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ABSTRACT

The error performance of a new family of super quasi- or-
thogonal space-time trellis codes (S-QSTTCs) for four trans-
mit antennas on correlated MIMO channels is investigated.
Two slightly different designs of S-QSTTCs, namely
S-QSTTCs obtained by concatenating the extended Alam-
outi space-time code (EAC) with a simple outer trellis code
and the concatenation of the ABBA code with a simple outer
trellis code are compared in detail. It is shown that EA-
type and ABBA-type S-QSTTCs perform quite different on
spatially correlated MIMO channels. However, a unique
labelling of the trellis diagram adapted to these two super
quasi-orthogonal constituent code types, results in a very
similar error performance even in spatially correlated chan-
nels.

1. INTRODUCTION

Space-time coding is a promising technique to improve the
reliability of multiple-input/multiple-output (MIMO) systems.
Two different space-time coding methods, namely space-time
trellis coding (STTC) and space-time block coding (STBC)
have been proposed. STTC has been introduced in [1] as a
coding technique that promises full diversity and high cod-
ing gain at the price of a quite high decoding complexity.
An STBC that promises full diversity and full data rate for
two transmit antennas was introduced by Alamouti [2]. For
more than two transmit antennas many different designs have
been proposed providing either full diversity [3], or full data
rate [4], [5].

In [6] it has been shown that the concatenation of a STBC
with an outer trellis code results in a powerful code with re-
duced data rate, since the number of available transmit ma-
trices in every state of the trellis is smaller than the maxi-
mum number of matrices the STBC could offer. Parameter-
ized STBCs which provide additional transmit matrices have
been introduced in [7] and [8] to increase the data rate. These

parameterized STBCs are called super orthogonal STBCs
(S-OSTBCs) in case of 2 transmit antennas. In case of 4
transmit antennas a set of super quasi-orthogonal STBCs
(S-QSTBCs) can be obtained by parametrization of a quasi-
orthogonal space-time block code (QSTBC). In connection
with an outer-trellis code specific subsets of these S-QSTBCs
are used as constituent codes which are assigned to the var-
ious trellis branches. Every constituent code can be charac-
terized by specified values of the parameters used to generate
the S-QSTBC.
The combination of several constituentorthogonal space-
time block codes with an outer trellis code is called a super
orthogonal space-time trellis code (S-OSTTC) and the com-
bination of several constituentquasi-orthogonal space-time
block codes with an outer trellis code is called a super quasi-
orthogonal space-time trellis code (S-QSTTC). Every edge
of the trellis is assigned a complete constituent code, such
that the resulting code provides high diversity and coding
gain at full data rate.

In this paper, several S-QSTTCs over spatially correlated
MIMO channels are investigated. We study two slightly dif-
ferent S-QSTTCs using either the ABBA code [4] or the
extended Alamouti code (EAC) [5] as the basic QSTBC to
build the constituent codes for the resulting S-QSTTC. In
Section II we give an overview of an S-OSTTC and present
two design examples of S-QSTTCs. In Section III we dis-
cuss the performance of S-QSTBCs. Section IV analyzes the
performance of the S-QSTTC on correlated channels. Sec-
tion V concludes the paper.

2. SUPER QUASI-ORTHOGONAL SPACE-TIME
TRELLIS CODES (S-QSTTC)

2.1. Super-Orthogonal Space-Time Trellis Codes for Two
Transmit Antennas

In this subsection, we discuss the combination of a simple
inner STBC with an outer trellis code [7] to obtain a pow-
erful trellis code with full diversity and substantial coding



gain at full data rate. We start with the well-known Alam-
outi STBC [2] with the transmit matrix:

C =

(

s1 s2

−s∗2 s∗1

)

. (1)

By multiplying of the first column ofC with e jθ , a parame-
terized O-STBC is obtained:

Cθ =

(

s1e jθ s2

−s∗2e jθ s∗1

)

. (2)

θ is restricted to values that do not expand the original signal
constellation. This means, for an L-PSK signal constellation,
θl = 2π l/L with l = 0,1, · · · ,L−1. For BPSKθl ∈ {0,π},
for QPSK and QAMθl ∈ {0,π/2,π ,3π/2}. Such symbol
rotations do not change the diversity order and orthogonality
of C, sinceCθ CθH = CθHCθ = s2I , with s2 = |s1|2 + |s2|2
andI being the 2x2 identity matrix. A codeCθ with a spe-
cific value ofθ is used as a constituent code in super orthog-
onal space-time trellis codes for two transmit antennas [7].
This coding strategy assures, that the resulting S-OSTTC
achieves the same diversity as the original STBC at full data
rate. The complexity of the Viterbi decoder at the receiver is
rather low due to the orthogonality of the constituent STBCs.

2.2. Super-Quasi-Orthogonal Space-Time Trellis Code for
Four Transmit Antennas

Orthogonal space-time block codes providing full data rate
do not exist for more than two transmit antennas. Lower rate
OSTBCs for more than two transmit antennas have been pro-
posed in [4], [5]. In [8] S-QSTTC have been introduced as
an extension of S-OSTTC for two transmit antennas to four
transmit antennas. These S-QSTBCs can be used to obtain
a new family of trellis codes which provide the diversity of
the original QSTBC at full data rate and provide additional
coding gain [8].
In the following we explain the design of a S-QSTTC in de-
tail. In the first design step we select an appropriate QSTBC.
In fact, we focus on the EAC [5]

CEA =









s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
−s∗3 −s∗4 s∗1 s∗2

s4 −s3 −s2 s1









, (3)

and on the ABBA code [4]

CABBA =









s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
s3 s4 s1 s2

−s∗4 s∗3 −s∗2 s∗1









. (4)

Using quasi-orthogonal design, pairs of transmitted symbols
can be decoded independently and the loss of diversity in

QSTBC is due to some coupling term between the estimated
symbols. The QSTBCs in (3) and (4) show the same per-
formance on identically distributed (i.i.d.) channels, but it
has been shown in [4] that the ABBA code is very sensitive
against channel correlation what leads to collapsing all de-
coding algorithms.
As in the case of two transmit antennas, additional transmit
matrices are needed to obtain a full rate STTC. By multiply-
ing the first column ofC by e jΘ1 and the second column by
e jΘ2 a super set of quasi-orthogonal codes is obtained with

CΘ1,Θ2
EA =









s1e jΘ1 s2e jΘ2 s3 s4

−s∗2e jΘ1 s∗1e jΘ2 −s∗4 s∗3
−s∗3e jΘ1 −s∗4e jΘ2 s∗1 s∗2

s4e jΘ1 −s3e jΘ2 −s2 s1









, (5)

if CEA is used, and

CΘ1,Θ2
ABBA =









s1e jΘ1 s2e jΘ2 s3 s4

−s∗2e jΘ1 s∗1e jΘ2 −s∗4 s∗3
s3e jΘ1 s4e jΘ2 s1 s2

−s∗4e jΘ1 s∗3e jΘ2 −s∗2 s∗1









, (6)

if CABBA is used. Equations (5) and (6) provide super sets of
quasi-orthogonal space-time block codes with two parame-
tersΘ1 andΘ2 that provide enough transmit matrices to de-
sign a full-rate S-QSTTC.CΘ1,Θ2

EA is called an EA super-set

of quasi- orthogonal codes andCΘ1,Θ2
ABBA is called an ABBA

super-set of quasi-orthogonal codes. As in the case of S-
OSTTC,Θ1 and Θ2 are constrained such that the original
signal constellation is preserved. Again QSTBCs with spec-
ified values ofΘ1 andΘ2 are used as constituent codes of
the S-QSTTC.

The set of all constituent codes derived from a basic
QSTBC (EA or ABBA) with constrained parametersΘ1 and
Θ2 is denoted assuper quasi-orthogonal (SQO) code set. For
example, the SQO code set for the EA STBC applying BPSK
modulation is denoted as̃CEA = {C0,0

EA,C0,π
EA , Cπ ,0

EA ,Cπ ,π
EA }. To

design powerful S-QSTTCs an appropriate Set-Partitioning
of the constituent codes has to be performed. This means,
that the set of all matrices within a constituent STBC has to
be iteratively partitioned into smaller sub-sets with increas-
ing minimum distance between the matrices within a sub-set.
A detailed description of the principles of set-partitioning
can be found in [7]. The appropriate distance metric used
in this partitioning is the determinant of the distance matrix
A of two code matrices. In this paper the sub-sets of the
first partitioning step are denoted asS0,S1. Trellis-coding
with the super quasi-orthogonal code set is performed in
such a way, that each trellis-state is assigned a complete
constituent code and every edge diverging from this state
is assigned a complete sub-setS0 or S1 obtained from this
constituent code. This coding strategy assures, that the re-



sulting S-QSTTC achieves the same diversity as the origi-
nal QSTBC and achieves full data rate. Decoding with the
Viterbi algorithm is quite easy due to the quasi-orthogonality
of the constituent STBCs.
Fig. 1 shows an example of a 2-state S-QSTTC. The la-

CI(s1,s2,s3,s4)

CII(s1,s2,s3,s4)

SI
0SI

1

SII
1 SII

0

Figure 1: 2-state S-QSTTC transmitting QPSK symbols.

belling in Fig. 1 indicates that in the upper state of the trellis
the subsetSI

0 of the constituent QSTBCCI is assigned to
the upper edge diverging from this state whereas the subset
SI

1 from CI is assigned to the lower edge diverging from the
upper state. With this trellis, we generate three differentS-
QSTTCs by choosing different rotation parametersΘ1 and
Θ2 using the EAC STBC (5) and another three different S-
QSTTC by using the ABBA STBC (6).
In Tab. 1 the constituent codesCI andCII for the three S-
QSTTC code examples are listed. Such constituents codes
can be derived either from the basic EA-STBC or from the
ABBA STBC.

CI CII

Trellis-Code 1 C0,0 C0,π

Trellis-Code 2 Cπ ,0 C0,π

Trellis-Code 3 C0,0 Cπ ,π

Table 1: Constituent Codes for the Trellis-example in Fig.1.

2.3. Transmission Scheme

The complete transmission scheme withnt = 4 transmit an-
tennas andnr = 1 receive antenna can be described byy =√

EbDh + n, wherey is the (Nl × 1) vector of signal sam-
ples received at the single receive antenna withinNl succes-
sive time slots, withNl denoting the frame length.Eb is the
mean bit energy per transmit antenna,D is aNl ×nt transmit-
ted codeword matrix withDki being the symbol transmitted
from antennai (1 ≤ i ≤ nt) at timek (1≤ k ≤ Nl). Due to
the special structure of the S-QSTTC, the transmitted code-
word matrix can be written asD =

(

C1 C2 · · · CNl/nt

)T
with

appropriately arranged constituentnt × nt STBCs selected
from a certain super quasi-orthogonal code set.h is a (nt ×1)
complex vector withhi describing the complex valued chan-
nel gain between transmit antennai and the receive antenna.
The channel is assumed to be constant during each frame
lengthNl and changes from one frame to the another.n is
the additive, white complex valued Gaussian noise (AWGN)
with varianceσ2

n . Note that we assume the frame lengthNl

as a multiple ofnt .

3. CODE PERFORMANCE

The data transmission at each time index t corresponding to
a specific trellis branch can be described by

yt =
√

EbCΘ1,Θ2
t h+n. (7)

This equation can be rewritten by complex conjugation of
the second and third element ofyt if CΘ1,Θ2

t is taken from
(5), or by complex conjugation of the second and the fourth
element ofyt , if CΘ1,Θ2

t is taken from (6), as

ỹt = HΘ1,Θ2
t,v s+ ñ, (8)

whereHΘ1,Θ2
t,v is an equivalent, virtual (4× 4) channel ma-

trix consisting of elements obtained from the(4×1) channel
vectorh, including some sign inversions and complex conju-
gate versions of the original channel coefficientshi. s is the
(4× 1) vector of transmitted information symbolss1 to s4.
The quasi-orthogonality of the QSTBCs becomes evident,
when maximum ratio combining (MRC) of̃yt is applied at
the receiver, described by

r t = (HΘ1,Θ2
t,v )HHΘ1,Θ2

t,v s+(HΘ1,Θ2
t,v )H ñ. (9)

The resulting(4×4) Grammian channel matrix in case of a
constituent EA codeCΘ1,Θ2

t results in

GΘ1,Θ2
t,EA = (HΘ1,Θ2

t,v )HHΘ1,Θ2
t,v =h2









1 0 0 X1

0 1 −X1 0
0 −X1 1 0

X1 0 0 1









(10)
and indicates a partial decoupling of the information sym-
bols after the MRC.h2 = |h1|2 + |h2|2 + |h3|2 + |h4|2 char-
acterizes the resulting channel gain, whereasX1 is a channel
dependent symbol interference parameter, given by

X1 = 2Re{e jΘ1h1h∗4− e jΘ2h2h∗3}/h2. (11)

For a constituent ABBA codeCΘ1,Θ2
t the resulting(4× 4)

Grammian channel matrix results in:

GΘ1,Θ2
t,ABBA = (HΘ1,Θ2

t,v )HH(Θ1,Θ2)
t,v =h2









1 0 X2 0
0 1 0 X2

X2 0 1 0
0 X2 0 1









(12)
with X2 given as:

X2 = 2Re{e jΘ1h1h∗3+ e jΘ2h2h∗4}/h2. (13)

It is well known thatGΘ1,Θ2
t should approximate a scaled

identity-matrix as far as possible to achieve ideal data stream
decoupling. Consequently,|X | should be as small as possi-
ble. From Eqn. (10) it can be seen that the QSTBC can



not completely decouple the signal streams like an OSTBC.
The interference parameterX deteriorates the performance
of the code according to the actual channel parameters. The
smaller|X | is the closer is the code to an orthogonal code
with G = h2I and vanishing symbol interference. In [5],
[9] it has been shown that the scaling-factorh2 as well as
the respective interference parameterX determines the error
probability of QSTBC. Normalizing the mean energy of the
transmit symbols to 1, the bit error probability can be ap-
proximated as

BER≈ erfc

√

(

h2(1−X2
i )/4σ2

n

)

. (14)

SinceX in (11) and in (13) is always a sum or a difference
of two terms which are the product of two channel values,
it is clear that the parametersΘ1 andΘ2 influence the value
of X too. In spatially uncorrelated channels, this has no ef-
fect on the mean performance of the code. However, in [10]
it has been shown that QSTBCs with essentially the same
code properties but different transmission properties behave
quite different in spatially correlated channels due to thedif-
ferent values of the resulting interference parameterX .
To model correlated channels the following channel correla-
tion matrix is used:

Rhh = E[hhH ] =









1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1









. (15)

ρ is assumed here as a real positive correlation value with
0≤ ρ ≤ 1. To describe the influence ofΘ1 andΘ2 on the per-
formance of the resulting code, we look into the mean value
E{|Xi|} of the respective interference termXi for various val-
ues of the correlation factorρ . In [9] it has been shown that
QSTBCs with a small mean value ofE{|Xi|} performs bet-
ter than a QSTBC with a higher value ofE{|Xi|}. Hence,
E{|Xi|} can be used as a quality measure for QSTBCs.

In Tab. 2 we have listedE {|X |} for the different con-
stituent codes taken from Tab. 1. These values have been
obtained by simulations of correlated channels. For no chan-
nel correlation (ρ = 0) all constituent codes have the same
mean valueE {|X |}. Thus all QSTBCs perform equally well.
With increasing channel correlation (ρ > 0) EA-codes (5)
with Θ1 = Θ2 = 0 andΘ1 = Θ2 = π show a smaller value
of E {|X |} than the ABBA-codes (6). Therefore the EA-
type QSTBCs perform better than the ABBA-type QSTBCs.
For Θ1 = π ,Θ2 = 0 andΘ1 = 0,Θ2 = π the ABBA-type
QSTBCs have a smaller mean valueE {|X |} than the EA-
type codes. Therefore, with these parameter values ofΘ1

andΘ2 the ABBA-type QSTBCs perform better than EA-
type codes. Obviously,Θ1 andΘ2 change the value of the
interference parameter and thus strongly effect the perfor-
mance of the constituent QSTBCs and consequently the per-
formance of the S-QSTTCs.

Θ1 = Θ2 = 0; Θ1 = Θ2 = π
ρ = 0 ρ = 0.75 ρ = 0.95

E {|XEA|} 0.375 0.32 0.18
E {|XABBA|} 0.375 0.53 0.8
Θ1 = π ,Θ2 = 0; Θ1 = 0,Θ2 = π

ρ = 0 ρ = 0.75 ρ = 0.95
E {|XEA|} 0.375 0.56 0.8

E {|XABBA|} 0.375 0.28 0.16

Table 2:E {|X |} of the constituent codes used in Tab. 1.

4. SIMULATION RESULTS

The only constraints for the rotation parametersΘ1 andΘ2

of the constituent QSTBCs proposed in [7] and [8] are such
that they must not expand the original signal constellation.
But as we have shown above, the rotation parameters essen-
tially influence the interference parameter of the constituent
codes and therefore also influence the performance of the re-
sulting S-QSTTCs at least on spatially correlated channels.
In the following, we will shown that an appropriate selection
of Θ1 andΘ2 for the constituent Q-STBCs is essential for a
good error performance of the resulting S-QSTTC in case of
spatially correlated channels.

4.1. S-QSTTC on Correlated MIMO Channels

We simulated the frame error ratio (FER) of the S-QSTTCs
described in Fig. 1 and Tab. 1 as a function ofEb/N0 on cor-
related channels with correlation factorsρ = 0 andρ = 0.95.
The simulations have been performed using a frame length
of Nl = 128 and a maximum likelihood decoder. Four trans-
mit antennas and one receive antenna have been used. The
information rate was 2bit/channel use using 4QPSK transmit
symbols.
In Fig. 2 the simulation results for the S-QSTTCs built with
the EA-type and the ABBA-type QSTBCs for Trellis-Code
example 1 (Tab. 1) are shown. For the signal transmission
from the upper node using the constituent EA-type QSTBC
with CI

EA = C0,0
EA (E {|X |} = 0.18) performs better than the

constituent ABBA-type QSTBC withCI
ABBA = C0,0

ABBA
(E {|X |}= 0.8) on correlated channels withρ = 0.95 (Tab. 2).
For the lower node, the constituent ABBA-type QSTBC with
CII

ABBA = C0,π
ABBA (E {|X |} = 0.16) performs better than the

constituent EA-type QSTBC withCII
EA = C0,π

EA (E{|XEA|} =
0.8). Since every trellis state (and so every constituent
QSTBC) is used with equal probability, the resulting EA-
type S-QSTTC shows the same overall error performance as
the ABBA-type S-QSTTC on correlated channels.

For the Trellis-Code example 2, both constituent ABBA-
type QSTBCs (CI

ABBA = Cπ ,0
ABBA, CII

ABBA = C0,π
ABBA) with E {|X |}

= 0.16 have better performance than the corresponding EA-
type QSTBCs (CI

EA = Cπ ,0
EA , CII

EA = C0,π
EA ) with E {|X |}= 0.8
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Figure 2: FER of Code 1 on Correlated Channels,ρ = 0 and
0.95

on correlated channels withρ = 0.95. Therefore, the result-
ing ABBA-type S-QSTTC shows a much better error perfor-
mance than the EA-type S-QSTTC. The results for Trellis-
Code 2 are shown in Fig. 3.
Finally, the results for Trellis-Code example 3 (Fig. 4) show
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Figure 3: FER of Code 2 on Correlated Channels,ρ = 0 and
0.95

that the EA-type S-QSTTC performs better than the ABBA-
type S-QSTTC, because now both constituent EA-type QST-
BCs have smaller mean values ofX on correlated channels
than the ABBA-type QSTBCs.
As demonstrated in [8] the performance of an S-QSTTC can

be improved using full-diversity QSTBCs with multi dimen-
sional signal rotation. However, in this case the transmitter
is more complex, because higher order symbol constellations
have to be decoded.

5. CONCLUSION

In this paper we have analyzed and discussed six super quasi-
orthogonal space-time trellis codes for four transmit anten-
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Figure 4: FER of Code 3 on Correlated Channels,ρ = 0 and
0.95

nas on spatially correlated MIMO channel. It has been shown
that EA-type S-QSTTCs and ABBA-type S-QSTTCs per-
form equally well in spatially uncorrelated MIMO channels.
However, on highly correlated channels EA-type codes and
ABBA-type codes perform quite different. In order to op-
timize the error performance we need different labelling of
the trellis branches in case of EA-type and ABBA-type con-
stituent Q-STBCs as shown in our simulation results.
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