Internal structure, ice content, and dynamic behaviour of three Eastern Alpine rock glaciers

H. Hausmann (1), K. Krainer (2), E. Brückl (1), W. Mostler (2), C. Ullrich (1,3)

(1) Institute of Geodesy and Geophysics, Vienna University of Technology
(hausmann@mail.zserv.tuwien.ac.at, ebrueckl@mail.tuwien.ac.at), (2) Institute for Geology
and Paleontology, Innsbruck University (Karl.Krainer@uibk.ac.at,
Wolfram.Mostler@uibk.ac.at), (3) BEV, Bundesamt für Eich- und Vermessungswesen, Vienna
(christian.ullrich@bev.gv.at)

The knowledge of internal structure and ice content is crucial for the understanding of
the dynamics and evolution of rock glaciers. Observations in either boreholes or com-
binations of surface-geophysical methods such as GPR (ground penetrating radar),
refraction seismology, DC-resistivity, and gravimetry are used to acquire this informa-
tion. Between 2002 and 2004 GPR, seismic refraction, and gravimetry was applied on
three active rock glaciers in the Eastern Alps. In addition, comprehensive geological,
geomorphological, and hydrological studies were carried out. Further displacements
were determined by the comparison of aerial photographs and GPS measurements.
The three studied examples are Reichenkar (Stubai Alps), Ölgrube, and Kaiserberg
(Ötztal Alps) rock glaciers. The source areas of these rock glaciers are situated at alti-
tudes between 2700 and 2800 m a.s.l. The fronts of the tongues reach down to 2300 -
2600 m a.s.l. Their total areas vary between 0.22 - 0.27 km², the maximum thickness
is 30 - 50 m. During the last two decades the surface velocities of the Ölgrube and
Reichenkar rock glaciers increased significantly, whereas the Kaiserberg rock glacier
did not show this behaviour. Model of the internal structures (depth to ice-rich per-
mmafrost layer, unfrozen layer, bedrock) were derived by the combination of the results
from GPR and seismic refraction. The unfrozen till between permafrost and bedrock
was not directly observed. However, it was necessary to introduce this layer in order
to match seismic and GPR data. Furthermore, till layers were observed in front of the
rock glaciers. The ice content of the permafrost layers was derived from the additional
gravimetric data. On the basis of the structural models and the ice contents creep ve-
locities were calculated by an extension of Glen’s flow law for pure ice.
creep velocities agree with observed ones within the uncertainties of the rheological model. Finally, processes are discussed which might explain the variations of creep velocities observed at Ölgrube and Kaiserberg rock glaciers.