
A UML 2 Profile for Variability Models and their Dependency to Business
Processes∗

Birgit Korherr and Beate List
Women’s Postgraduate College for Internet Technologies
Institute of Software Technology and Interactive Systems

Vienna University of Technology
{korherr,list}@wit.tuwien.ac.at

http://wit.tuwien.ac.at

Abstract

Variability Models are designed for modelling variabili-
ties of a software. Unfortunately they are not part of a well-
known modelling framework for a higher usability, like the
Unified Modelling Language. To address this limitation, we
provide a UML 2 profile for variability models. Further-
more we show the dependency from the UML profile to ac-
tivity diagrams to make the relationship between variability
models and process models visible. This profile and its map-
ping are tested with example business processes.

1 Introduction

Variability models define the variability of a software
product line and can be used during the different life cy-
cle stages of software product lines [7]. Variability mod-
elling is a domain specific modelling technique, that is
becoming more and more integrated into traditional soft-
ware engineering. Unfortunately, it is not integrated into an
modelling framework like the Unified Modeling Language
(UML). Furthermore variability models have also an impact
on processes. Variabilities can change the process flow, e.g.
in a car engine manufacturing process the decision if the
variability manufacture a diesel engine or a petrol engine is
chosen, changes the process flow. The goals of this paper
are to:
• provide variability models to software developers in a

UML notation as well as through UML tools
• show the dependency between variability models and

business processes to make the relationship between
∗This research has been funded by the Austrian Federal Ministry for

Education, Science, and Culture, and the European Social Fund (ESF) un-
der grant 31.963/46-Vii/9/2002.

structural models and behavioural models in all stages
of the software developing process visible.

UML profiles are an extension mechanism for building
UML models for particular domains or purposes [6]. We
utilise this well-defined way to develop a UML profile for
variability models and describe its dependencies onto ac-
tivity diagrams, to show the impact of variabilities on the
process flow and thus, provide the following contributions:
• The UML profile for variability models can be easily

created, presented and edited with existing UML mod-
elling tools, as almost all newer UML tools support
UML profiles.

• The profile provides variability models to software de-
velopers in UML notation. Since software systems
are very complex and require variabilities for defining
their process logic e.g. by customisation, the profile
represents variability requirements to software devel-
opers or process engineers in a formal and well-known
modelling notation.

• The UML profile and its shown dependencies onto ac-
tivity diagrams makes the relationship between vari-
abilities and processes visible.

In the remainder of the paper, variability models are briefly
discussed in section 2. The UML profile which provides
the concepts to present variability models in UML will be
explained in section 3. In section 4, we describe a set of
OCL constraints of the UML 2 profile to indicate restric-
tions that belong to the profile. The description of the de-
pendencies from the profile to activity diagrams will be ex-
plained in section 5 followed by an example business pro-
cess that underlines the communalities of the UML profile
for variability models and activity diagrams. We close with
related work (section 7), and the conclusion (section 8).



2 The Concepts of Variability Modelling

A variability model shows the different variation points
and variants of a software product line. Variability models
are based on a metamodel developed by Pohl et al. [7], that
is not MOF-compliant, because it has association classes
which are not part of MOF. We adapt the metamodel of
Pohl et al. [7] by changing the association classes and its
associations with normal binary relationships and classes to
make it MOF-compliant according to Hitz et al.[3]. The
MOF-compliant metamodel could be for instance easily in-
tegrated into UML, which is based on MOF. The adapted
metamodel is shown in figure 1.

A variability model consists of the variabilities variation
point, and variant, as well as the possible relationships be-
tween them. A variation point is a representation of a vari-
able item of the real world or a variable property of such an
item, and has a variability dependency relationship with at
least one variant. A variant is a representation of a particu-
lar instance of a variation point, and can constrain it with a
constraint dependency. Furthermore it has at least one vari-
ability dependency to a variation point. A variability depen-
dency is an abstract class, and can be distinguished between
optional or mandatory. If a variation point has a mandatory
dependency to a variant, then the variant has to be chosen
if the variation point is selected. An optional variability
dependency indicates that none, one or more variants can
be selected. Moreover, it can be refined by an alternative
choice, which declares the range between a variation point
and its variants. The constraint dependency distinguishes
an requires and an excludes dependency between variants,
variation points and variants to variation points. An requires
constraint dependency indicates that a variability is depen-
dent on another variability, and an excludes constraint de-
pendency defines that a variability has to eliminate another
variability if it is selected.

3 A UML Profile for Variability Models

Referring to section 2, variability modelling is a domain
specific modelling technique, that has no MOF-compliant
metamodel for integration for instance into another mod-
elling framework. The Meta-Object-Facility (MOF) is the
four-layered metamodelling architecture of the OMG [4].
If a modelling technique has a MOF-compliant metamodel,
then a UML Profile can be easily created, because UML
offers a possibility to extend and adapt its metamodel to
a specific area of application with profiles. A profile can
extend a metamodel or another profile [6] while preserv-
ing the syntax and semantic of existing UML elements. It
adds stereotypes which extend existing classes. Further-
more it specifies constraints and tagged values. A stereo-
type is a model element defined by its name and by the

base class(es) to which it is assigned. Base classes are usu-
ally metaclasses from the UML metamodel, for instance the
metaclass ”Class”, but can also be stereotypes from another
profile. In this profile the metaclasses from Classes are ex-
tended to describe the different stereotypes. Also a stereo-
type can have its own graphical notation.

3.1. The extended metamodel with variabil-
ities

A UML 2 class diagram describes the structure of a sys-
tem that needs to be designed. It shows the main static prop-
erties as well as the possible relationship among each other
of such a system, though it has no possibility to show the
variabilities of a system. Therefore a section of the class
diagram will be used as metaclasses to define a UML 2 pro-
file for Variability Models for introducing variability con-
cepts in UML. Figure 2 illustrates a section of the UML
metamodel for Classes and its extension with stereotypes
for representing variation points, variants, and their rela-
tionships among each other. The grey rectangles are the
highlighted stereotypes of the profile. Furthermore we use
the same icons for presenting the UML profile graphically
as the variability model according to Pohl et al. [7] does.

3.2. Description of stereotypes

In a variability model a �variation point� marks out
the different set of options such a model has. The OMG
has defined a class as “a set of objects that share the same
specifications of features, constraints, and semantics. Its
purpose is to specify a classification of objects and to spec-
ify the features that characterize the structure and behavior
of those objects.” [6]. Therefore, classes are the appro-
priate metaclasses for describing the stereotype�variation
point� and its characteristics, because a variation point de-
scribes like a class common properties of instances. Fur-
thermore a subclass is a child from another class in a gen-
eralization relationship. A subclass inherits the structure,
relationship and behaviour of its superclass and may add to
it. The stereotype�variant� is a representation of a par-
ticular entity, and so far an extension of a subclass.

The different variability dependencies of a variabil-
ity model, namely �mandatory�, �optional�, and
�alternative choice� extends the metaclasses generalisa-
tion and generalisationSet to describe these different types
of stereotypes. A generalisation is defined as a taxonomic
relationship between a more general classifier and a more
specific classifier, for example from a class to its superclass
[6]. Each instance of the specific classifier is also an in-
direct instance of the general classifier. Thus, the specific
classifier inherits the features of the more general classi-
fier. A generalisationSet defines a specific set of generali-

2



Figure 1. MOF-compliant metamodel of the variability model

Figure 2. extended UML Class Metamodel with Variabilities

sation relationships. The metaclass describes how a general
classifier (or superclass) may be divided using specific sub-
types. Furthermore it has two metattributes with boolean
values, namely isCovering and isDisjoint. If isCovering is
true, then the generalisation set is complete, otherwise it is
incomplete. On the other hand if isDisjoint is true, then
the the generalisation set is disjoint, otherwise it is over-
lapping. Table 1 shows the different characteristics of vari-
ability dependencies with their multiplicities and how they
could be described with the appropriate generalisationSet
corresponding to the UML profile including examples to
each couple. When isCovering is true, then every instance
of an superclass has to be an instance of at least one of its
subclasses at the same time. If isDisjoint is true, then every
instance of a superclass corresponds only to one subclass.
The overall multiplicity for the couple {complete, disjoint}
is 1, that is the same like the multiplicity of the mandatory
relationship, because it is defined that a variation point has
to select the variant if it is part of the business process. For

instance, the example in table 1 shows that a door lock can
only be opened if a fingerprint and an eye-scan will be ac-
complished. But if isCovering is false, then a superclass
can have more instances that do not correspond to the de-
clared subclasses. This means the overall multiplicity for
{incomplete, disjoint} is 0 to 1. This means that for exam-
ple the color of a car can be either red or blue, or can have
a different color. The alternative choice corresponds to that,
because in such a relationship a group of variants can but
do not need to be a part of the business process. If isDis-
joint is false, then an instance of a superclass can have more
then one related subclasses. The combination {complete,
overlapping} is on a par with the alternative choice with the
multiplicity 1 to *, which means that a variation point has to
select at least one variant. On the one hand side a calendar
entry can be a todo list, a date reminder or both.On the other
hand side, the optional variability dependency defines that
a variation point can select none, one or more variants, that
is the multiplicity 0..*, the same like for the generalisation

3



Table 1. variability dependency and generalisation set
var. dependency mult. generalisation set Class Diagram UML Profile

Mandatory 1 {complete, disjoint}

Alternative 0..1 {incomplete, disjoint}

Alternative 1..* {complete, overlapping}

Optional 0..* {incomplete, overlapping}

couple {complete, overlapping}. An example would be that
an operating system on a computer can be Win XP or Mac
OS X, both of them, or a different one.

The variability constraint dependencies �requires�
and �excludes� between the stereotypes of �variation
point�, �variation point� and �variant�, as well as
stereotypes of�variant� are defined by the metaclass de-
pendency. With a dependency it is possible to show that
an element, called client, is dependent on another element,
called supplier. Dependencies are shown as dashed arrows.
The model element at the tail of the arrow (the client) de-
pends on the model element at the arrowhead (the sup-
plier). The arrow may be labelled with an optional stereo-
type and an optional name. The �requires� stereotype
defines that a client needs the consideration of a supplier.
The �excludes� stereotype declares that a client excepts
the consideration of a supplier.

4 Constraints

Constraints are applied to stereotypes in order to indi-
cate restrictions. Constraints can be expressed in any lan-
guage, such as programming languages or natural language.
We use the Object Constraint Language (OCL) [5] in our
profile, as it is more precise than natural language or pseu-
docode, and widely used in UML profiles. Tagged values
are additional meta-attributes assigned to a stereotype, spec-
ified as name-value pairs. They have a name and a type and
can be used to attach arbitrary information to model ele-
ments. Table 2 shows the stereotypes of the profile with its
base classes, tagged values and constraints.

5 Mapping the Profile to Activity Diagrams

Variability models show the different variabilities of a
software. Activity Diagrams are a part of the behavioural
set of UML 2 diagrams, and are used for modelling business
processes as well as for describing control flows in software.

On the one hand side variability models show the dif-
ferent variabilities of a software. On the other hand side
UML 2 Activity Diagrams show the control and data flow
between different tasks. The outcome of this is, that the two
modelling techniques describe the same business case but
the variability model describes the structural view and the
activity diagram the bahavioural view. What we see here is
that we need a mapping between these metamodels to ex-
amine in which way they are related to each other. Table 3
shows the mapped elements, with the variability metamodel
on the left and the activity metamodel on the right.

A variant is fits to an action, because both describe an
atomic task. Owing to that an activity partition is a kind of
activity group for identifying actions that have some char-
acteristic in common, it is mapped to a variation point, be-
cause it describes common properties of variants.

The optional variability dependency defines that a varia-
tion point can select none, one or more variants. Therefore
this variability dependency is related to a fork node which
decomposes one incoming flow in several concurrent out-
coming flows and a join node, which synchronizes the sev-
eral incoming flows. With additional guards on the flows it
can be chosen if none, one, or more paths will be selected.
The problem is that an activity diagram has no mechanism
to integrate a default path, which would be necessary if no

4



Table 2. Stereotype Definitions of the UML
Profile for Variability Models

Name Variation Point
Base class Class
Description A variation point is a representation of a variable item of the real world.
Constraints A variation point must have a superclass as a baseclass which is a role of a class.

context Variation Point inv:
class.superclass=true implies variation point

Name Variant
Base class Class
Description A Variant is a representation of a particular instance of the stereotype variation point.
Constraints A variant must not have a superclass as a baseclass which is a role of a class.

context Variant inv:
class.superclass=false implies variant

Name Mandatory
Base class GeneralisationSet
Description A variant must be selected for an business process if and only if the associated variation point

is part of the business process.
Constraints If the variability dependency is mandatory, then metaattributes isCovering and isDisjoint of the

metaclass GeneralisationSet are true.
context Variability Dependency inv:
if self.Mandatory=true then
self.GeneralisationSet.isCovering=true and
GeneralisationSet.isDisjoint=true

Name Optional
Base class GeneralisationSet
Description A variant can but does not need to be part of a business process.
Constraints If the variability dependency is optional, then metaattributes isCovering and isDisjoint of the

metaclass GeneralisationSet are false.
context Variability Dependency inv:
if self.Optional=true then
self.GeneralisationSet.isCovering=false and isDisjoint=false

Name Alternative Choice
Base class GeneralisationSet
Description The alternative choice groups a set of variants that are related through an optional variabil-

ity dependency to the same variation point and defines the range for the amount of optional
variants to be selected for this group.

Tagged Values min, max
Type: UML::Datatypes::Integer
Multiplicity: 1
Description: Min and max stands for the range of a relationship between variation

points and variants.
Constraints If the variability dependency is an Alternative Choice and the range is or smaller then 1, then

the metaattribute isCovering is false and isDisjoint is true of the metaclass GeneralisationSet.
Else if the tagged values of the alternative choice are min = 1 and max = n, then then the
metaattribute isCovering is true and isDisjoint is false of the metaclass GeneralisationSet.
context Variability Dependency inv:
if self.Alternative Choice=true and size()=<1 then
self.GeneralisationSet.isCovering=false and isDisjoint=true
else if self.AlternativeChoice=true and
self.AlternativeChoice.min=1 and self.Alternative.max=n then
self.GeneralisationSet.isCovering=true and
GeneralisationSet.isDisjoint=false

Name Requires
Base class Dependency
Description The selection of a variability requires the selection of another variability.
Name Excludes
Base class Dependency
Description The selection of a variability excludes the consideration of another variability.

path will be selected, because in that case the business pro-
cess is terminated. To overcome this gap, it is necessary
that the user defines an additional control flow, for instance
a guard condition with an else statement.

The mapping of the alternative choice to an appropriate
element of the activity diagram depends on the range of the
variability dependency. If the range is 1 to *, then the alter-
native choice is mapped to a fork node to manage to concur-
rent flows, and closed with a join node for sychronisation of
the incoming flows. Additional guards on the flows specify
if one or more pathes will be selected. If the range is 0 to
1, then the alternative choice is mapped to a decision node
which specifies with guards that at most one outgoing edge
will be selected. Furthermore a merge node brings together
the alternative flows. The problem is similar to the mapping
of the optional variability dependency to activity diagrams.
Also for an alternative choice with the multiplicity 0 to 1
a default path is needed to unsure that the business process
does not terminate.

The requires and the excludes constraint dependency are

Table 3. Mapping Table from Variability Mod-
els to UML Activity Diagrams

Left MM Class Right MM Class
Variation Point Activity Partition
Variant Action
Mandatory Fork Node - Join Node
Optional Fork Node - Join Node
Alternative Choice [1..*] Fork Node - Join Node
Alternative Choice [0..1] Decision Node - Merge Node
requires Control Flow
excludes Control Flow - Decision Node

both mapped to the control flow, independent whether if the
dependency is between variants, variation points, or vari-
ants and variation points. In any case these elements are
mapped as described above. Furthermore the excludes con-
straint dependency needs a decision node for its mapping
to activity diagrams that the action that should be avoided
cannot be executed.

6 Applying the UML Profile and its Mapping
to an Example Business Process

We demonstrate the practical applicability of the UML
profile for variability models and the dependency onto ac-
tivity diagrams in figure 4 and 3. This small section of an
example business process is part of the inventory process of
a real international logistic company.

The variation point inventory accomplishment is distin-
guished between two types of inventory, permanent inven-
tory and periodical inventory. An inventory accomplish-
ment can be a permanent or a periodical inventory or both
of them, when the two procedures overlap. Our example
process is focused on the variant of the periodical inven-
tory. It requires the variation point base of inventory, which
has a mandatory relationship to the variant inventory re-
quirements. It needs the variation points inventory records,
behaviour of logistics execution and generation of appoint-
ment for further processing. For the generation of appoint-
ment the number of positions of the inventory goods can but
need not to be used. The behaviour of the logistics execu-
tion depends whether a printing device or an electronic
device or both of them are required. For further process-
ing the variant printing device needs a special type of an
inventory record, namely list, and the variant electronic de-
vice needs radio.

As the activity diagram example in figure 3 shows, every
variation point of figure 4 has its corresponding activity par-
tition, and every variant has its corresponding action. The
whole business process is covered by the activity partition
inventory accomplishment, which corresponds to the root

5



Figure 3. Example Business Process based on the Mapping

variation point in figure 4. The activity diagram starts with
the action creating periodical inventory work order, fol-
lowed by examining inventory requirements. Both are part
of the activity partition base of the inventory, because the
action creating periodical inventory work order requires the
base of the inventory. If it is selected, then the inventory
requirements continues with further processing. After
that it can be chosen if the input of the number of posi-
tions of the inventory goods is desired or not, which is part
of the generation of appointment. Afterwards the process
continues with the decision if the behaviour of logistics ex-
ecution process proceeds with the processing the inventory
charge with printing devices or electronic devices or both of
them. The process ends with the processing of the inventory
records, distinguished if the acquire of manual or electronic
inventory records or both of them is required.

7 Related Work

The most relevant approaches in the global area of vari-
ability modelling will be presented now.

Rosemann et al. [8] proposed in their work configurable
Event-Driven Process Chains (EPCs) as an extended refer-
ence modelling language. The difference to our approach
is, that we do not want do describe the configurability of a
certain business process modelling language. Furthermore
we also consider the dependencies between structural and
behavioural modelling techniques.

Clauss [2] introduces a UML extension to support fea-
ture diagrams which are an extension for the explicit repre-
sentation of variation points. While Clauss integrates fea-
ture models in UML diagrams like the Use Case Diagram,
our approach extends the UML metamodel to integrate vari-
ability models into UML.

Becker [1] developed a general metamodel for variability
models on an examination of the most common concepts in
variability modelling. This work describes variability mod-
els on a high-level. Our approach goes with the develop-
ment of an UML-profile and the mapping to a business pro-
cess modelling language more in detail.

8 Conclusion

We have presented a UML 2 profile for variability mod-
els to integrate the best concepts of variabilities and class

Figure 4. Example of a UML Profile for Vari-
ability Models

diagrams in one model to overcome the gaps that variabil-
ity models have no extension mechanism and no tool sup-
port. The UML profile for variability models can be easily
created, presented and edited with almost all newer UML
modelling tools. Moreover, we have shown the dependency
between the UML profile and UML 2 activity diagrams, to
make the relationship between structural models and be-
havioural models in all stages of the software developing
process visible. The UML profile and its mapping were
tested with an example business process.

References

[1] M. Becker. Towards a General Model of Variability in Product
Families. In First workshop on Software Variability Manage-
ment, 2003.

[2] M. Clauß. Modeling variability with uml. GCSE 2001 Young
Researchers Workshop.

[3] M. Hitz, G. Kappel, and W. Retschitzegger. UML @ Work.
dpunkt.verlag GmbH Heidelberg, 2005.

[4] OMG. MOF 2.0 Specification. http://www.omg.org, 2005.
[5] OMG. OCL 2.0 Specification. http://www.uml.org, 2005.
[6] OMG. UML 2.0 Superstructure. http://www.uml.org, 2005.
[7] K. Pohl, G. Böckle, and F. van der Linden. Software Product

Line Engineering. Springer-Verlag Berlin Heidelberg, 2005.
[8] M. Rosemann and W. van der Aalst. A configurable reference

modelling language. Information Systems, 32:1–23, 2007.
[9] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a UML

Profile for Software Product Lines. In Software Product-
Family Engineering, 5th International Workshop, pages 129–
139. Springer, 2003.

6


