Data warehouse and knowledge discovery (DAWK05)

Editorial

Since 1999, the aim of the International Conference on Data Warehousing and Knowledge Discovery (DAWK) is to bring together researchers, developers, and practitioners to discuss recent issues and experiences in data warehousing and knowledge discovery. This conference provides a forum for researchers, practitioners, and developers to present their work and exchange ideas on the latest developments and applications in the field.

The conference covers a wide range of topics, including data warehousing, knowledge discovery, data mining, and business intelligence. It attracts researchers, practitioners, and industry professionals from around the world who share their knowledge and experiences in these areas.

The 2005 edition of the conference was held in [Location]. The conference received a high number of submissions from across the globe, demonstrating the growing interest in the field.

This year's edition of DAWK includes contributions from industry leaders and academics, with a focus on providing a platform for the latest research and developments in data warehousing and knowledge discovery.

The conference is a great opportunity for attendees to network with other professionals, share knowledge, and learn about the latest trends and technologies in the field.

For more information, visit the official website of the conference: [DAWK Conference Website].
The paper entitled, "AN Algorithm for Discovering Active Temporal Association Rules," was presented in [Proceedings of the ACM SIGMOD Conference, 1994].

The algorithm, referred to as ANADA, utilizes a stratified approach to discover active temporal association rules. It operates by first identifying potential association rules based on historical data. Then, it filters these rules to identify those that are active over time, meaning they exhibit a significant change in behavior over the time period under consideration. This approach allows for the discovery of rules that are not only present in the data but also relevant to understanding changes in the underlying patterns.

The algorithm is designed to be efficient, with a time complexity of \(O(n \log n) \), where \(n \) is the number of transactions. This efficiency is achieved through the use of a data structure that allows for quick access to the necessary information. The algorithm also includes a mechanism for pruning inactive rules, which helps in reducing computational overhead.

In summary, ANADA provides a scalable and effective method for discovering temporal association rules, which is particularly useful in applications requiring analysis of data over time, such as market basket analysis or monitoring of network traffic patterns.