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ABSTRACT

Time-frequency autoregressive moving-average (TFARMA) mod-

els have recently been introduced as parsimonious parametric mod-

els for underspread nonstationary random processes. In this pa-

per, we propose linear TFARMA and TFMA parameter estima-

tors based on a high-order TFAR model. These estimators extend

the Graupe–Krause–Moore and Durbin methods for time-invariant

parameter estimation to underspread nonstationary processes. We

also derive linear methods for approximating an underspread time-

varying linear system by a TFARMA-type system. The linear equa-

tions obtained have Toeplitz/block-Toeplitz structure and thus can

be solved efficiently by the Wax-Kailath algorithm. Simulation re-

sults demonstrate the performance of the proposed methods.

1. INTRODUCTION

This paper proposes linear estimators for time-frequency autore-

gressive moving-average (TFARMA) models. TFARMA models

have been introduced in [1–3] as parsimonious models for under-

spread [4] nonstationary random processes. They are special time-

varying ARMA (TVARMA) models [5] that are physically intuitive

because of their formulation in terms of time shifts (delays) and fre-

quency (Doppler) shifts.

The TFARMA Model. A TFARMA(MA, LA; MB, LB) process

x[n], n = 0, . . . , N−1 is defined by the input-output relation

x[n] = −
X

(m,l)∈A1

am,l(Sm,l x)[n] +
X

(m,l)∈B

bm,l(Sm,l e)[n] . (1)

Here, am,l and bm,l are the TFAR and TFMA parameters, respec-

tively; Sm,l is the cyclic time-frequency (TF) shift operator defined

by (Sm,l x)[n] = ej
2π
N

lnx[(n−m) mod N ]; e[n] is a stationary

white innovations process with variance 1; and the delay-Doppler

(DD) support regions A1 and B are given by A1
△

= {1, . . . , MA}×

{−LA, . . . , LA} and B
△

= {0, . . . , MB} × {−LB, . . . , LB}, with

MA and MB the TFAR and TFMA delay order and LA and LB the

TFAR and TFMA Doppler order, respectively. The input-output

relation (1) is depicted in Fig. 1, using the elementary cyclic time

shift (Tx)[n] = x[(n−1) mod N ] and the elementary frequency

shift (Mx)[n] = ej
2π
N

nx[n] (note that Sm,l = M
l
T

m).

The TFARMA model is parsimonious if the number of TFARMA

parameters, MA(2LA+1)+(MB+1)(2LB+1), is much smaller than

the signal length N . Two special cases of the TFARMA(MA, LA;
MB, LB) model are the TFAR(M, L) model obtained for MA =
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Figure 1: Block diagram of the TFARMA(MA, LA; MB, LB) model.

M , LA = LB = L, and MB = 0 and the TFMA(M, L) model

obtained for MB = M , LB = L, and MA = LA = 0.

State of the Art. The standard approach to linear TVARMA pa-

rameter estimation is to estimate the TVAR part using extended

Yule-Walker equations, estimate the input (intermediate TVMA)

process of the TVAR part through inverse filtering, fit a high-order

TVAR model to the intermediate TVMA process, estimate the inno-

vations signal e[n] through another inverse filtering, and finally use

linear system identification methods to estimate the TVMA part [5].

This complicated procedure is used because classical linear meth-

ods for time-invariant ARMA and MA parameter estimation [6–8]

cannot be straightforwardly extended to general TVARMA models

(i.e., non-TFARMA models). A linear TFAR parameter estima-

tor based on “TF-Yule-Walker” (TFYW) equations and a nonlinear

TFMA parameter estimator based on the TF cepstrum have been

proposed in [1] and [2], respectively. Methods for TFARMA order

estimation and stabilization have been presented in [3].

Contribution and Paper Structure. In this paper, we propose

linear methods for TFARMA and TFMA parameter estimation and
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system approximation. (TFAR parameter estimation is not dis-

cussed because a linear method—the TFYW method—was pro-

posed in [1].) In Section 2, we consider TFARMA parameter esti-

mation based on an intermediate high-order TFAR model. Our ap-

proach, which extends the (time-invariant) ARMA and MA meth-

ods of Graupe–Krause–Moore [7] and Durbin [6], is to formulate

TFARMA parameter estimation as the approximation of a linear

time-varying (LTV) system by a TFARMA system. In Section 3,

therefore, we present linear methods for this system approximation

problem. We obtain linear Toeplitz/block-Toeplitz equations that

can be solved efficiently by the Wax-Kailath algorithm [9]. In Sec-

tion 4, we apply our system approximation methods to TFARMA

and TFMA parameter estimation. Finally, simulation results as-

sessing the performance of our methods are provided in Section 5.

Some Fundamentals. The TFARMA(MA, LA; MB, LB) process

x[n] in (1) is closely related to the causal LTV systems (operators)

A
△

=
X

(m,l)∈A

am,l Sm,l , B
△

=
X

(m,l)∈B

bm,l Sm,l , (2)

where A
△

= {0, . . . , MA} × {−LA, . . . , LA} and B was defined

before. The operator A is monic, i.e., a0,l

△

= δ[l]. The input-output

relation (1) can be written in terms of the operators A and B as

(Ax)[n] = (Be)[n] or, equivalently, as

x[n] = (HTFARMA e)[n] , with HTFARMA

△

= A
−1

B . (3)

The causal LTV operator HTFARMA is an innovations system for the

TFARMA process x[n].
In what follows, we will use the spreading function (SF) of a

causal LTV operator H that is defined as [10]

SH[m, l]
△

= 〈H, Sm,l〉 =

N−1
X

n=0

h[n, m] e−j
2π
N

ln
, (4)

where h[n, m] is the time-varying impulse response of H and

〈H1, H2〉
△

=
P

N−1
n=0

P

N/2−1
m=0 h1[n, m] h∗

2[n, m]. The SF is the

coefficient function in an expansion of H into TF shift operators

Sm,l:

H =
1

N

N/2−1
X

m=0

N/2−1
X

l=−N/2

SH[m, l] Sm,l . (5)

An operator H whose SF is highly concentrated about the origin of

the DD plane is called underspread [10].

Comparing (5) with (2), we see that

SA[m, l] =

(

N am,l , (m, l) ∈ A

0 , elsewhere ,
(6)

and similarly for SB[m, l]. That is, the nonzero SF values of A

and B are equal (up to a factor of N ) to the TFAR and TFMA

parameters am,l and bm,l, respectively.

2. SYSTEM APPROXIMATION APPROACH TO

TF(AR)MA PARAMETER ESTIMATION

We consider a nonstationary process x[n] that is underspread, i.e.,

its temporal and spectral correlations are negligible for larger time

lags and frequency lags, respectively [4]. This assumption is justi-

fied in many applications. For an underspread process, it is always

possible to find an underspread innovations system.

Our methods for TFARMA and TFMA estimation are based on

an intermediate high-order TFAR model for x[n]. This TFAR model

is assumed to have been previously estimated from one or several

observed realizations of the process x[n] (e.g., by means of the

TFYW method proposed in [1]). It is given by (cf. (3))

HTFAR = C
−1

D0 , (7)

with the “pure TFAR part” C
△

=
P

(m,l)∈C
cm,l Sm,l where C

△

=

{0, . . . , MC} × {−LC, . . . , LC} and c0,l = δ[l] and the degen-

erate TFMA part D0
△

=
P

LC

l=−LC
d0,l M

l. Here, D0 is included

to model a time-varying variance of the white input process. The

orders MC, LC are chosen sufficiently high for good modeling ac-

curacy but we assume that there is still MCLC ≪ N (i.e., C is

an underspread operator). Furthermore, because x[n] is assumed

underspread, its (estimated) TFAR innovations operator HTFAR =
C

−1
D0 will be assumed to be underspread as well; this can be

achieved through stabilization of the poles of C
−1 [3].

The TFARMA parameter estimates are obtained by fitting a low-

order TFARMA system HTFARMA = A
−1

B (cf. (3)) to the interme-

diate high-order TFAR system HTFAR in (7), i.e., by determining A

and B such that
HTFARMA ≈ HTFAR .

This amounts to minimizing the error ‖HTFARMA − HTFAR‖
2 where

‖H‖2 △

= 〈H, H〉 =
P

N−1
n=0

P

N/2−1
m=0 |h[n, m]|2. Therefore, in the

next section, we will introduce linear methods for approximating a

general LTV system H by a TFARMA system HTFARMA. In Section

4, these methods will be used to formulate computationally efficient

TFARMA and TFMA parameter estimators.

3. TFARMA SYSTEM APPROXIMATION

We consider the problem of approximating an underspread, causal

LTV system H by a TFARMA(MA, LA; MB, LB) system HTFARMA

= A
−1

B of given—comparatively low—orders MA, LA, MB, LB.

Because minimization of ‖HTFARMA − H‖2 = ‖A
−1

B − H‖2 is

too difficult, we instead minimize ‖B−AH‖2, using the reasoning

that1 “if A
−1

B ≈ H, then also B ≈ AH and vice versa.” The

system approximation problem is thus formulated as

(Aopt, Bopt)
△

= arg min
A∈SMA,LA

B ∈SMB,LB

‖B−AH‖2
, (8)

where SM,L denotes the Hilbert space of all LTV systems of the

form
P

M

m=0

P

L

l=−L
cm,l Sm,l with given orders M, L (i.e., all LTV

systems whose SF is zero outside the DD support region {0, . . . ,

M} × {−L, . . . , L}). Due to the unitarity of the SF and the fact

that SB[m, l] = 0 for (m, l) ∈ B, where B denotes the complement

of B, the cost function in (8) can be rewritten as

‖B−AH‖2 =
1

N

N/2−1
X

m=0

N/2−1
X

l=−N/2

˛

˛SB[m, l] − SAH[m, l]
˛

˛

2

=
1

N

X

(m,l)∈B

˛

˛SB[m, l] − SAH[m, l]
˛

˛

2
+

1

N

X

(m,l)∈B

˛

˛SAH[m, l]
˛

˛

2
.

(9)

1We note, however, that the cost functions ‖A
−1

B − H‖2 and ‖B −

AH‖2 are not equivalent. We have ‖A
−1

B − H‖2 ≥ ‖B − AH‖2/‖A‖2
∞

where ‖A‖∞ = sup
‖x‖=1〈Ax, x〉, i.e., ‖B−AH‖2 normalized by ‖A‖2

∞

provides a lower bound on ‖HTFARMA − H‖2
= ‖A

−1
B − H‖2.
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3.1. Optimization of B

We first consider the minimization problem (8) for B with A fixed.

This problem amounts to finding the best subspace approximation

B ∈ SMB,LB
to the operator AH. From the SF-domain formulation

(9), it is seen that the SF of the optimum B satisfies the condition

SB[m, l] = SAH[m, l] , (m, l) ∈ B . (10)

Note that this condition is consistent with the subspace constraint

B ∈ SMB,LB
. In fact, the same result is obtained by using the

projection theorem [11] which requires that the approximation error

B−AH is orthogonal to the subspace SMB,LB
, i.e., 〈B−AH, B′〉 = 0

for all B
′ ∈ SMB,LB

. Because {Sm,l}(m,l)∈B is a basis of the

space SMB,LB
, this can be rewritten as 〈B − AH, Sm,l〉 = 0 for

(m, l) ∈ B, or equivalently 〈B, Sm,l〉 = 〈AH, Sm,l〉 for (m, l) ∈
B. Comparing with (4), we see that this is indeed equivalent to (10).

Condition (10) can be rewritten as

bm,l =
1

N

X

(m′, l′)∈A

am′, l′ SH[m−m
′

, l−l
′] e−j

2π
N

m
′(l−l

′)
,

(m, l) ∈ B , (11)

where we used the fact that the nonzero values of SB[m, l] and

SA[m, l] are given by N bm,l and N am,l, respectively (see (6)).

The right-hand side of (11) is the twisted convolution [12] of

SA[m, l] and SH[m, l], which differs from the ordinary 2-D convo-

lution by the phase factor e−j
2π
N

m
′(l−l

′). Although not explicitly

indicated by our notation, all convolutions and twisted convolutions

are cyclic with period N . The relation (11) allows us to calcu-

late the TFMA parameters bm,l (i.e., B) from the TFAR parameters

am,l (i.e., A) and the SF of H.

Since we assumed the model orders MA, LA, MB, LB to be small,

A = {0, . . . , MA} × {−LA, . . . , LA} and B = {0, . . . , MB}
×{−LB, . . . , LB} are small regions about the origin of the DD

plane. Hence, we can set e−j
2π
N

m
′(l−l

′) ≈ 1 in (11), whereby

the twisted convolution is approximated by an ordinary 2-D convo-

lution. We thus obtain

bm,l ≈
1

N

X

(m′, l′)∈A

am′,l′ SH[m−m
′

, l−l
′] , (m, l) ∈ B .

(12)

This expression allows a simplified—though only approximate—

calculation of the TFMA parameters bm,l.

3.2. Optimization of A

Next, we calculate the optimum TFAR operator A. Because the

optimum B satisfies (10), the cost function (9) becomes

‖B−AH‖2 =
1

N

X

(m,l)∈B

˛

˛SAH[m, l]
˛

˛

2

=
1

N

X

(m,l)∈B

˛

˛

˛

˛

X

(m′, l′)∈A

am′, l′ SH[m−m
′

, l−l
′] e−j

2π
N

m
′(l−l

′)

˛

˛

˛

˛

2

=
1

N

X

(m,l)∈B

˛

˛

˛

˛

SH[m, l]

+
X

(m′, l′)∈A1

am′, l′ SH[m−m
′

, l−l
′] e−j

2π
N

m
′(l−l

′)

˛

˛

˛

˛

2

, (13)

where the last expression follows from a0,l = δ[l]. The mini-

mization of this expression with respect to the parameters am,l,

(m, l) ∈ A1 is a linear least-squares problem of the form

aopt = arg min
a

‖S̃a−s‖
2

F
, (14)

where ‖ · ‖
F

denotes the Frobenius norm and the vectors a, s and

matrix S̃ are as follows. The parameter vector a of length MA(2LA+
1) is defined as

a =
ˆ

a
T

1 · · · a
T

MA

˜T
with am =

ˆ

am,−LA
· · · am,LA

˜T
. (15)

The vector s of length N2/2 − (MB+1)(2LB+1) is given by

s =
ˆ

s
′T

0 · · · s
′T

MB
s

T

MB+1 · · · s
T

N/2−1

˜T

with the vectors

s
′

m =
ˆ

SH[m,−N/2] · · · SH[m,−LB−1] SH[m, LB+1]

· · · SH[m, N/2−1]
˜T

sm =
ˆ

SH[m,−N/2] · · · SH[m, N/2−1]
˜T

of length N − (2LB +1) and N , respectively. Finally, S̃ is an
ˆ

N2/2 − (MB+1)(2LB+1)
˜

× MA(2LA+1) matrix given by

S̃ =
ˆ

S̃
′

0 · · · S̃
′

MB
S̃MB+1 · · · S̃N/2−1

˜T

with the matrices

S̃
′

m =
ˆ

s̃[m,−N/2] · · · s̃[m,−LB−1] s̃[m, LB+1]

· · · s̃[m, N/2−1]
˜

S̃m =
ˆ

s̃[m,−N/2] · · · s̃[m, N/2−1]
˜

of size
ˆ

N − (2LB +1)
˜

× MA(2LA +1) and N × MA(2LA +
1), respectively, where s̃[m, l] is the length-MA(2LA + 1) vector

obtained by stacking the columns of the (2LA + 1) × MA matrix

S̃[m, l] whose entries are

`

S̃[m, l]
´

l′,m′

= SH[m−m
′

, l−l
′+LA+1] e−j

2π
N

m
′(l−l

′+LA+1)
,

l
′ = 1, . . . , 2LA+1 , m

′ = 1, . . . , MA .

According to (14), the optimum TFAR parameters aopt are given by

the solution of the system of MA(2LA+1) linear equations [13]

S̃
H
S̃ a = S̃

H
s . (16)

3.3. Efficient Suboptimum Calculation of A

The equations (16) do not have a special structure that would allow

an efficient solution. We now propose a more efficient but generally

suboptimum method for calculating the TFAR system A.

The optimum TFAR parameters minimize (14) or equivalently

(13). They can hence be viewed as the least-squares solution to the

overdetermined system of equations S̃a = s or equivalently

X

(m′, l′)∈A1

am′, l′ SH[m−m
′

, l−l
′] e−j

2π
N

m
′(l−l

′) = −SH[m, l] ,

(m, l) ∈ B .

These are N2/2−(MB+1)(2LB+1) equations in the MA(2LA+1)
unknowns am,l. Rather than solving this overdetermined system of

equations in the least-squares sense, we now propose to calculate

the exact solution of a subset of MA(2LA +1) equations, corre-

sponding to MA(2LA +1) DD indices (m, l) ∈ eB where eB ⊂ B.
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By this approach, we force SAH[m, l] to be zero on eB instead of

minimizing the energy of SAH[m, l] on B. We choose

eB
△

= {MB+1, . . . , MB+MA} × {−LA, . . . , LA}

because it is within B but still close to the origin of the DD plane.

Since A and H are underspread, i.e., their SFs are concentrated

about the origin, this choice allows us (i) to force comparatively

dominant components of SAH[m, l] to be zero and (ii) to use the

underspread approximation e−j
2π
N

m
′(l−l

′) ≈ 1. With this approx-

imation, we obtain the system of equations

X

(m′, l′)∈A1

am′, l′ SH[m−m
′

, l−l
′] = −SH[m, l] , (m, l) ∈ eB.

(17)

These MA(2LA+1) linear equations in the MA(2LA+1) unknowns

am,l involve an ordinary 2-D convolution and have the form of un-

derspread extended TFYW equations (cf. [1]). They can be com-

pactly written as
S̄a = −s̄ , (18)

with a defined as in (15), s̄ defined by

s̄ =
ˆ

s̄
T

1 · · · s̄
T

MA

˜T

where

s̄m =
ˆ

SH[MB+m,−LA] · · · SH[MB+m, LA]
˜T

,

and the MA(2LA+1)×MA(2LA+1) Toeplitz/block-Toeplitz (TBT)

matrix2

S̄ = toep
˘

SMB+MA−1, . . . , SMB−MA+1

¯

containing the (2LA+1) × (2LA+1) Toeplitz blocks

Sm = toep
˘

SH[m, 2LA], . . . , SH[m,−2LA]
¯

.

Since the equations (18) have TBT structure, the Wax-Kailath algo-

rithm [9] can be used for solving them with complexity O(M 2
AL3

A).

3.4. Special Cases: TFMA and TFAR System Approximation

The pure TFMA case, i.e., approximation of H by HTFMA = B, is

a special case for which am,l = δ[m]δ[l]. The TFMA parameters

are here obtained from (11) as

bm,l =
1

N
SH[m, l] , (m, l) ∈ B .

The TFAR case, i.e., approximation of H by HTFAR = A
−1

B0

(cf. (7)), is another special case that is obtained for bm,l =b0,l δ[m].
The TFAR parameters am,l can be calculated, e.g., by the subopti-

mum method of Section 3.3 with MB = 0. The TFMA parameters

b0,l are subsequently obtained by (11) or (12) evaluated for m = 0.

The entire calculation is analogous to the TFYW method for TFAR

parameter estimation presented in [1], with the SF SH[m, l] taking

the place of the expected ambiguity function appearing in [1].

4. TFARMA AND TFMA PARAMETER ESTIMATORS

Let us now return to our original problem of developing TFARMA

and TFMA parameter estimators for an underspread process x[n].

2The notation S̄ = toep
˘

SMB+MA−1, . . . , SMB−MA+1

¯

means that

the blocks of the block-diagonals of S̄ ordered from SW to NE are given by
SMB+MA−1, . . . , SMB−MA+1.

As explained in Section 2, our approach is to approximate an inter-

mediate high-order TFAR operator HTFAR = C
−1

D0 previously es-

timated from one or several observed realizations of x[n] by a low-

order TFARMA model HTFARMA = A
−1

B or a low-order TFMA

model HTFMA = B. As explained in Section 2, C is assumed to be

underspread.

4.1. TFARMA Parameter Estimation

We consider estimation of a monic TFARMA(MA, LA; MB, LB)

model (i.e., b0,l = δ[l]) based on a monic intermediate high-order

TFAR(MC, LC) model (i.e., d0,l = δ[l] or, equivalently, D0 = I

and thus HTFAR = C
−1 in (7)). Our method extends the Graupe–

Krause–Moore method for time-invariant ARMA estimation [7] to

the TFARMA case. Because the TFARMA model is monic and

thus cannot model an input variance different from 1, we allow the

variance σ2
e of the innovations process e[n] to be different from 1.

A simple estimator for σ2
e is the sample variance of the residuals

ê[n] that are obtained by inverse filtering based on the intermediate

TFAR model HTFAR = C
−1.

Our goal thus is to match a TFARMA system HTFARMA = A
−1

B

to the monic intermediate TFAR system HTFAR = C
−1. That is, we

wish to calculate A, B such that A
−1

B ≈ C
−1. Pre- and postmul-

tiplying this relation by A and C, respectively, we obtain BC ≈ A.

This is to be solved in the least-squares sense, i.e.,

(Aopt, Bopt)
△

= arg min
A∈SMA,LA

B ∈SMB,LB

‖A−BC‖2
.

This is identical to (8) with H replaced by the (underspread) op-

erator C and the roles of A and B interchanged. Hence, both the

optimum method and the low-complexity, suboptimum method of

Section 3 can immediately be applied with obvious modifications.

In what follows, we briefly discuss the application of the low-

complexity method. According to (17), an approximation to the

optimum TFMA parameters bm,l is given by the solution to the

system of equations (note that SC[m, l] = N cm,l on B1)

X

(m′,l′)∈B1

bm′, l′ cm−m′, l−l′ = −cm,l , (m, l) ∈ Ã (19)

with B1
△

= {1, . . . , MB} × {−LB, . . . , LB} and Ã
△

= {MA +
1, . . . , MA +MB}×{−LB, . . . , LB}. These linear equations have

the form of underspread extended TFYW equations. They can be

written as (cf. (18))

Cb = −c , (20)

with the MB(2LB +1) × 1 vectors b =
ˆ

b
T

1 · · · b
T

MB

˜T
and c =

ˆ

c
T

1 · · · c
T

MB

˜T
containing the (2LB + 1) × 1 vectors bm =

ˆ

bm,−LB
· · · bm,LB

˜T
and cm =

ˆ

cMA+m,−LB
· · · cMA+m,LB

˜T
,

respectively and the MB(2LB +1) × MB(2LB +1) TBT matrix

C = toep
˘

CMA+MB−1, . . . , CMA−MB+1

¯

containing the (2LB+

1)×(2LB+1) Toeplitz blocks Cm = toep
˘

cm,2LB
, . . . , cm,−2LB

¯

.

The TBT equation (20) can be solved with complexity O(M 2
B L3

B)
by using the Wax-Kailath algorithm.

From the TFMA parameters bm,l, an approximation to the opti-

mum TFAR parameters can finally be obtained according to (12):

am,l =
X

(m′, l′)∈B

bm′, l′ cm−m′, l−l′ , (m, l) ∈ A1 . (21)
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4.2. TFMA Parameter Estimation

Next, we develop a linear method for nonmonic TFMA(MB, LB)
parameter estimation that is again based on the intermediate high-

order TFAR(MC, LC) model (7). Our method extends Durbin’s

method for time-invariant MA estimation [6, 8] to the TFMA case.

We thus consider the approximation of the given TFAR model

HTFAR = C
−1

D0 by a low-order TFMA model HTFMA = B, i.e.,

we wish to calculate B such that B ≈ C
−1

D0. Multiplication by C

yields CB ≈ D0, which is to be solved in the least-squares sense:

Bopt

△

= arg min
B ∈SMB,LB

‖D0−BC‖2
. (22)

This minimization problem is again similar to (8), with H replaced

by C, B replaced by D0, and A replaced by B. However, D0 is

known and thus the minimization is only with respect to B.

The optimum and low-complexity, suboptimum solutions dis-

cussed in Sections 3.2 and 3.3 can again be used with suitable mod-

ifications. The minimization (22) is a linear least-squares problem

in the TFMA parameters bm,l whose (optimum) solution is deter-

mined by linear equations of the form (16). To obtain a subop-

timum but more efficient solution in the spirit of Section 3.3, we

note that (22) can also be viewed as the least-squares solution to

the overdetermined system of linear equations (N 2/2 equations in

the (MB+1)(2LB+1) unknowns bm,l)

X

(m′, l′)∈B

bm′, l′ cm−m′, l−l′ e
−j

2π
N

m
′

(l−l
′

) = d0,l δ[m] ,

m = 0, . . . , N/2−1, l = −N/2, . . . , N/2−1 .

Let us consider only the equations corresponding to (m, l) ∈ B =
{0, . . . , MB} × {−LB, . . . , LB}. We can then use the underspread

approximation e−j
2π
N

m
′

(l−l
′

) ≈ 1, which yields (cf. (17))

X

(m′,l′)∈B

bm′, l′ cm−m′, l−l′ = d0,l δ[m] , (m, l) ∈ B . (23)

These are (MB +1)(2LB +1) equations in the (MB +1)(2LB +1)
unknowns bm,l. They can be written as Cb = d with the (MB +

1)(2LB+1)× 1 vector b =
ˆ

bT

0 · · · bT

MB

˜T
where bm =

ˆ

bm,−LB

· · · bm,LB

˜T
, the (MB +1)(2LB +1) × 1 vector d = [d0,−LB

· · ·
d0,LB

0 · · · 0], and the (MB +1)(2LB +1) × (MB +1)(2LB +1)
lower-block-triangular TBT matrix C = toep

˘

CMB
, . . . , C−MB

¯

where Cm = toep
˘

cm,2LB
, . . . , cm,−2LB

¯

(note that C0 = I and

Cm = 0 for m < 0). These TBT equations can again be solved

with complexity O(M2
B L3

B) by means of the Wax-Kailath algo-

rithm. The resulting TFMA estimator is much less complex than

the nonlinear method of [2].

5. SIMULATION RESULTS

We now present simulation results to demonstrate the performance

of our parameter estimation and system approximation methods.

5.1. Parameter Estimation

We generated 100 realizations of a TFARMA(M, L; M−1, L) pro-

cess of length N . We then estimated an intermediate TFAR model

and, in turn, the TFARMA parameters from every single realization

separately. The TFARMA parameters were estimated by means of

the low-complexity, suboptimum method (eqs. (19) and (21)). Fi-

nally, we calculated the empirical normalized MSE, variance, and

0 1 22 33 44

(a) (b) (c)

−10−10−10

−5−5−5

000

555

101010

64 128 256 512

N M L

Figure 2: Normalized MSE (solid lines), normalized variance

(dashed lines), and normalized squared bias (dash-dotted lines) of

the low-complexity TFARMA estimator for a TFARMA(M, L; M−
1, L) process: (a) variation with N for M = L = 2, (b) vari-

ation with M for N = 256, L = 2, (c) variation with L for

N = 256, M = 2.

0 11 22 33 44 5 6 7
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−20−20−20

−15−15−15

−10−10−10

−5−5−5

000

64 128 256 512
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Figure 3: Normalized MSE (solid lines), normalized variance

(dashed lines), and normalized squared bias (dash-dotted lines) of

the low-complexity TFMA estimator for a TFMA(M, L) process:

(a) variation with N for M = 3, L = 2, (b) variation with M for

N = 256, L = 2, (c) variation with L for N = 256, M = 3.

squared bias averaged over all parameter estimates and realizations.

This experiment was performed for various combinations of N , M ,

and L as shown in Fig. 2. For determining the orders of the interme-

diate high-order TFAR(MC, LC) model, we compared the choices

MC = αM , LC = βL for α ∈ {1, . . . , 4} and β = {2, . . . , 4}
and found the values α = β = 3 to provide the best performance.

The intermediate TFAR model was stabilized according to [3].

Similar experiments were conducted to study the performance

of the low-complexity TFMA parameter estimation method (23)

for simulated TFMA(M, L) processes. The results are displayed

in Fig. 3. The orders of the intermediate high-order TFAR model

were chosen as MC = 2M , LC = 2L.

It is seen that the TFARMA parameter estimator is significantly

less accurate than the TFMA estimator; for N = 256 its normal-

ized MSE is above zero dB if the model has more than 20 param-

eters. Good results (normalized MSE lower than −5 dB) are ob-

tained for ML/N below about 1/64 for the TFARMA estimator

and for ML/N below about 1/16 for the TFMA estimator. In gen-

eral, the performance of both estimators is better for lower model

orders M, L and for higher signal length N .

Next, we fitted a TFARMA(4, 1; 3, 1) model and a TFMA(13, 1)
model to a real process of length N = 256 that was measured by

a pressure sensor in a combustion engine (cf. [14]). The total num-

ber of model parameters is 24 for the TFARMA model and 42 for

the TFMA model. The model parameters were estimated from the

single realization shown in Fig. 4(a),(b) by means of the subop-

timum method. The (estimated) evolutionary spectra3 calculated

from the TFARMA and TFMA parameter estimates are depicted

3The evolutionary spectrum of a TFARMA process is defined as

P [n, k]
△

= |B[n, k]|2/|A[n, k]|2 with B[n, k] =
P

(m,l)∈B
bm,l

ej
2π
N

(nl−km) and A[n, k] =
P

(m,l)∈A
am,l e

j
2π
N

(nl−km).
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Figure 4: TFARMA(4, 1; 3, 1) and TFMA(13, 1) modeling of a real

(measured) process: (a) process realization x[n], (b) its smoothed

Rihaczek distribution [15], (c) estimated evolutionary spectrum of

the TFARMA(4, 1; 3, 1) model, (d) estimated evolutionary spec-

trum of the TFMA(13, 1) model.

in Figs. 4(c) and 4(d), respectively. It is seen that the TFARMA

parameter estimator with low delay order M = 4 and only 24 pa-

rameters is better able to resolve the two signal components than

the TFMA parameter estimator with high delay order M = 13 and

42 parameters.

5.2. System Approximation

We used the low-complexity TFARMA system approximation

method (eqs. (17) and (12)) to approximate a nonparametric LTV

system by a TFARMA(3, 7; 2, 7) system. The length of the time

interval was N = 128. Fig. 5 compares the time-varying impulse

response, SF, and time-varying transfer function4 of the original

system and its TFARMA approximation. Note that the TFARMA

model uses 90 parameters whereas the system’s time-varying im-

pulse response comprises N2/2 = 8192 samples.

6. CONCLUSIONS

We presented linear methods for estimating TFARMA model pa-

rameters for an underspread nonstationary random process, and for

the related problem of calculating a TFARMA-type approximation

to an underspread time-varying linear system. In both cases, we

obtained a system of linear equations of the TF Yule-Walker type

that has Toeplitz/block-Toeplitz structure and thus can be solved

efficiently by the Wax-Kailath algorithm. The performance of the

proposed methods was assessed through simulation results.
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