
From Document Type Definitions to Metamodels: 
The WebML Case Study 

Manuel Wimmer1,‡ , Andrea Schauerhuber2,∗,  
Elisabeth Kapsammer3, and Gerhard Kramler1,‡ 

1 Business Informatics Group 
Institute of Software Technology and Interactive Systems 

University of Technology, Vienna, Austria 
wimmer@big.tuwien.ac.at 

2 Women’s Postgraduate College for Internet Technologies 
Institute of Software Technology and Interactive Systems 

University of Technology, Vienna, Austria 
schauerhuber@wit.tuwien.ac.at 

3 Information Systems Group 
University of Linz, Austria 
ek@ifs.uni-linz.ac.at 

Abstract. Metamodels are a prerequisite for model-driven engineering (MDE). 
In the past, DTDs have also been deployed for language definitions. MDE 
techniques and tools can not be reused for such languages, however. The 
WebML web modeling language for modeling web applications is one example 
that does not yet rely on an explicit metamodel. Instead it is implicitly defined 
within the methodology’s accompanying WebRatio tool in terms of a DTD, 
i.e., a grammar-like textual definition for specifying the structure of XML 
documents. Code generation then has to rely on XSLT-based model-to-code 
transformations. 
In this paper, we propose a semi-automatic approach for generating metamod-
els from DTDs. We introduce a set of transformation rules and heuristics for 
automatically generating MOF-based metamodels from DTD definitions and 
suggest manual refactorings for the semantic enrichment of the metamodels. 
We incorporate the transformation rules and heuristics in a MetaModelGenera-
tor (MMG) prototype implementation, and provide results on applying our ap-
proach to the WebML DTD. The benefits from our work are: (1) visualization 
of DTD-based languages in terms of MOF-based metamodels enhances under-
standing of the language, (2) employment of metamodels enables further steps 
towards model-driven engineering such as model transformations or language 
extensions through profiles, (3) tool interoperability with other MDE tools is 
ensured, (4) a proposal for a WebML metamodel has been generated in a semi-
automatic way. 

                                                           
‡ This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation and Technol-

ogy (BMVIT) and FFG under grant FIT-IT-810806. 
∗ This work has been partly funded by the Austrian Federal Ministry for Education, Science, and Culture, 

and the European Social Fund (ESF) under grant 31.963/46-VII/9/2002. 



1 Introduction 

XML [37], a Wide Web Consortium (W3C) standard, evolved from HTML [38] in 
order to cater for several of HTML’s limitations, e.g., layout-independence, no exten-
sion mechanism, etc. At the turn of the millennium, XML became the silver bullet in 
software engineering and particularly in web engineering and today is used for differ-
ent purposes such as data exchange (ebXML [18]), protocol languages (SOAP [41]), 
configuration languages (e.g., for web frameworks like Struts1), multi-delivery 
(WML [25]), and in many other domain-specific areas (MathML [39], SVG [40], 
etc.). XML-based languages can be defined by Document Type Definitions (DTD) 
[37] or alternatively, using XML Schema [42], a language written in XML syntax 
which is more expressive than DTD [5]. XML documents have to be valid with re-
spect to their DTD or XML Schema, and therefore, DTD as well as XML Schema 
represent meta-languages for defining XML-based languages (cf. Section 2). A trans-
formation language for XML technologies is the XSLT language [43] which is suit-
able to transform an XML document into another form. 

Recently, model-driven engineering (MDE) [1] has received considerable attention 
and is well on its way to becoming the new paradigm in software engineering. In 
MDE, models replace code as the primary artifacts in the software development proc-
ess. It forces developers to focus on modeling the problem domain and not on pro-
gramming one possible (platform-specific) solution. Thus, the abstraction from spe-
cific programming platforms by modeling at a platform-independent level, and the 
definition of model transformations, allows generating several platform-specific im-
plementations. A prominent example for MDE is the Object Management Group’s 
(OMG) Model Driven Architecture (MDA) [20], which is based on OMG’s modeling 
language, i.e., the Unified Modeling Language (UML) [24], and meta-modeling lan-
guage, i.e., the Meta Object Facility (MOF) [21]. In particular, MOF - as a meta-
modeling language - provides means to define modeling languages in addition to 
OMG’s UML and CWM [19]. Analogous to XML documents, models have to con-
form to their metamodels (cf. Section 2). While MDA provides the 
Query/Views/Transformation (QVT) [28] specification as a transformation mecha-
nism, there currently exists no implementation. Still, there are non-standard transfor-
mation languages such as the ATLAS Transformation Language (ATL)2. 
The WebML web modeling language is one example that relies on XML technologies 
and whose concepts are defined in terms of a DTD. In contrast to MOF’s expressiv-
ity, however, DTDs represent a rather restricted mechanism to describe languages. 
Moreover, the text-based representation of DTDs hampers on the one hand their read-
ability and understandability for humans, and on the other hand the language’s exten-
sibility. Additionally, WebML [8] comes with the WebRatio modeling tool, which 
first, internally represents models in XML, and second, uses XSLT for code genera-
tion. Since XSLT, however, has not been intended for heavy structural transforma-
tions, writing XSLT programs for code generation is hard and error prone. 

                                                           
1 http://struts.apache.org/ 
2 http://www.sciences.univ-nantes.fr/lina/atl/atl 



Concerning the problems identified above, a metamodel approach allows expressing 
transformation rules in a more compact and readable way by using existing model 
transformation languages such as ATL3. 
 
In this work, we present a semi-automatic approach to generating MOF-based meta-
models from XML-based languages which are defined using DTDs. In this respect 
the following contributions have been made: First, a MOF-based metamodel of the 
DTD language has been defined. Second, a set of transformation rules and heuristics 
for generating metamodels from DTDs has been formulated. Third, necessary user 
interactions for improving the automatically generated metamodel have been identi-
fied. Forth, a prototype for a MetaModelGenerator incorporating the transformation 
rules and heuristics has been implemented and a WebML metamodel has been gener-
ated and refactored. 

The remainder of this paper is organized as follows. Section 2 presents the archi-
tecture of our metamodel generation framework with respect to OMG’s four-layer 
architecture [23] and provides an overview of DTD and MOF concepts. Section 3 
discusses a set of rules and heuristics for transforming DTDs to MOF-based meta-
models as well as required manual improvements of the automatically generated 
metamodel. An EMF-based prototype implementation for the MetaModelGenerator 
and the WebML case study are presented in Section 4 and Section 5, respectively. 
Section 6 gives an overview on related work. Finally, we outline future work and 
conclusions in Section 7. 

2 DTDs and Metamodels 

Formal languages require precise definitions in terms of a meta-language in order to 
be interpretable by computers. In the past, various meta-languages have been em-
ployed for defining formal languages. Amongst them are EBNF [36] for describing 
the syntax of (programming) languages, DTD for defining the elements and attributes 
of XML documents, and MOF which represents the state-of-the-art for defining mod-
eling languages. In Figure 1, we illustrate these relationships and our transformation 
framework within the realms of OMG’s four-layer architecture. 
According to [4], the relation between a model and its metamodel is also related to 
the relation between a program and the programming language in which it is written, 
defined by its grammar, or between an XML document and the defining XML 
schema or DTD. Hence, in OMG’s four-layer architecture DTDs can be assigned to 
the same layer (M2) as metamodels and XML documents can be assigned to the same 
layer (M1) as models. In particular, the middle part of Figure 1 depicts the relation-
ship between on the one hand languages (M2), e.g., specific DTDs such as the 
WebML DTD, general-purpose metamodels like UML, and domain-specific meta-
models, and on the other hand, representations of the real world (M1), e.g., XML 
documents, and (UML) models. The upper part of Figure 1indicates the fact that 

                                                           
3 In [26] a comparison between a specific model-transformation language and XSLT for transforming UML 

models to JAVA models proves the benefits of model-transformations based on metamodels over XSLT. 



languages themselves also must be formally defined in terms of a meta-language 
(M3). A DTD must conform to the DTD-grammar described in EBNF and metamod-
els must conform to MOF. Correspondences between language elements of the DTD-
grammar and MOF can be used for transforming a particular DTD to a MOF-based 
metamodel. These generic correspondences are implemented as transformation rules 
in the MetaModelGenerator (cf. Figure 1), which takes a DTD as input and produces 
its corresponding MOF-based metamodel.  

To gain a better understanding of the correspondences between DTD and MOF, an 
overview of the language concepts of DTD (cf. Section 2.1) and MOF (cf. Section 
2.2) is given in the following subsections. It has to be emphasized that it is not neces-
sary to explain all language concepts, but only those parts being relevant for the map-
ping between DTD and MOF. 

 

M2

M3

M1

C

«conformsTo»

Metamodel

«conformsTo»

«conformsTo»

«conformsTo»

«implements»

«parses» «generates»

Model

MOF

DTD

DTD-Grammar

XMLDocument

M0

«representedBy»«representedBy»Real WorldReal World
ModelsModels

MMG

M2

M3

M1

C

«conformsTo»

Metamodel

«conformsTo»

«conformsTo»

«conformsTo»

«implements»

«parses» «generates»

Model

MOF

DTD

DTD-Grammar

XMLDocument

M0

«representedBy»«representedBy»Real WorldReal World
ModelsModels

MMG

 
Figure 1: Language Layers and the MetaModelGenerator 

2.1 Document Type Definition Language Concepts 

The XML document type declaration in XML documents contains or points to 
markup declarations that provide a grammar, i.e., the document type definition (DTD) 
for a class of documents [37]. A markup declaration is an element type declaration, 
an attribute-list declaration, an entity declaration, or a notation declaration. While 
the first two declarations are called logical structures and are used for defining struc-
tured data, the latter two declarations are called physical structures and usually are 
used for defining unstructured data. 



In this work we particularly focus on logical structures, since metamodels them-
selves represent structured data. Therefore, the logical structures must be transformed 
completely and correctly into metamodel representations. In the following, we briefly 
describe element type and attribute-list declarations. 
o Element type declarations are first-class citizens in DTDs. Element types 

(XMLElemType) have a name and are specialized into XMLAtomicET (contains no 
other element types but character data), XMLEmptyET (no content is allowed), 
XMLAnyET (the content is not constrained – this declaration is not adequate for 
language definitions and is therefore missing in Figure 3), XMLCompositeET-
MixedContent (a mix of character data and child element types), and XMLCompo-
siteETElemContent (consists of an XMLContentParticle). An XMLContentParticle 
is either an XMLSequence, an XMLChoice, or an XMLElementType). An 
XMLChoice or an XMLSequence can be enclosed in parentheses for grouping pur-
poses and suffixed with a ‘?’ (zero or one occurrences), ‘*’ (zero or more occur-
rences), or ‘+’ (one or more occurrences). For a single element type the cardinality 
can also be described by one of the three mentioned cardinality symbols. The ab-
sence of a particular symbol, however, denotes a cardinality of exactly one. 

o Attribute-list declarations declare one or multiple XMLAttributes (i.e., name-value 
pairs) for a single element type. Each XMLAttribute has a name, a data type, and a 
default declaration. The most commonly used data types for attributes are: 
CDATA (String), ID, IDREF (refers to one ID-typed element), IDREFS (refers to 
multiple ID-typed elements), and Enumeration. There are four possibilities for de-
fault declarations: #IMPLIED (zero or one), #REQUIRED (exactly one), #FIXED 
(the attribute value is constant and immutable), and Literal (the default value is a 
quoted string). 

DTD

XMLCompositeET

*1
XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

*XMLCompositeET
MixedContent

XMLCompositeET
ElemContent

1..*

1

1..*

1

XMLDTD

*

XMLElemType

**

XMLContentParticle

XMLSequence XMLChoice

2..*

1

• ID
• IDREF
• IDREFS
• ENTITY
• ENTITIES
• NMTOKEN
• NMTOKENS

XMLEnumAtt

XMLTokenAtt

XMLStringAtt

XMLEnumLiteral

name:String

kind:TokenKind

1

1..*

name:String
declaration:AttDec

notation:Boolean

cardinality:ContCard [0..1]

«enumeration»
TokenKind

• default_value
• #REQUIRED
• #IMPLIED
• #FIXED

«enumeration»
AttDec

• zero-or-one
• zero-or-many
• one-or-many

«enumeration»
ContCard

 
Figure 2: Overview of DTD language concepts  

Physical structures are used for embedding not well-formed XML data in a docu-
ment, e.g., JPEG pictures, as external unparsed entities. Because this kind of data is 
unstructured, it is not possible to transform these specifications directly into meta-



model definitions. Still, some information from physical structures can be used in 
heuristics in order to improve the quality of the metamodel (cf. Section 4). 
To gain a better understanding of the DTD language concepts we build on previous 
work [13] and reengineer a MOF-based model from the DTD-grammar described in 
EBNF [36]. In Figure 2 the resulting metamodel is shown as UML class diagram. 

2.2 Meta Object Facility Language Concepts 

The Meta Object Facility (MOF) [21] is the standardized meta-modeling language of 
the OMG. MOF consists of two parts, namely essential MOF (EMOF) and complete 
MOF (CMOF). While the former is a small language based on the principles of ob-
ject-orientation for defining modeling languages, the latter is a more complex lan-
guage which provides also concepts for the specification of implementation details of 
model repositories. Since there is no standardized implementation of MOF available 
by the time of writing, we are using a slightly modified MOF implementation in Java, 
which is provided by Eclipse Modeling Framework (EMF)4. The meta-modeling 
language in EMF is called Ecore and approximately corresponds to EMOF, whose 
concepts are sufficient in the context of this paper. Figure 3 shows the Ecore lan-
guage concepts and their relationships as UML class diagram. 

Ecore

EModelElement

EAnnotation ENamedElement

ETypedElement EClassifier EPackage

EClass EDataType

EStructuralFeature

EAttribute

EReference
changeable : boolean
defaultValue : String

EEnum

EEnumLiteral

name : String

ordered : boolean
lowerBound : int
upperBound : int

containment : boolean

id : boolean

abstract : boolean

0..*

0..*

0..*
0..*

0..*

0..*

source : String

eSuperTypes

eOpposite
0..1

1

eReferenceType 1

eSuperPackage

eSubPackages

1

1 1

1

1

0..1
eType

 
Figure 3: Overview of Ecore language constructs5 

                                                           
4 http://www.eclipse.org/emf 
5 http://download.eclipse.org/tools/emf/2.2.0/javadoc/org/eclipse/emf/ecore/package-summary.html#details 



In the following, we give a summary of the relevant Ecore language constructs in-
stead of the corresponding EMOF counterparts in order not to confuse the reader with 
marginal differences between Ecore and EMOF.  
o EClasses are the first-class citizens in Ecore-based metamodels. An EClass has 

multiple EReferences and EAttributes for defining its properties, as well as multi-
ple super classes.  

o EAttribute is part of a specific EClass. The data type of an attribute is either a 
simple data type or an enumeration, i.e., EEnum. Additionally, an attribute can 
have a lower and an upper bound multiplicity. 

o EReference is analogous to EAttribute part of a specific EClass and can have a 
lower and an upper bound multiplicity. In addition, EReferences refer to EClasses 
and optionally to an opposite EReference for expressing bi-directional relation-
ships. Besides, a reference can be declared as containment reference (part-of rela-
tionship). 

o EPackages group EClasses, EEnums, as well as nested EPackages. Each element 
is directly owned by a package and each package can contain multiple model ele-
ments. 

o EDataTypes are available for defining the types of attributes. String, Boolean, 
Integer, and Float are part of Ecore’s default data types set.  

o EEnum is suitable for modeling enumerations of literals and can be used as an 
attribute’s data type. An EEnum owns an arbitrary amount of values i.e., EEnum-
Literals. 

o EAnnotations are used for describing additional information which cannot be pre-
sented directly in Ecore-based metamodels. Each model element can have multiple 
annotations and each annotation belongs to a specific model element. 

3 Deriving Metamodels from DTDs 

In this section, we describe a two-step process for generating metamodels from 
DTDs. While in the first step, a preliminary metamodel can be automatically gener-
ated using a set of transformation rules and heuristics (cf. Section 3.1), in the second 
phase explicit user interaction is required in order to improve the semantics of the 
metamodel by certain refactoring actions (cf. Section 3.2). 

3.1 Step 1: Transformation Rules and Heuristics 

The semi-automatic generation of the metamodels is achieved by two techniques: 
first, generic transformation rules for transforming DTD concepts into metamodel 
concepts, which need no user interaction and second heuristics which support the 
transformation rules and require some user validation. In the following, we describe a 
complete set of transformation rules for logical structures of DTDs and provide a 
brief summary in Table 1. Each heuristics is presented in terms of a textual descrip-
tion and a concrete example. 



3.1.1 Transformation Rules 
In the following the transformation rules are listed in the order in which they are 
applied to a DTD in the MetaModelGenerator (cf. Section 4). Consequently, first 
transformation rules for XML Element Types are presented followed by transforma-
tion rules for XML Attributes.  

 
Rule 1 - DTD::XMLElemType_2_Ecore::EClass: For each element type an EClass 
is created, where the name of the EClass is set to the element type name. For each 
subclass of the class XMLElemType (cf: Figure 2) additional metamodel elements 
have to be created in the transformation process. Thus, the following case differentia-
tions are necessary in Rule 1:  
(1) XMLEmptyET – this type requires no further transformation. 
(2) XMLAtomicET - a separate attribute of data type String for #PCDATA has to be 

created and attached to the corresponding class of the element type.  
(3) XMLCompositeETElemContent – the contained element types are represented in 

metamodels by introducing EReferences between the owner class (representing 
the container element type) and the owned class (representing the contained ele-
ment type). In order to express the part/whole relationship the reference is de-
fined as a containment reference. 

(4) XMLCompositeETMixedContent – in addition to the EReferences for the con-
tained element types, an EAttribute for representing the PCDATA is required. 

(5) XMLSequence and XMLChoice - these two subtypes are exceptional cases, be-
cause they are not directly reproducible in metamodels structures with the default 
Ecore concepts. Therefore, we introduce two annotations, «SEQ» and «ALT», 
representing special marks for EClasses to simulate sequences and choices in 
metamodels in a similar way as in RDFS [44] with rdf:Seq and rdf:Alt containers. 
Contained element types of sequences and choices are attached to the sequence 
and choice classes by containment references. For sequences the order informa-
tion is annotated on the reference ends. 

 
Rule 1.1 - DTD::XMLContentParticle.cardinality_2_Ecore::Reference.multiplicity: 
Each XMLContentParticle can have one of the following cardinalities which are 
represented in metamodels through multiplicity (lower/upper bound) of the reference 
end: 
(1) Zero-or-one (?) – reference end with multiplicity 0..1 
(2) Zero-or-more (*) – reference end with multiplicity 0..* 
(3) One-or-more (+) – reference end with multiplicity 1..* 
(4) Default, no symbol – reference end with multiplicity 1 

 
Rule 2 - DTD::XMLAttribute_2_ECore::EAttribute: For each XMLAttribute an 
EAttribute is created. The created EAttribute is attached to the EClass representing 
the element type which in turn owns the XMLAttribute. The name of the EAttribute is 
the name of the XMLAttribute. For the majority, the data type of XMLAttributes is 
one out of the following set: {CDATA, ID, IDREF, IDREFS, Enumeration}. For each 
of these possibilities an appropriate transformation is required as listed in the follow-
ing: 



(1) CDATA corresponds to the data type String. 
(2) ID likewise corresponds to the data type String. Additionally, the EAttribute is 

marked as the identifier of the EClass by setting the id attribute of the EAttribute 
to true. This mapping is correct, although the semantics of identifiers in XML is 
different from the identifiers in Ecore. In XML, an identifier means unique iden-
tification of an element within a document. In contrast, in Ecore, an identifier 
means unique identification of an object within a set of objects of a specific 
class. Nevertheless, it is possible to represent an XMLAttribute of type ID as an 
EAttribute with id set to true, because in XML the restriction is stronger. How-
ever, this means, going the reverse direction is not that easy.   

(3) IDREF is mapped to an EAttribute with data type String. Furthermore an EAnno-
tation with the literal «IDREF must be resolved manually» is assigned to the 
EAttribute, since IDREF doesn’t specify any information with respect to the ref-
erence element type. In case Heuristic 1 (cf. Section 3.2) finds the intended ref-
erenced class, an EReference is produced instead of an EAttribute. 

(4) IDREFS is mapped to an EAttribute of type String with EAnnotation «IDREFS 
must be resolved manually» in case Heuristic 1 (cf. Section 3.2) does not find the 
intended referenced class. 

(5) For each XMLEnumeration an EEnum is generated, except Heuristic 2 (cf. Sec-
tion 3.2) detects that the XMLEnumeration represents an attribute of type Boo-
lean. Then, for each literal of the XMLEnumeration an EEnumLiteral of the 
EEnum is produced. In DTDs, enumerations are defined for each attribute in iso-
lation, possibly resulting in redundant definitions of the same enumerations. In 
the corresponding metamodels, however, multiple classes can reuse the same 
enumeration. Thus, before an EEnum is finally created, it is verified whether an 
identical enumeration already exists. In this case, the EAttribute’s type is set to 
the already existing enumeration. 

 
Rule 2.1 - DTD::XMLAttribute.cardinality_2_Ecore::EAttribute.multiplicity: At-
tributes in both, DTDs and in metamodels, have a certain kind of cardinality. In 
DTDs, the cardinality of an XMLAttribute is determined on the one hand, by the dif-
ferentiation between single-valued (e.g., ID, CDATA, or IDREF) and multi-valued 
(e.g., IDREFS), and on the other hand, by the XMLAttribute declaration 
(#REQUIRED, #IMPLIED, #FIXED, and default value). In the following, we discuss 
how XMLAttribute cardinalities (i.e., combinations of single-valued/multi-valued and 
XMLAttribute declaration values) are transformed into EAttribute multiplicities: 
(1) In case a default value for an attribute declaration is specified, the multiplicity of 

the corresponding EAttribute is set to exactly one if the XMLAttribute is single-
valued and one or more if in case of multi-valued. The default value of the 
XMLAttribute is assigned as the defaultValueLiteral of the EAttribute. 

(2) FIXED XMLAttributes are represented in metamodels as EAttributes with multi-
plicity one in case of single-valued, or one-to-more in case of multi-valued. Fur-
thermore, the default value of the XMLAttribute is assigned to the defaultVal-
ueLiteral attribute of the EAttribute and the changeable attribute of the EAttrib-
ute is set to false. 



(3) REQUIRED XMLAttributes are transformed into EAttributes with multiplicity of 
exactly one in case of singe-valued, and multiplicity of one-or-more in case of 
multi-valued XMLAttributs. 

(4) IMPLIED XMLAttributes are optional and therefore transformed into an EAttrib-
ute with multiplicity zero-to-one in case of single-valued, and zero-to-more in 
case of multi-valued XMLAttributes. 

Table 1 summarizes the proposed transformation rules. Some transformation rules are 
supported by heuristics which lead to improved readability and higher quality of the 
metamodel but require some user validation. These heuristics are explained in the 
next subsection. 

Table 1: Transformation rules between DTD Constructs and Ecore Constructs 

 Rule DTD Concept Ecore Concept 
R 1 XMLElementType (ET) EClass 

  XMLElementType. name   EClass.name 
(1) XMLEmptyET no additional elements 
(2) XMLAtomicET EAttribute for PCDATA 
(3) XMLCompositeET 

ElemContent 
Containment References 

(4) XMLCompositeET 
MixedContent 

Containment References, 
EAttribute for PCDATA 

(5) Sequence, Choice EClasses annotated with 
«SEQ» and «ALT», resp. 

R1.1 XMLContentParticle.cardinality EReference.multiplicity 
(1) Zero-or-one (?) 0..1 
(2) Zero-or-more (*) 0..* 
(3) One-or-more (+) 1..* 

XM
L 

El
em

en
t T

yp
e 

(4) Default, no symbol 1 
R2 XMLAttribute EAttribute 

  XMLAttribute.name   EAttribute.name 
(1) CDATA String 
(2) ID String, Attr. id set true 
(3) IDREF String or Heuristic 1  
(4) IDREFS String or Heuristic 1 

XMLEnumeration EEnum or Heuristic 2 (5)
   XMLLiteral    EEnumLiteral 

R2.1 XMLAttribute.cardinality EAttribute.multiplicity 
Single-valued 1 (defaultValue) (1) Default value Multi-valued 1..* (defaultValue) 
Single-valued 1 (dV, unchangeable) (2) #FIXED Multi-valued 1..* (dV, unchangeable) 
Single-valued 1 (3) #REQUIRED Multi-valued 1..* 
Single-valued 0..1 

XM
L 

At
tr

ib
ut

e 

(4) #IMPLIED Multi-valued 0..* 



3.1.2 Heuristics 
As mentioned before, heuristics are useful in the generation process to achieve a 
higher-quality metamodel. Note, that the application of heuristics requires user vali-
dation, because their modifications to metamodel elements are suggestions, only. 
Furthermore, the effectiveness of the heuristics is strongly correlated with the quality 
of the design of the DTDs. For example, the heuristics operate more effective if nam-
ing conventions, e.g., for IDREFs, are used (cf. Heuristic 1), or the content of the 
DTD is split up into several external DTDs which group related elements (cf. Heuris-
tic 3).  
In the following the heuristics of our framework are described. These heuristics are 
used to exploit the semantically rich language constructs of Ecore, namely (1) typed 
references, (2) data types, and (3) packages as a grouping mechanism. 

 
Heuristic 1 (IDREF(S) Resolution): A DTD does not restrict which element types 
can be referenced from an attribute of data type IDREF or IDREFS. Thus, it is possi-
ble to reference any element having an ID attribute in an XML document from any 
IDREF or IDREFS attribute. Due to this peculiarity of DTDs, it is not possible to 
determine which element type may be referenced based on the information given in 
the DTD. To solve this ambiguity, general knowledge of the problem domain is re-
quired. Still, sometimes it is possible to find the referenced element types relying on 
naming conventions of element types and attributes (cf. Figure 4). Considering an 
element type Relationship which has an attribute named entity of type IDREF and a 
second element type Entity, one can assume that the second element is referenced by 
the attribute entity. 
 

*

ENTITYENTITY
id:Stringid:String
name:String[0..1]name:String[0..1]

RELATIONSHIPRELATIONSHIP
name:String[0..1]name:String[0..1]

relationship

<!ELEMENT ENTITY (RELATIONSHIP*)>
<!ATTLIST ENTITY
id ID #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT RELATIONSHIP EMPTY>
<!ATTLIST RELATIONSHIP
name CDATA #IMPLIED
entity IDREF #REQUIRED>

entity 1
«idref»

*

ENTITYENTITY
id:Stringid:String
name:String[0..1]name:String[0..1]

RELATIONSHIPRELATIONSHIP
name:String[0..1]name:String[0..1]

RELATIONSHIPRELATIONSHIP
name:String[0..1]name:String[0..1]

relationship

<!ELEMENT ENTITY (RELATIONSHIP*)>
<!ATTLIST ENTITY
id ID #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT RELATIONSHIP EMPTY>
<!ATTLIST RELATIONSHIP
name CDATA #IMPLIED
entity IDREF #REQUIRED>

entity 1
«idref»

 
Figure 4: Example for Heuristic 1 

Heuristic 1 is designed to find such name-matches in DTDs. This is done for each 
IDREF(S) attribute by iterating over the set of generated EClasses and verifying if the 
attribute name matches (ignore lower/upper case) one of the class names. If a match 
is found, the iteration is terminated and an EReference from the class which owns the 
IDREF(S) attribute to the identified class is generated. The multiplicity of the refer-
ence end is set to the multiplicity of the attribute. Note, that the user still must vali-
date the generated references in order to detect random name-matches, which means 
that a referenced class is not the intended referenced element. Thus, the generated 
reference end is annotated with «IDREDF(S)». In Figure 4, the element type Relation-
ship on the left hand side refers to the element type Entity by the attribute entity of 
type of IDREF. In the metamodel, this is represented as a reference between the class 



Relationship and Entity with role name entity and multiplicity 1 (because the XML 
attribute has been defined as #REQUIRED). 

 
Heuristic 2 (Boolean Identification): In DTDs, there is no direct way to specify an 
XML attribute of type Boolean. Instead, an element’s attribute can be of type Enu-
meration with two literals true and false. In this case Rule 2 produces an EEnumera-
tion with two literals, namely true and false. But for this special case an attribute of 
type Boolean is much richer in terms of semantics and represent a more compact 
specification than the corresponding enumeration. Heuristic 2 recognizes such opti-
mization possibilities and generates an attribute of type Boolean for the following sets 
of enumeration literals: {true, false}, {1, 0}, {on, off}, and {yes, no}. In addition the 
user can configure the MMG with additional synonyms for true and false. An exam-
ple use case for Heuristic 2 is illustrated in Figure 5. 
 

<!ELEMENT ENTITY EMPTY>
<!ATTLIST ENTITY
name CDATA #IMPLIED
persistent (true|false)>

ENTITYENTITY
name:String[0..1]name:String[0..1]
persistent:Enum_ppersistent:Enum_p

««enumerationenumeration»»
Enum_pEnum_p

•• truetrue
•• falsefalse

Rule2

Heuristic 2
ENTITYENTITY

name:String[0..1]name:String[0..1]
persistent:booleanpersistent:boolean

<!ELEMENT ENTITY EMPTY>
<!ATTLIST ENTITY
name CDATA #IMPLIED
persistent (true|false)>

ENTITYENTITY
name:String[0..1]name:String[0..1]
persistent:Enum_ppersistent:Enum_p

««enumerationenumeration»»
Enum_pEnum_p

•• truetrue
•• falsefalse

Rule2

Heuristic 2
ENTITYENTITY

name:String[0..1]name:String[0..1]
persistent:booleanpersistent:boolean

  
Figure 5: Example for Heuristic 2 

The MMG receives as input for transformation a DTD consisting of the element En-
tity with an attribute persistent. The attribute in turn is of type Enumeration with the 
literals true and false. On the upper right hand side of Figure 5 the corresponding 
model elements are shown resulting from a transformation according to Rule 2. The 
lower right hand side instead shows the corresponding model elements resulting from 
a transformation according to Heuristic 2. 
 
Heuristic 3 (Grouping Mechanism): In DTDs, there is no mechanism for grouping 
related element declarations. In metamodels, on the contrary, packages are the in-
tended grouping mechanism. A package groups packageable elements which are 
primary classes and nested packages. This feature allows hierarchically structured 
metamodels, which are more readable and better understandable than flattened meta-
models. In DTDs, the grouping mechanism can be simulated by defining external 
DTDs and referencing these in a so called root-DTD. The root-DTD is equivalent to 
the root-package in a metamodel and the external DTDs are equivalent to subpack-
ages of the root package. If the user designs DTDs in this manner, it is possible to 
configure the MMG to generate a package for each external DTD and one root pack-
age for the root-DTD. Figure 6 shows an example use case for Heuristic 3. On the left 
hand side two DTDs are shown, whereas the DTD called WebML imports the element 
declarations of the DTD called Structure. On the right hand side the corresponding 
package structure and classes are shown for the generated metamodel. 



 
<!-- WebML.dtd -->
<!–- Root of all other DTDs -->
<!ENTITY % StructureDTD SYSTEM 

"Structure.dtd">
%StructureDTD;
…

WebML

Structure

<!-- Structure.dtd -->
<!ELEMENT ENTITY (ATTRIBUTE*)>
<!ATTLIST ENTITY

name CDATA #IMPLIED>
<!ELEMENT ATTRIBUTE EMPTY>
<!ATTLIST ATTRIBUTE

name CDATA #IMPLIED>

*

ENTITYENTITY
namename: String[0..1]: String[0..1]

ATTRIBUTEATTRIBUTE
namename: String[0..1]: String[0..1]

attribute

<!-- WebML.dtd -->
<!–- Root of all other DTDs -->
<!ENTITY % StructureDTD SYSTEM 

"Structure.dtd">
%StructureDTD;
…

WebML

Structure

<!-- Structure.dtd -->
<!ELEMENT ENTITY (ATTRIBUTE*)>
<!ATTLIST ENTITY

name CDATA #IMPLIED>
<!ELEMENT ATTRIBUTE EMPTY>
<!ATTLIST ATTRIBUTE

name CDATA #IMPLIED>

*

ENTITYENTITY
namename: String[0..1]: String[0..1]

ENTITYENTITY
namename: String[0..1]: String[0..1]

ATTRIBUTEATTRIBUTE
namename: String[0..1]: String[0..1]

ATTRIBUTEATTRIBUTE
namename: String[0..1]: String[0..1]

attribute

 
Figure 6: Example for Heuristic 3 

3.2 Step 2: Semantic enrichment of generated metamodels 

The last step towards a MOF-based metamodel requires user interaction for semantic 
enrichment, as well as validation of the automatically produced metamodel. As al-
ready mentioned, such user interactions are required because DTDs are poorer in 
semantics than metamodels, which is due to the limited set of constructs of the DTD 
language. The most relevant semantic enrichment tasks concern the following prob-
lems of DTDs: (1) DTDs have no concepts to express inheritance. (2) DTDs have a 
limited set of data types that can not be extended (e.g., to support Integer and Boo-
lean data types). (3) The resolution of IDREF(S) requires domain knowledge. (4) 
DTDs have no constructs to describe bi-directional associations. In the following, 
these peculiarities are described in more detail. In particular, we provide the required 
user interactions to reduce the semantic ambiguities. 
o In DTDs there is no means to inherit attributes and associations from the same 

kind of super elements. This means that attributes and references are defined for 
each element in isolation even if there is a super entity in the problem domain 
which owns these shared properties. Consequently, the automatically generated 
metamodels lack this information. In metamodels, however, inheritance is a central 
object-oriented concept. Thus, the user has to manually refactor the generated 
metamodels in order to achieve inheritance relationships and reduce redundant 
definitions of attributes and references, leading to an improved structure and 
higher readability. For this task we suggest to introduce new classes - normally 
marked as abstract classes – which collect common properties of available sub-
classes. 

o In DTDs the only built-in data type is String which is expressed by defining an 
attribute of type CDATA. The proposed heuristics are able to reengineer attributes 
of type Boolean, but there is no way to reengineer attributes of type Integer. At-
tributes which are intended to be Integers are normally defined as CDATA in 
DTDs, because there is no other possibility. In contrast, the Integer data type is 
very important in metamodels, e.g., for an attribute named lowerBound, which 



represents a multiplicity constraint. In the generated metamodels, the user must 
thus check all attributes if any of them should be of type Integer. This task requires 
domain knowledge and is not automatically contrivable. 

o Currently, our framework’s resolution mechanism for IDREF(S) is limited to 
name-matches. Some IDREF(S) therefore, are automatically resolved according to 
Heuristic 1. Due to the possibility of random name-matches, the user has to vali-
date, if the resolution of the IDREF(S) is correct or another class should be refer-
enced. Therefore, the user has to verify reference ends with annotation 
«IDREDF(S)» if the resolution is correct.  

o The framework currently marks all IDREF(S) attributes that could not be resolved 
by naming conventions. Thus, the user has to refactor all attributes which are 
marked with the annotation «IDREF(S) must be resolved manually». Knowledge 
of the problem domain is required to create the corresponding references to the in-
tended referred classes. The multiplicity of the reference end has to be set to the 
multiplicity of the attribute. The role name of the reference end is typically set to 
the attribute’s name. 

o It is not possible to describe bi-directional associations in DTDs. Using IDREF 
and IDREFS attribute types, only one-way references can be expressed. In con-
trast, metamodels use bi-directional associations as a central modeling technique. 
In particular, in Ecore two uni-directional references are connectable through the 
eOpposite attribute of class EReference to represent bi-directional associations. 
DTDs lack this information, however, which requires the user to manually connect 
two uni-directional references resulting from IDREF(S) attributes and mark them 
as bi-directional associations. 

4 MetaModelGenerator (MMG) 

The aforementioned transformation rules and heuristics have been implemented in a 
Java program called MetaModelGenerator (MMG). The MMG is based on the 
Eclipse Modeling Framework (EMF) and on an open source DTD parser6. 
In Figure 7, the DTD-to-MOF framework and implementation details of the MMG are 
graphically depicted and more precisely described in the following: 
 

1. In a first step a specific DTD serves as input to the DTD parser, which 
parses the DTD and builds a Java object graph of DTD element types in 
memory. 

2. Then each element in the object graph is visited and transformed regarding 
to the proposed transformation rules and heuristics in Section 3.  

 Each transformation rule is implemented as a separate Java method 
which takes DTD element objects as input and generates the object 
for the corresponding metamodel elements. 

 If a transformation rule uses a heuristic, then the corresponding 
method calls a helper method which implements the heuristic.  

                                                           
6 http://www.wutka.com/dtdparser.html 



Heuristics

XMI-Serializer

<ecore class>
<ecore>

<ecore class>
<ecore att>

Omondo

DTD

XMI

MetaModelGenerator
(MMG)

User

DTD element type
object graph

Metamodel 
element object
graph

DTD-Parser

<!ELEMENT A>
<!ATTLIST A>

<!ELEMENT B>
<!ATTLIST B>

<!ELEMENT C>
<!ATTLIST C>

Semantic
enrichment

Transformer «uses»

 
Figure 7: Architecture and Mode of Operation of the MMG 

3. As soon as the complete element object graph of the metamodel has been 
generated, the default XMI Serializer of EMF is activated in order to serial-
ize the metamodel as an XMI file. 

4. This XMI file can be loaded into OMONDO7 - a graphical editor for Ecore-
based metamodels, available as an Eclipse plug-in. 

5. In a last step, the metamodel should be refactored by the user according to 
the semantic enrichment rules explained in Section 3. 

5 The WebML Case Study 

In the following, we present the results of applying our approach to WebML’s DTD-
based language definition. As a prerequisite, we introduce necessary concepts of the 
web modeling language first. 
Web applications typically consist of three layers known as the content layer, the 
hypertext layer, and the presentation layer. WebML provides two kinds of models: 
While the data model corresponds to the content layer, the hypertext model corre-
sponds to the hypertext layer, but also provides modeling means for presentation 
layer concepts. The WebML language concepts are described in terms of notational 
elements and accompanying textual definitions [8]. In addition, WebML comes with 

                                                           
7 http://www.omondo.de/ 



a modeling tool WebRatio, which incorporates the WebML language definition in 
terms of a DTD. Thus, WebML models created are internally represented in XML 
and XSL is used for code generation. 

For demonstrating the appropriateness of our approach, we only present results on 
the WebML data model DTD part (cf. Listing 1) for two reasons. First, the MMG 
produced a hypertext metamodel draft consisting of more than 50 meta-classes, and 
therefore, would an unnecessary large example. And second, the WebML data model 
is based on the Entity-Relationship (ER) Model [10], which is very close to UML 
class diagrams and hence also easy to understand for non-hypertext modeling experts. 

5.1 WebML Data Model 

Modeling the content layer of a web application enables the specification of the data 
used by the application. Since WebML’s data model is based on the ER model, it 
supports ER modeling concepts: An entity type represents a description of common 
features, i.e., attributes, of a set of objects. Note, that unlike UML class diagrams, ER 
diagrams model structural features, only. Attributes can have a data type, e.g., String, 
Integer, Float, Date, Time, Boolean, and Enumeration. One or a combination of an 
entity type’s attributes form the primary key8, which uniquely identifies entity in-
stances. Entity types that are associated with each other are connected by relation-
ships. 

5.2 The MMG Output 

Listing 1 presents the data model DTD9 which consists of six concepts, namely 
WebMLTypes, DOMAIN, DOMAINVALUE, ENTITY, ATTRIBUTE, and 
RELATIONSHIP. 

                                                           
8 WebML does not require the user to specify primary keys, instead a unique identifier (OID) is added 

automatically for each entity by WebRatio. 
9 WebML’s DTD has been published as part of the WebRatio’s User Guide. Please note that few tool 

related concepts, which are not relevant at modeling level, have been omitted. 



 
<!--Structure Document Type Definition--> 
<!ENTITY % WebMLTypes 
"(String|Text|Password|Number|Integer|Float|Date|Time|TimeStamp|Boolean| 
URL|BLOB|OID)"> 
<!ELEMENT Structure (DOMAIN*, ENTITY*)> 
<!ATTLIST Structure 

id ID #REQUIRED> 
<!ELEMENT DOMAIN (DOMAINVALUE*)> 
<!ATTLIST DOMAIN 

id ID #REQUIRED 
name CDATA #IMPLIED 

<!ELEMENT DOMAINVALUE EMPTY> 
<!ATTLIST DOMAINVALUE 

value CDATA #REQUIRED> 
<!ELEMENT ENTITY (ATTRIBUTE*, RELATIONSHIP*)> 
<!ATTLIST ENTITY 

id  ID #REQUIRED 
name  CDATA #IMPLIED 
superEntity IDREF #IMPLIED 
value  CDATA #IMPLIED 
duration( persistent|volatile) 'persistent'> 

<!ELEMENT ATTRIBUTE EMPTY> 
<!ATTLIST ATTRIBUTE 

id  ID  #REQUIRED 
name  CDATA  #IMPLIED 
type  %WebMLTypes; #IMPLIED 
userType IDREF  #IMPLIED 
value  CDATA  #IMPLIED> 

<!ELEMENT RELATIONSHIP EMPTY> 
<!ATTLIST RELATIONSHIP 

id  ID #REQUIRED 
name  CDATA #IMPLIED 
roleName CDATA #IMPLIED 
to  IDREF #REQUIRED 
inverse  IDREF #REQUIRED 
minCard  CDATA #REQUIRED 
maxCard  CDATA #REQUIRED 
value  CDATA #IMPLIED> 

Listing 1: WebML (data model) language definition - Structure.dtd 

The DTD has served as input to the MMG, which has been employed to produce a 
preliminary version of the WebML metamodel shown in Figure 8 and Figure 9, re-
spectively. According to our transformation rules  

1. one meta-class has been generated for each DTD element declaration,  
2. the elements’ attributes have been added to their corresponding elements,  
3. annotations have been made in order to draw the user’s attention to attributes 

that have not automatically been resolved,  
4. associations between meta-classes have been added, 
5. the multiplicity has been set for attributes and associations, 
6. and an enumeration has been produced for the entity WebMLTypes. 

 



 

Figure 8: Automatically generated WebML Metamodel (EMF Tree-View) 



Figure 9: Automatically generated WebML Metamodel (Omondo View) 

5.3 The WebML Metamodel – Necessary Manual Adaptations 

Through considering additional information given in [8], we performed several ame-
liorations to the metamodel depicted in Figure 9. 
 

1. The list of WebML types described in [8] includes the type Enumeration. 
In both, the DTD and the generated type_ENUM meta-class, however, 



such a concept could not be found. In fact, the Enumeration concept has 
been realized by the meta-classes DOMAIN and DOMAINVALUE, and by 
DOMAIN being referenced by the userType attribute of meta-class 
ATTRIBUTE. 

2. The class RELATIONSHIP owns two attributes with annotation «IDREF 
must be resolved manually». The first attribute called inverse represents 
the opposite relationship which allows specifying bi-directional relation-
ships. Therefore, the attribute is refactored as a recursive reference from 
and to RELATIONSHIP with the reference end named inverse. The sec-
ond attribute called to represents the referenced class. Therefore, the at-
tribute is refactored as a reference pointing to class ENTITY, because an 
instance of relationship points exactly to one instance of entity. 

3. The class RELATIONSHIP owns two further attributes which describe the 
cardinalities (minCard, maxCard) of a relationship end. Cardinalities are 
normally of type (non-negative) Integer, hence we have changed the data 
type from String to Integer. 

4. The class ENTITY possesses an attribute called superEntity with annota-
tion «IDREF must be resolved manually». This attribute references the 
only parent entity, thus this concept represents single inheritance. We 
changed the metamodel in this respect and modeled a recursive reference 
from and to class ENTITY. 

5. The most serious user intervention is necessary for describing the possible 
data types for the attributes (cf. class ATTRIBUTE). Two possible kinds 
of data types are available in the automatically generated metamodel: (1) 
primitive type (cf. attribute type of class ATTRIBUTE) or (2) user defined 
enumeration (cf. attribute usertype of class ATTRIBUTE). To more pre-
cisely describe this fact, we have introduced a new class called TYPE 
which serves as the super class of DOMAIN and of the also newly intro-
duced class BUILT-IN_TYPE. The class ATTRIBUTE receives a reference 
to the class TYPE instead of expressing the two possible kinds of data 
types by the attributes type and usertype. 

 
We apply the above refactoring tasks to the automatically generated metamodel and 
present the resulting final WebML metamodel in Figure 10. 

 



[0..1]
[0..1]

[0..1]
[0..1]

[0..1]
[1..1]

[0..1]
[0..1]

[0..1]

[0..1]
[0..1]

[0..1]
[0..1]

[0..1]
[1..1]

[0..1]
[0..1]

[0..1]

 

Figure 10: Final WebML Metamodel (Omondo View) 

6 Related Work 

There have already been several approaches to transformation from the model techni-
cal space to the XML technical space and vice versa (cf. Figure 11). In [32], an elabo-
rate overview of existing approaches is given. In particular, a categorization into 
forward engineering approaches (i.e., transformation from the XML technical space 
to the model technical space) and reverse engineering approaches (i.e., transforma-
tion from the model technical space to the XML technical space) has been made. 



XML Technical SpaceXML Technical Space

UML

ERMOF DTD XMLSchema

XMLDocument

Model Technical SpaceModel Technical Space

 
Figure 11 Bridging Technical Spaces 

In Table 2, we further investigate related approaches with respect to what stan-
dards/technologies are used in both, the model technical space and the XML technical 
space, i.e., which standards/technologies are mapped onto each other, and with re-
spect to tool support, i.e., if the specified mappings have been implemented in a trans-
formation tool. 

Table 2: An Overview of existing Transformation Approaches 

 Transformation 
Direction 

Model Technical 
Space 

XML Technical 
Space 

Tool 
Support 

Bird et al. [5] Forward ORM XML Schema No 
Bernauer et al. 
[6] Reverse UML (Profile) XML Schema No 

Booch et al. [7]10 Reverse UML DTD ? 
Bordbar et al. Reverse UML XML Schema Yes 
Conrad et al. [9] Forward UML DTD No 
Hucka [15] Forward UML XML Schema No? 
Mani et al. [16] Reverse ER XML Schema No 

Mello et al. [17] Reverse ORM/NIAM and 
ER DTD yes 

Provost [27] Forward UML XML Schema  No 
Reverse UML (Profile) DTD Yes Rational [29] Forward UML (Profile) XML Schema Yes 

Routledge et al. 
[30], [31] Forward UML (Profile) XML Schema no 

Salim et al. [32] Reverse UML XML Schema no 
Skogan [34] Forward UML DTD yes 
Our Approach Reverse MOF (Ecore) DTD yes 

 
Basically, approaches related to our work provide mappings between the XML tech-
nical space, relying on DTDs or XML Schema, and the model technical space, relying 
on UML(Profiles) but also on ORM and ER. In [29], a script for Rational Rose is pro-
posed that allows migration from DTDs to XML Schema by mapping to a UML Profile as an 
intermediary step (i.e., representing both a forward engineering and a reverse engineering 
approach). 
To the best of our knowledge, there is no approach to mapping between concepts of 
DTD and concepts of MOF. Our approach of transforming DTDs to MOF-based 

                                                           
10 Please not, that we adopted this reference from [32]. Unfortunately, the file has been removed from the 

stated URL. Our evaluation in Table 2 is therefore based on information provided in [32]. 



metamodels belongs to the reverse engineering category, since the transformation is 
directed from the XML technical space to the model space. 
According to [1], “the relation between a model and its metamodel is also related to 
the relation between a program and the programming language in which it is written, 
defined by its grammar, or between an XML document and the defining XML 
schema or DTD.” Hence, in OMG’s four-layer architecture DTDs belong to the same 
layer (M2) as metamodels and XML documents belong to the same layer (M1) as 
models. 

 

M2

M3

M1

C

«conformsTo»

Metamodel

«conformsTo»

«conformsTo»

«conformsTo»

Model

MOFDTD-Grammar

DTD

XMLDocument

M0

«representedBy»«representedBy»Real WorldReal World
ModelsModels

T

C

T

Cross-Layer Correspondences and Transformations
Intra-Layer Correspondences and Transformations

M2

M3

M1

C

«conformsTo»

Metamodel

«conformsTo»

«conformsTo»

«conformsTo»

Model

MOFDTD-Grammar

DTD

XMLDocument

M0

«representedBy»«representedBy»Real WorldReal World
ModelsModels

T

C

T

Cross-Layer Correspondences and Transformations
Intra-Layer Correspondences and Transformations  

Figure 12 Intra-Layer and Cross-Layer Correspondences and Transformations 

By providing mappings and transformations between concepts of DTD and concepts 
of MOF, our work differs from the existing approaches in that we provide intra-level 
correspondences and transformations with respect to OMG’s four-layer architecture, 
while existing approaches usually define cross-layer correspondences and transfor-
mations (cf. Figure 12). In contrast to other approaches, we are mapping DTDs to 
domain languages instead of mapping them to domain models.  
With intra-layer mappings, one is able to derive intra-level mappings at lower levels 
of the architecture. Deriving mappings at M2 from mappings at M3 allows perform-
ing transformations at M1, i.e., transformations of XML documents in UML models. 
Cross-layer transformation approaches, however, are limited to transforming XML 
documents into object models, which have to conform to the UML model. Therefore, 
while in our approach we are still able to rely on linguistic instantiations between 
layers, cross-layer transformation approaches have to rely on ontological instantia-
tions at M1 [1]. 



7 Conclusions and Future Work 

In this work we have presented an approach to mapping and transforming concepts 
between the model technical space and the XML technical space. In particular, we 
have introduced a set of generic transformation rules, heuristics, and required user 
interactions for the semi-automatic generation of MOF-based metamodels from 
DTDs. Our transformation framework, the MetaModelGenerator, has been imple-
mented on top of the Eclipse Modeling Framework and its applicability has been 
shown in the WebML case study. Future work concerns three disjoint extensions to 
our framework.  

Refinement of the DTD-to-MOF transformation approach. The simplification 
of a transition from WebML’s DTD-based language definition to a MOF-based lan-
guage definition by automatically generating a first draft of a metamodel represents 
the major motivation for designing our transformation framework. Within the 
WebML case study, however, not all transformation rules were tested (e.g., the trans-
formation of XMLChoice and XMLSequence). Thus, the appropriateness of our trans-
formation framework needs further testing within additional case studies. Based on 
the results, we will refine the transformation rules in order to provide a generic trans-
formation tool. We are also looking for further heuristics for resolving IDREF(S). In 
this respect, we are using algorithms for exploring similarities between strings as well 
as ontology-based techniques like finding synonyms using WordNet11. In particular, 
with this approach it is possible to find inheritance relationships. 

Model-driven transformation approach. We plan to use the DTD metamodel we 
proposed in Section 2 for describing the DTD-to-MOF transformation rules and heu-
ristics as ATL transformations. We will define a weaving model between the con-
cepts of DTD and MOF in the AMW [11] using a special bridging language [14]. The 
semantics of this bridging language is operationally specified in an adjacent code 
generator [14], which in our case produces ATL code for generating MOF-based 
metamodels. In this respect, we do not only generate metamodels from DTDs in order 
to enable MDE, but just in doing so, we apply model-driven engineering techniques. 
We are going to compare our current Java-based approach with this future model-
driven approach in order to learn their commonalities and differences. In particular, 
we expect that the model-driven approach leads to improved readability of the trans-
formation “program” which in turn is also more flexible for future extensions. 

Deriving model transformations from metamodel mappings. We also plan to 
perform transformations at M1 level, i.e., transform XML documents, which conform 
to a DTD, into models, which again conform to a corresponding metamodel. There-
fore, the MetaModelGenerator should be capable of producing a Model Generator 
(MG) for a given DTD.  

                                                           
11 http://wordnet.princeton.edu/ 



Acknowledgements 

We thank Maristella Matera for supporting us with her very valuable insight into the 
WebML language, and www.webratio.org for allowing us to publish parts of 
WebML’s DTD language definition. 

References 

[1] C. Atkinson, T. Kühne: Model-Driven Development: A Metamodeling Foundation. IEEE 
Software 20 (5), 36-41, 2003. 

[2] L. Baresi, S. Colazzo, L. Mainetti, and S. Morasca. W2000: A Modeling Notation for 
Complex Web Applications. In E. Mendes and N. Mosley (eds.) Web Engineering: The-
ory and Practice of Metrics and Measurement for Web Development, Springer-Verlag, 
ISBN: 3-540-28196-7, 2006. 

[3] B. Bordbar, A. Staikopoulos. Automated Generation of Metamodels for Web service 
Languages. Second European Workshop on Model Driven Architecture (MDA), Canter-
bury, UK, September 2004 

[4] J. Bézivin. On the Unification Power of Models. Journal on Software and Systems Model-
ing, 4(2):171-188, May 2005. 

[5] L. Bird, A. Goodchild, and T. Halpin. Object Role Modeling and XML-Schema. In Pro-
ceedings of the 19th International Conference on Conceptual Modeling (ER’2000), Salt 
Lake City, USA, October 2000, Springer, pp. 309-322. 

[6] M. Bernauer, G. Kappel, G. Kramler. Representing XML Schema in UML - A UML Profi-
le for XML Schema. Technical Report, Available at: 
http://www.big.tuwien.ac.at/research/publications/2003/1303.pdf, November 2003. 

[7] G. Booch, M. Christerson, M. Fuchs, and J. Koistinen. UML for XML Schema Mapping 
Specification. Rational Software and CommerceOne, 1999. Available at: 
http://www.rational.com/media/uml/resources/media/uml_xmlschema33.pdf 

[8] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera. Designing Data-
Intensive Web Applications. Morgan-Kaufmann, 2003. 

[9] R. Conrad, D. Scheffner, and J.C. Freytag. XML Conceptual Modeling using UML. In 
Proceedings of the 19th International Conference on Conceptual Modeling (ER’2000), 
Salt Lake City, USA, October 2000, Springer, pp. 558-571. 

[10] P. P. Chen. The Entity-Relationship Model – Toward a Unified View of Data. ACM 
TODS, 1 (1), March 1976. 

[11] Didonet Del Fabro M., Bézivin J., Jouault F., Breton E., Gueltas G.: AMW: a generic 
model weaver. Proc. of the 1ères Journées sur l'Ingénierie Dirigée par les Modèles, (2005) 

[12] I. Garrigós, S. Casteleyn, J. Gómez. A Structured Approach to Personalize Websites 
using the OO-H Personalization Framework in Web Technologies Research and Devel-
opment. In Proc. of the 7th Asia-Pacific Web Conference (APWeb 2005), Springer-Verlag, 
ISBN 3-540-25207-X, Shangai, China, March-April 2005. 

[13] G. Kappel, E. Kapsammer, W. Retschitzegger. Integrating XML and Relational Database 
Systems. World Wide Web Journal (WWWJ), Kluwer Academic Publishers, Vol. 7(4), 
December 2004, pp. 343-384. 

[14] G. Kappel et al.: Lifting Metamodels to Ontologies: A Step to the Semantic Integration of 
Modeling Languages, Submitted for publication, 2006 



[15] M. Hucka. SCHUCS: An UML-Based Approach for Describing Data Representations 
Intended for XML Encoding. In Proceedings of the 2nd International Conference on The 
Unified Modeling Language (UML’99), October 1999. 

[16] M. Mani, D. Lee, and R.R. Muntz. Semantic Data Modeling using XML Schemas. In 
Proceedings. 20th International Conference on Conceptual Modeling (ER 2001), Yoko-
hama, Japan, November 2001, Springer, pp. 149-163. 

[17] R.d.S. Mello and C.A. Heuser. “A Rule-Based Conversion of a DTD to a Conceptual 
Schema”. In Proceedings. 20th International Conference on Conceptual Modeling (ER 
2001), Yokohama, Japan, November 2001, Springer, pp. 133-148. 

[18] OASIS. ebXML Technical Architecture Specification v1.0.4. http://www.ebxml.org/, 
February, 2001 

[19] Object Management Group (OMG). Common Warehouse Metamodel (CWM) Specifica-
tion, v1.1. http://www.omg.org/docs/formal/03-03-02.pdf, March 2003. 

[20] Object Management Group (OMG). MDA Guide Version 1.0.1. 
http://www.omg.org/docs/omg/03-06-01.pdf, June 2003. 

[21] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core Specification 
Version 2.0. http://www.omg.org/docs/ptc/04-10-15.pdf, October 2004. 

[22] Object Management Group (OMG), MOF 2.0/XMI Mapping Specification, v2.1. 
http://www.omg.org/docs/formal/05-09-01.pdf, September 2005. 

[23] Object Management Group (OMG). UML Specification: Infrastructure Version 2.0. 
http://www.omg.org/docs/ptc/04-10-14.pdf, October 2004. 

[24] Object Management Group (OMG). UML Specification: Superstructure Version 2.0. 
http://www.omg.org/docs/formal/05-07-04.pdf, August 2005. 

[25] Open Mobile Alliance (OMA). Wireless Markup Language Version 2.0. 
http://www.openmobilealliance.org/tech/affiliates/wap/wap-238-wml-20010911-a.pdf, 
September 2001. 

[26] M. Peltier, R. Ziserman, J. Bézivin. On levels of model transformation. In: In XML 
Europe 2000. -, Paris, France, pages 1-17, 2000. 

[27] W. Provost. UML For W3C XML Schema Design. 
http://www.xml.com/lpt/a/2002/08/07/wxs_uml.html, August 2002. 

[28] QVT-Merge Group. Revised submission for MOF 2.1 Query/View/Transformation. 
http://www.omg.org/docs/ad/05-07-01.pdf, 2005. 

[29] Rational Software Corporation. Migrating from XML DTD to XML Schema using UML. 
Rational Software White Paper, 2000. Available at: 
http://www.rational.com/media/whitepapers/TP189draft.pdf 

[30] N. Routledge, L. Bird, and A. Goodchild. UML and XML Schema. In Proceedings of the 
13th Australasian Database Conference (ADC 2002), Melbourne, Australia, ACS. 

[31]  N. Routledge, A. Goodchild, and L. Bird. XML Schema Profile Definition. Honours 
thesis extract, DSTC, Queensland, Australia, 2002. Available at: 
http://titanium.dstc.edu.au/papers/xml-schema-profile.pdf 

[32] F.D. Salim, R. Price, S. Krishnaswamy, M. Indrawan. UML documentation support for 
XML schema. In proceedings of the Australian Software Engineering Conference 
(ASWEC’04), 2004. 

[33] D. Schwabe, R. Guimarães, G. Rossi. Cohesive Design of Personalized Web Applica-
tions. IEEE Internet Computing 6 (2), March-April, 2002. 

[34] D. Skogan. UML as a Schema Language for XML based Data Interchange. In Proceed-
ings of the 2nd International Conference on The Unified Modeling Language (UML’99), 
October 1999. 

[35] Sun Corporation. Java™ Architecture for XML Binding (JAXB). Available at: 
http://java.sun.com/xml/jaxb/index.html 



[36] N. Wirth. What can we do about the unnecessary diversity of notation for syntactic defi-
nitions? CACM, 20 (11), November 1977, pp. 822-823. 

[37] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.1 Specifica-
tion. http://www.w3.org/TR/xml11/, April 2004. 

[38] World Wide Web Consortium (W3C). HTML 4.01 Specification. 
http://www.w3.org/TR/html4/, December 1999.  

[39] World Wide Web Consortium (W3C). Mathematical Markup Language (MathML) Ver-
sion 2.0. http://www.w3.org/TR/MathML/, October 2003. 

[40] World Wide Web Consortium (W3C). Scalable Vector Graphics (SVG) 1.1 Specification. 
http://www.w3.org/TR/SVG/, January 2003. 

[41] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging Framework. 
http://www.w3.org/TR/soap12-part1, June 2003. 

[42] World Wide Web Consortium (W3C). XML Schema Part 0: Primer Second Edition. 
http://www.w3.org/TR/XML Schema-0/, October 2004. 

[43] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version 1.0. 
http://www.w3.org/TR/xslt, November 1999. 

[44] World Wide Web Consortium (W3C). RDF Vocabulary Description Language 1.0: RDF 
Schema Version 1.0. http://www.w3.org/TR/rdf-schema/, February 2004. 

 

 


