate the mean power of
. We assume that and do not overlap for

(i.e., ) and that the energies of
all are approximately equal, i.e., for all . We
can then show that

where in the last step, we used the fact that
on the fundamental time interval [0, ]. Without

noise-suppression windowing (i.e., for ), we would
obtain a noise power of approximately . Thus, the
windowing reduces the noise power by a factor of about .

B. Data-Driven Scattering Function Estimator

The proposed data-driven SF estimator is based on the data-
driven channel sounding described above. It is motivated by a
“statistical input/output relation” that is analogous to (13). As
before, we neglect the commutation error caused by imperfect
commutation of channel and receive filters . We assume
that the data signal , the channel impulse response ,

and the white noise are circularly symmetric Gaussian and
statistically independent and that for
with and . The noise sup-
pression window is assumed to satisfy

(constant) and for
. It is then shown in Appendix C that the subsampled

expected ambiguity function of the matched receive filterbank
output in (29) is

(30)

with

(31)
Here, is
the ambiguity function of the correlation . The rela-
tion (30) suggests the following “data-driven” estimator of

:

(32)

in which

is an estimate of that uses filterbank output

signals , and . As a

difference from the estimator in (18), each is obtained by
data-driven channel sounding according to (29) (i.e., using the
matched receive filterbank with noise-suppression windowing).
It is assumed that , , and the path loss are
known or have been estimated.3

Finally, from , a corresponding data-driven
SF estimator is obtained via a 2-D DFT, which yields [cf. (20)]

(33)

Again, the Zak transform allows the efficient computation
of [cf. (25)], and a “subsubsampled” es-
timator can be used for strongly underspread channels (cf.
Section IV-D).

3Experiments indicate that for typical receive filter lengths N , the data-
driven estimator is quite insensitive to errors in estimating R [0; 0].
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C. Bias/Variance Analysis

We now analyze the bias and variance of the data-driven es-
timator in (33). We will neglect the commutation error
caused by imperfect commutation of channel and receive fil-
ters .

Bias: With and using (30), it
easily follows that is unbiased, i.e.,

.
Variance: We first consider the conditional variance of

given the data (sounding) signal . We assume that
i) and are statistically independent, circularly
symmetric, complex Gaussian processes; ii) successive channel
soundings are separated by at least the channel’s coherence
time [2] so that all channel measurements are statistically
independent; iii) the noise-suppression window is rectangular:

rect ; and iv) and
. We will neglect errors resulting from

imperfect estimates of the correlation function, i.e., we formally
set (this can be expected to be approximately
true if is not too small). One can then show by means of a
rather tedious calculation that the average conditional variance
of given is bounded as

var

with

where and
. It is seen that this bound

on does not depend on (a consequence of
our assumption ); therefore, it is
also a bound on the unconditional average variance

var :

(34)

This variance bound decreases for increasing receive filter
length and increasing number of soundings. It is
minimum when const; using variational
calculus, it can be shown that this is the case if and only if

, i.e., if and only if is white. Thus,
nonwhite data signals must be expected to lead to a higher
variance. It can also be shown that for , the
right-hand side in (34) is equal to the average variance and
not just a bound on .

The overall structure of the variance bound (34) resembles
that of the variance bound (27) for the SF estimator using

Fig. 2. SFs used for the simulations. (a) Two-path model. (b) Jakes/exponential
model.

dedicated sounding signals. However, the denominator in (27)
( ) is replaced by . Thus,
the variance bound of the data-driven estimator merely depends
on the second-order statistics (correlation ) of the data
signal process .

D. MMSE-Type Equalization

Together with the noise bias correction, the “zero-
forcing equalization” corresponding to the division by

in (32) causes to be ef-
fectively unbiased for any . However, as was discussed
above, this equalization must be expected to result in a larger
variance if some values are small, i.e., if
is nonwhite. For variance reduction, we may consider a biased
estimator

from which an SF estimator is obtained by means of a
2-D DFT as usual. The denominator is chosen to minimize
an upper bound on the MSE. Since the derivation of the optimum

is analogous to Section V-B, we just present the result:

(35)

VII. SIMULATION RESULTS

To assess the performance of the proposed SF estimators
in (20) and in (33), we simulated synthetic

WSSUS channels with i) an SF corresponding to a two-path
channel with , and ii) the classical Jakes/ex-
ponential SF [19] with , (see Fig. 2). We
used the parameters and , unless stated
otherwise; note that (8) is always satisfied. The spreading
factor was for the two-path channel and

for the Jakes/exponential channel (except
for the last simulation). Because of its large spreading factor,
the Jakes/exponential channel is a difficult test case for all
algorithms.



1396 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 5, MAY 2004

Fig. 3. Comparison of proposed SF estimator Ĉ[m; l] versus UPF and
cross-ambiguity methods for the noise-free case: NMSE versus L for (a)
two-path SF and (b) Jakes/exponential SF.

Fig. 4. Comparison of proposed SF estimator Ĉ[m; l] versus UPF and
cross-ambiguity methods with noise for L = 50. NMSE versus SNR for (a)
two-path SF and (b) Jakes/exponential SF.

For the estimator , the sounding pulse in (9) was
a maximum-length pseudonoise sequence of length .
Unless indicated otherwise, the receive filter was matched
to (thus, ). For the data-driven estimator ,
the data signal was white or colored stationary Gaussian noise
with unit variance (this type of signal approximates the transmit
signals arising e.g. in OFDM).

Simulation Study 1: First, we present a performance compar-
ison of our SF estimator with an improved version of the
cross-ambiguity estimator4 proposed in [13] and the uncertainty
product function (UPF) estimator [15]. The cross-ambiguity es-
timator used a maximum-length pseudonoise sequence of length
511 as sounding signal. The UPF estimator used two maximum-
length pseudonoise sequences of length 511. For the noise-free
case, and for each of the three methods, Fig. 3 shows the esti-
mated5 average normalized MSE (NMSE)
versus (the number of soundings). The NMSE of
is seen to initially decay with increasing according to ,
as suggested by the variance bound (27). However, for larger
values of , the NMSE decay levels off. This is due to the com-
mutation error that cannot be reduced by more averaging. The
commutation error can be reduced by using a shorter receive
filter length ; however, this comes at the cost of a higher vari-
ance (see simulation study 3).

Fig. 4 shows the effects of noise. The NMSE is plotted versus
the SNR for a fixed number of soundings. (The SNR is
defined as .) It can be seen that for
low SNR, the NMSE drops rapidly with increasing SNR since

4The improvement corresponds to a noise bias correction that is analogous to
the subtraction of �A [�n;�k] in (14).

5The MSE was estimated by averaging over 20 to 2000 simulation runs (de-
pending on the number of soundings).

Fig. 5. Comparison of simulated NMSEs and normalized MSE bounds for the
noise-free case. (a) Ĉ[m; l] and Ĉ [m; l] for Jakes/exponential SF. (b) Ĉ[m; l]
and normalized bound (27). (c) Ĉ [m; l] and normalized bound (34) using white
data signal (N = 0). (d) Ĉ [m; l] and normalized bound (34) using colored
data signal (N = 2). In (b)–(d), a solid line indicates the simulated NMSE,
whereas a dashed line indicates the corresponding bound. Note that in (c) and
(d), the bound is independent of the SF.

here, the noise is the dominating source of error. For higher
SNR, the curves level off since the dominating source of error
now is the randomness of the channel. Comparing Fig. 4(a) and
(b), it can be seen that the NMSE is higher for the (more com-
plicated) Jakes/exponential SF than for the (simpler) two-path
SFs.

It is seen that in all cases, the proposed estimator per-
forms better than the UPF and cross-ambiguity estimators. This
improvement is especially pronounced for larger values of ,
i.e., when more averaging is used, and for more complicated
SFs (Jakes/exponential SF) where the UPF and cross-ambiguity
estimators suffer from “self-clutter.” It is furthermore seen that
the NMSE performance of the proposed estimator and
of the UPF estimator is less dependent on the shape of the SF
than that of the cross-ambiguity estimator. Indeed, the cross-am-
biguity estimator introduces more self-clutter, which results in
a larger bias when the channel contains more scatterers. In con-
trast, the self-clutter of the UPF estimator seems to be relatively
independent of the shape of the SF.

Simulation Study 2: In Fig. 5, the NMSE of our SF estima-
tors and and the corresponding MSE/variance
bounds6 (again normalized by ) are considered for the
noise-free case. Fig. 5(a) compares the performance of
and (the latter both for a white data/sounding signal

and for a colored with ) for the Jakes/ex-
ponential SF. The receive filter length for was chosen
as for white and for colored (the
maximum values of such that is satisfied,
cf. Section VI-B). It is seen that with white per-
forms almost as well as , whereas a colored results
in a significantly higher NMSE.

6Note that the variance bounds in (27) and (34) are simultaneously MSE
bounds because the estimators are unbiased.
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Fig. 6. Performance of Ĉ[m; l] for receive filter lengths N = 15 and
N = 10 (Jakes/exponential SF). (a) NMSE versus L for the noise-free case.
(b) NMSE versus SNR for L = 5 and L = 500.

Fig. 5(b) compares the NMSE of with the cor-
responding (normalized) MSE bound (27) for both the
Jakes/exponential SF and the two-path SF. It is seen that the
bound increasingly overestimates the NMSE with increasing
complexity of the SF (i.e., increasing number of scatterers).
Fig. 5(c) compares the NMSE of with the bound (34)
using a white data signal . It is seen that the
bound is in fact slightly smaller than the actual (estimated)
NMSE. Evidently, the assumptions underlying the bound
(perfect commutation, equality ) are not
satisfied sufficiently well. Finally, Fig. 5(d) shows the results
obtained for a colored data signal ; it can be seen
that the bound is much less tight in this case.

Simulation Study 3: Next, we investigate the effect of dif-
ferent receive filter lengths and on the
performance of for the Jakes/exponential SF. Fig. 6(a)
shows the NMSE versus the number of soundings for the
noise-free case. It is seen that for small , the shorter length

results in a higher variance and, thus, initially in a
higher NMSE. For large, however, the commutation error be-
comes dominant, and the NMSE obtained with drops
below that obtained with .

Fig. 6(b) shows the NMSE versus SNR for and
soundings. As expected, for , the larger receive filter

length always performs better because the error due
to the noise and channel randomness is dominant as compared
with the commutation error. For , however, the smaller
receive filter length performs better above an SNR
level of about 2 dB.

Simulation Study 4: Fig. 7(a) compares the results of the
data-driven SF estimator and the data-driven SF
estimator with MMSE equalization proposed in Section VI-D
( ). We used the two-path SF and a low SNR of 12
dB (the benefits of MMSE equalization are greatest at low
SNR). The data (sounding) signal was white. It can be observed
that the MMSE equalization leads to an improvement over the
“zero-forcing” (ZF) equalization employed by if the
number of soundings is small, whereas for larger , there is
little or no improvement.

Fig. 7(b) compares the results obtained with and
for a colored sounding signal with . The

results of MMSE equalization using the variance bound for a
white sounding signal (even though the sounding signal was col-
ored) are also shown. This is motivated by the fact that the bound
for a white sounding signal approximates the observed NMSE

Fig. 7. NMSE comparison of the data-driven SF estimators with conventional
(“zero-forcing”) equalization Ĉ [m; l] and with MMSE equalization
Ĉ [m; l] for the two-path SF and an SNR of �12 dB. (a) White sounding
signal. (b) Colored sounding signal with N = 2.

better than the bound for a colored sounding signal [see Fig. 5(c)
and (d)]. In fact, it can be seen that for sufficiently large, the
looseness of the “colored” bound causes the MMSE method to
have poorer performance than the ZF method, whereas using the
“white” bound, the MMSE method performs consistently better
than the ZF method.

Further experiments showed that MMSE equalization works
well for simple SFs (i.e., a small number of scatterers). However,
for a larger number of scatterers, the bias bound that is used to
calculate (35) becomes loose so that its influence on is too
large. As a consequence, the performance of MMSE equaliza-
tion tends toward that of ZF equalization, even for small . Our
experiments suggest that this problem can be alleviated by re-
placing (35) with

where is the effective number of scatterers.
Simulation Study 5: We finally present a performance

comparison of with the averaged periodogram estimator
in (23) for the noise-free case and dedicated sounding

signals. Motivated by the parameters of a UMTS system (e.g.
[37]), we chose a carrier frequency of 2 GHz. The channel had a
Jakes/exponential SF with maximum (one-sided) Doppler shift

Hz (corresponding to maximum velocity 324 km/h)
and maximum delay s. This channel is strongly
underspread . We used a sampling
frequency of MHz (the chip rate of UMTS) and a
sounding duration of about 10 ms (corresponding to a UMTS
frame). This resulted in and . We chose

and [note that is a multiple of , and
(8) is satisfied]. There were approximately 100 soundings/s. The
sounding pulse was a maximum-length pseudonoise sequence
of length convolved by a filter with impulse response
[0.3, 1, 0.3] that accounts for imperfections such as bandlimi-
tation, nonideal pulse-shaping, etc. At the receiver, a matched
filter of length was used.

Fig. 8 shows the NMSE of and versus .
(We did not consider the cross-ambiguity and UPF methods be-
cause their computational complexity is excessive for the large
block length used in this example.) It is seen that for growing

, the NMSE of saturates at about 15 dB due to
the bias resulting from the nonideal sounding pulse. In contrast,
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Fig. 8. NMSE comparison of Ĉ[m; l] (“with equalization”) and the
averaged periodogram estimator Ĉ [m; l] (“without equalization”) for the
Jakes/exponential SF in the noise-free case.

is effectively unbiased and, thus, features no such satu-
ration effect; it outperforms for more than about ten
soundings.

VIII. CONCLUSION

We have presented two novel methods for the estimation of
the scattering function (SF) of underspread WSSUS channels.
The underspread property is practically relevant since it is
satisfied by usual mobile radio channels, even when they are
fast time-varying. The proposed methods exploit the fact that
due to the underspread property, it suffices to estimate the
channel’s time-frequency correlation function on a subsampled
lattice. This was seen to have two beneficial effects. First, the
requirements on the (virtual) sounding signal are significantly
relaxed since its ambiguity function needs to be approximately
constant only on the subsampled lattice. Second, the subsam-
pling allows the use of an efficient implementation based on
the Zak transform. Especially for large block length , our
methods have significantly lower computational complexity
than the alternative methods proposed in [13]–[17].

The proposed SF estimators use a “noise bias correction” as
well as an “equalization” that compensates for systematic imper-
fections of the sounding signal. These measures cause the esti-
mators to be effectively unbiased. The “equalization” tends to in-
crease the estimation variance that, however, can be made arbi-
trarily small by a sufficient number of soundings (i.e., averaging).

One of our estimators requires an explicit sounding phase
during which no data can be transmitted. The sounding signal
can be freely chosen to optimize sounding results. The other es-
timator uses the data signal itself as an implicit sounding signal.
This “data-driven” SF estimator allows a continuous estima-
tion (monitoring) of the SF during an ongoing data transmis-
sion, without an explicit sounding phase. This is made pos-
sible by a matched receive filterbank that emulates an admis-
sible sounding signal.

Simulation results demonstrated that the performance of the
proposed SF estimators is typically superior to that of existing
nonparametric methods. This superiority is especially pro-
nounced in challenging situations (fast time-varying channels,
poor sounding signals, low SNR). A performance and com-
plexity comparison of our SF estimators with the parametric
(AR model based) SF estimator proposed in [18] would be an
interesting topic for future research.

APPENDIX A
DISCRETIZATION OF CONTINUOUS-TIME LTV CHANNELS

Our discussion of the discretization of a continuous-time
LTV channel extends the results reported in [1] and [28] to the
discrete-time case [38]. The (equivalent complex baseband)
input–output relation of a continuous-time LTV channel
with impulse response is

(36)

We assume the following.

1) The input signal is bandlimited with bandwidth ,
i.e., for . With (36), one can then
show that without loss of generality, the impulse response

can be replaced by a version that is band-
limited with respect to with the same bandwidth [21].

2) The impulse response is causal and delay-lim-
ited with maximum delay , i.e., for

. (This assumption is not exactly compat-
ible with the bandlimitation of with respect to ;
the resulting errors will, however, be ignored.)

3) The channel’s Doppler shifts are limited to [ , ],
which implies that the impulse response is band-
limited with respect to with bandwidth .

4) We are interested in the output signal only in the in-
terval [0, ], with . This corresponds to
a blockwise processing of the channel output, which is
well suited to many digital communication schemes. The
truncation with respect to corresponds to a smoothing
(resolution loss) in the Doppler direction and allows the
SF to be sampled in the Doppler direction. The maximum
allowable sampling period is determined by the block
length .

Based on these assumptions, the channel can be
discretized as follows. Because is bandlimited with re-
spect to , it can be represented using the samples
according to

sinc (37)

with sinc , “input” sampling frequency
, and . Inserting (37) into (36) and

interchanging the order of integration and summation yields

sinc

where for the last equation, assumption 1 has been used. With
assumptions 1 and 3, it can be shown (e.g. [1]) that the output
signal is bandlimited with bandwidth ; thus, it can
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be sampled without loss of information using the “output” sam-
pling frequency . This yields

(38)
with the block length (cf. assumption 4).

For simplicity, we hereafter use one common sampling fre-
quency . (This means that the input
signal is oversampled by a factor of .) Then, (38) can
be compactly written as

with , , and
. This is the input–output relation of

a discrete-time LTV channel that provides a discrete-time
representation of the original continuous-time LTV channel

. Due to assumption 2, the impulse response is zero
for . Moreover, due to assumption 4, we can
consider to be zero for . Thus

for

with

We finally assume that for . Then, to
be able to discretize the Doppler shift variable (cf. Section II-A)
without temporal aliasing of the output signal on the in-
terval [0, ], we have to suppose that is chosen such
that (see [38] for details).

APPENDIX B
DERIVATION OF (27)

We outline the derivation of the upper bound (27) on the av-
erage variance of the SF estimator in (19). With (18),
the variance of is

var

var

It is then easily shown that the average variance
var is given by

Under the assumptions stated in Section V-A (i.e., and
are circularly symmetric complex Gaussian processes and

the are statistically independent), we can use Isserlis’
relation7 [39], [40] and obtain after some calculations

(39)
With our further assumption that and are statis-

tically independent, we can use (13) and obtain

where in our case, . Assuming
that commutation errors can be neglected, we can replace

with . Insertion of the above expres-
sion into (39) then yields

(40)

with a channel term , a noise term , and a mixed term .
The channel term is shown in the first equation at the bottom of
the next page, where we used . The noise
term is ( denotes the length- DFT of )

where the Schwarz inequality has been used. Finally, the mixed
term is shown in the second equation at the bottom of the next
page, where has been used. Inserting the
above bounds for , , and in (40), we obtain the bound
(27).

APPENDIX C
DERIVATION OF (30)

We sketch the derivation of the “statistical input/output rela-
tion” (30). Our starting point is

We now insert (29) and use Isserlis’ relation (cf. Appendix B).
Under the assumptions stated in Section VI-B (specifically,

7That is, fx x x x g = fx x g fx x g + fx x g fx x g for
zero-mean, circularly symmetric complex, jointly Gaussian random variables
x , x , x and x .
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channel and receive filters commute perfectly; ,
, and are circularly symmetric complex Gaussian

and statistically independent; for with
and ), it is possible to derive

(41)

where

Using the further assumption that
and for (i.e., passes

the desired signal components unscaled and undistorted), one
can simplify (41) to

which is (30) [ is defined as in (31)].
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