Survey on an Asymptotic Description of (Marginally) Separating Turbulent Boundary Layers

Applied Mathematics Seminar Series
School of Mathematics
The University of Manchester
September 27th, 2006 Manchester, U.K.

Bernhard Scheichl Alfred Kluwick

* This research has been granted by the Austrian Science Fund (FWF).
Basic assumptions and analysis

- nominally steady incompressible 2D TBL along solid surface $y = 0$
- no free-stream turbulence
- globally defined Reynolds number $Re = \frac{\bar{U} L}{\bar{v}} \rightarrow \infty$
- **Hypothesis**
 - layer of thickness Δ, assume local turbulent velocity scale $U_t \ll 1$:
 \[
 \frac{\partial u}{\partial y} = O\left(\frac{U_t}{\Delta}\right) \Rightarrow -\langle u'^2 \rangle, -\langle v'^2 \rangle, -\langle u'v' \rangle = O\left(U_t^2\right)
 \]
 \[
 \Rightarrow 1 - \frac{u}{u_e} \ll 1
 \]
 - overlap: log-law
 \[
 \frac{\partial u}{\partial y} \sim \frac{U_t}{\kappa y}, \quad U_t = u_{\tau} = \sqrt{\tau_w}
 \]
 - near-wall scaling $u = O(u_{\tau})$ from match with fully turbulent region!
Axiomatic reformulation of **classical** asymptotic theory

... by adopting a minimum of assumptions:

- outer main regime: velocity defect $1 - u/u_e \ll 1$
- viscous wall layer:

 order-of-magnitude analysis \Rightarrow velocity scale $u_\tau \Rightarrow$ log-law

 $$u^+ = u/u_\tau \sim \kappa^{-1} \ln y^+ + C^+, \quad y^+ = yu_\tau/\tilde{\nu} \to \infty$$

- common overlap \Rightarrow **two-tiered** TBL:

 $$\gamma = u_\tau/u_e \sim \kappa/\ln Re, \quad \delta = O(\gamma)$$

 $$1 - u/u_e \sim \gamma(x) F'(x, \eta), \quad -\langle u'v' \rangle \sim \gamma(x)^2 T(x, \eta), \quad \eta = y/\delta(x)$$
Extensions/shortcomings of small-defect approach

• 3D TBL, flow near plane of symmetry
 Degani, Smith & Walker 1992, 1993

• compressible TBL Walker 1995

• weak viscous/inviscid interaction:
 ◇ flow past trailing edge of aligned flat plate
 ◇ TBL over humps Sykes 1980
 shock wave impingement
 Adamson & Feo 1975, Melnik & Grossman 1976,
 compression corner flow Agrawal & Messiter 1984
 small-defect assumption prevents separation
 ◇ bluff-body separation Neish & Smith 1992
 separation at rear stagnation point
 ◇ TBL exposed to smooth APG Neish & Smith 1992, Scheichl 2001
 separation not provoked at all

• Wall layer dynamics for attached time-mean flow Walker 1989
Extended small-defect theory – multi-valued solutions

- **viscous wall layer:** \(\delta_v \sim (Re \, u_\tau)^{-1} \), \(u_\tau^2 = Re^{-1} \partial u / \partial y|_{y=0} \) \(U_t = u_\tau \)

- **defect region:** \(D = 1 - u/u_e \ll 1 \)

 (i) **classical theory:** two-tiered \(U_t = u_\tau \) \(D = O(U_t) \)

 (ii) **extended theory:** three-tiered (Scheichl & Kluwick 2004)

 \[\begin{align*}
 & \text{intermediate layer: } U_t = u_\tau \\
 & \text{outer layer: } U_t \gg u_\tau \quad D = O(U_t) \quad Re^{-1} = 0 ? \\
 & \text{quasi-equilibrium flow: } u_e \propto x^m, \quad m = -1/3 + \mu, \quad (U_t, \mu) = O(u_\tau^{2/3})
 \end{align*} \]

- \(D = O(1) \Rightarrow \) slenderness parameter \(0 < \alpha \ll 1 \) as \(Re^{-1} = 0 \)
Serious shortcoming of small-defect approach

... with respect to (marginal/internal) separation:

- \(\frac{d p_e}{d x} = -u_e \frac{d u_e}{d x} = O(1) \), continuous

- separation \(\Rightarrow \) need for region where \(D = 1 - \frac{u}{u_e} = O(1) \)

- assumption of small defect \(D = O(\epsilon) \ll 1 \) in outermost region...

\[
1 - \frac{u}{u_e} \sim \epsilon F'(x, \eta) + \cdots, \quad \langle u'v' \rangle \sim \epsilon^2 T(x, \eta) + \cdots, \quad \delta \sim \epsilon \Delta(x) + \cdots, \quad \eta = \frac{y}{\delta},
\]

- \(\cdots \) yields \(\frac{u_\tau}{u_e(x)} \sim \frac{\kappa}{\ln \text{Re}} \) due to log-law,

- \(\cdots \) does not allow for necessary growth of its order of magnitude!

- physical interpretation:

 insufficient vorticity transfer from wall layer via log-law \(\Rightarrow \)
 outer region governed by Bernoulli's law \(\Rightarrow \) no flow reversal!

- consequence: small-defect TBL does not separate at all

case: bluff-body separation

experiments: break-away separation

transition

≈ 110°

free shear layer

locally \(D = O(1) \)

(Neish & Smith 1992)

attached bulk flow ⇒ Goldstein-type singularity at \(G \)

• fundamental question: velocity defect \(1 - \frac{u}{u_e} = O(1) \): \(\alpha(Re) = ? \)
Shear layer approximation

- expansions for $\alpha \to 0$:

$$\psi \sim \alpha \Psi(x,Y), \quad -\langle u'v' \rangle \sim \alpha T(x,Y), \quad \delta \sim \alpha \Delta(x), \quad y = \alpha Y$$

- BL equations:

$$\frac{\partial \Psi}{\partial Y} \frac{\partial^2 \Psi}{\partial Y \partial x} - \frac{\partial \Psi}{\partial x} \frac{\partial^2 \Psi}{\partial Y^2} = u_e \frac{du_e}{dx} + \frac{\partial T}{\partial Y}, \quad T = \ell^2 \frac{\partial^2 \Psi}{\partial Y^2} \bigg|_{\partial^2 \Psi}$$

- wake-type boundary conditions:

$$(\partial \Psi / \partial Y)[x, \Delta(x)] = u_e(x), \quad \Psi(x,0) = T[x, \Delta(x)] = 0$$
Large velocity defect: BL slenderness α depends on Re ?

- **yes:** Sychev & Sychev (1980ies): mismatch encountered!
- **no:**
 - Schneider (1991): free shear layers
 - Scheichl & Kluwick (2006):
 \[U_t = O(1) \Rightarrow \text{no small turbulent velocity scale} \]
 \[\Rightarrow \text{most general structure of TBL, based on dynamical considerations (coherent motions)} \]

- note:

 \[\varepsilon \sim Re^{-1} \left< \frac{\partial u'_i}{\partial x_i} \frac{\partial u'_j}{\partial x_j} \right> = O(1) \]

 \[k - \text{budget: } \varepsilon \sim -\langle u'v' \rangle \frac{\partial u}{\partial y} - \frac{\partial \langle (k + p')v' \rangle}{\partial y}, \quad k = \frac{u'^2 + v'^2 + w'^2}{2} \]
General asymptotic structure of APG-TBL flows

- order-of-magnitude analysis: rotational part of u of $O(U_t)$, $U_t = u_\tau$
- viscous wall layer: $\delta_v \sim (Re \ u_\tau)^{-1}$
- intermediate layer: $\delta_\tau \sim \tau$, transition from log- to half-power-law:

$$
\eta \propto \frac{y}{u_\tau^2}, \quad \frac{-\langle u'v' \rangle}{u_\tau^2} \sim 1 + \eta, \quad u - U_s(x) \sim u_\tau \ U(x,\eta) \sim \frac{1}{\kappa} \begin{cases}
\ln \eta, & \eta \to 0 \\
2\sqrt{\eta}, & \eta \to \infty
\end{cases}
$$
BL solutions: marginally separated flows

APG controlled by parameter: $u_e(x; \beta)$

laminar (Ruban 1981)

<table>
<thead>
<tr>
<th>τ</th>
<th>δ^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>2.6</td>
</tr>
<tr>
<td>0.15</td>
<td>2.2</td>
</tr>
<tr>
<td>0.05</td>
<td>1.8</td>
</tr>
</tbody>
</table>

symmetric

marginal-separation singularity for $\beta = \beta_M$,
solution linearized around separating profile upstream and downstream

nonlinear downstream wake

weak Goldstein singularity for $\beta > \beta_M$

turbulent (Scheichl & Kluwick)

<table>
<thead>
<tr>
<th>Δ</th>
<th>U_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
</tr>
</tbody>
</table>

asymmetric!
Canonical local representation: bifurcating flows

local variable \(s = x - x_M \to 0 \)

upstream shift \(\epsilon \propto \tilde{s} - s = O(-1/\ln |\beta - \beta_M|), \beta - \beta_M \to 0 \)

inner scaling \(X = \tilde{s}/\epsilon^2, \bar{Y} = Y/\epsilon^{2/3}, \bar{U}_s \propto U_s/\epsilon, \bar{T} \propto T/\epsilon^{2/3} \)

exponential branching

\[\bar{U}_s, \bar{T} - \bar{Y} \to \bar{A}, \bar{Y} \to \infty \]

- downstream: locally infinite acceleration (cf. Messiter 1970)
 \[\bar{A} \sim 1.0386 \ldots X^{1/3}, \bar{U}_s \sim 1.1835 \ldots X^{1/2}, X \to \infty \]

- upstream: induced favorable pressure \(\Rightarrow \) decreasing \(\tilde{U}_s \)
Local interaction theory: marginal separation

- singularity of BL solutions: \(u_e = u_{e,M}(x) \Rightarrow U_s(x_M) = 0 \)
- \(\hat{s} = x - x_M + O(\epsilon), \quad \epsilon \propto -1/\ln |u_e(x_M) - u_{e,M}(x_M)| \to 0_+ \)

Induced pressure feedback \(\sigma \tilde{P}(\hat{X}) \) acting along \(\hat{s} = \sigma \hat{X} \) ...

\[y = \delta = O(\alpha) \]

\(\alpha^{3/2} \)

\(\alpha \sigma^{1/3} \)

\[\sigma \]

\(0 \)

\(\hat{s} \)

\(1 \geq \Gamma \geq 0 \)

\(\epsilon^2 \leq \sigma = (\epsilon/\Gamma)^2 \leq \alpha^{3/5} \)

- upper deck UD: \(p = P_M + \sigma [P_M' \hat{X} + \Lambda(\Gamma) \tilde{P}(\hat{X})] + \cdots \)
- main deck MD: \(\psi/\alpha = \Psi_M(Y) + \sigma^{1/3} \ell_{0,M}^{2/3} \hat{A}(\hat{X}) \Psi_M'(Y) + \cdots, \quad Y = y/\alpha \)
- lower deck LD: \(\hat{P} = -\mathcal{H}\{\hat{A}'\} \) enters resulting interaction problem
Outer wake: triple-deck solutions

- central FDs, algebraic eqs solved directly (Powell’s hybrid method)

 boundary condition for $\hat{X} \to -\infty$: $\hat{U}_s \to \Gamma$

$\Lambda = 3, \Gamma = 0.019$

- small second bubble upstream for $0.016 \ldots \leq \Gamma \leq 0.019 \ldots$

- $\Gamma \to 0$: exponentially bifurcating eigensolutions vanish, $L \to \infty$

- $\Lambda \to 0$: BL solution – and massively separated solution for $\beta > \beta_M$?
Triple-deck solutions, cont’d

- effect of sublayers near surface on separating solutions?

overall slip velocity \(u_s(x, \alpha) = \sigma^{1/2} \hat{U}_s(\hat{X}) + O(\alpha^{3/4}) \) ⇒ breakdown

\[\text{LD, } \hat{\Psi} = \text{const}: \] \(\Lambda = 3, \Gamma = 0.019 \)

small bubble, \(L \to 0: \)

- inner wake, \(\hat{X} - \hat{X}_0 = O(L), \) \(L = O(\alpha^{9/40}), \) \(\Gamma \approx 0.205: \)

\[-\partial \langle u'v' \rangle / \partial y \sim P_0, \] \(\partial p/\partial x \sim P_0 = P_M' + \Lambda(\Gamma) \hat{P}'(\hat{X}_0) \) governs reverse-flow,

- smoothly separating solution, \(\text{log-law} \leftrightarrow \text{half-power law!} \)
Gradual transition from log-law to half-power law

- Viscous wall layer \(u_\tau \gg Re^{-1/3} \)

\[
u / u_\tau \sim u(x,y^+) + \cdots, \quad -\langle u'v' \rangle / u_\tau^2 \sim \tau^+(x,y^+) + \cdots, \quad y^+ = y u_\tau Re
\]

Log-law:

\[
u \sim A^+(x) \ln y^+ + B^+, \quad y^+ \to \infty
\]

\(\text{sgn}(A^+) = \text{sgn}(\tau_w), \quad \tau_w > 0 : \quad A^+ = \kappa \)

Skin friction law:

\[
u_\tau / u_s \sim A^+ / \ln(u_\tau^3 Re)
\]

- Viscous wall layer \(u_s, u_\tau = O(Re^{-1/3}) \)

\[
u / u_p \sim u(p^x, y^x) + \cdots, \quad -\langle u'v' \rangle / u_p^2 \sim \tau^x(p^x, y^x) + \cdots, \quad y^x = y u_p Re,
\]

\[
p^x = \text{sgn}(\tau_w) (u_p / u_\tau)^3, \quad u_p = (P_0 / Re)^{1/3}
\]

Half-power law:

\[
u \sim A^x(p^x) \sqrt{y^x} + B^x(p^x), \quad y^x \to \infty
\]

Skin friction law:

\[
u_s / u_p \sim B^x(p^x) \ldots \text{separation!}
\]
Turbulent gross separation – preliminary results

\[\psi > 0, \nabla^2 \psi = 0 \]
\[\alpha, \ \Delta p = O(a)! \]
\[u(x, y = 0) = u_e \]
reference: \[u_0 = 1 \]

- **inviscid-flow** theory (including rotational backflow):

 \[\frac{\partial p}{\partial x}(x, y = 0) = k (-x)^{-1/2} + \frac{16}{3} k^2 + O((-x)^{1/2}), \quad k \geq 0, \quad x \to 0_– \]

- **formal limit** \[Re^{-1} = 0, \ \alpha \to 0 \]: Brillouin–Villat condition \(k = 0 \) not met!

\[p(x, k) - p(0, k) \]
\[U_s(x, k) \]
Further outlook

- basic hypothesis for TBL scaling derived from first principles: multiple-scales analysis of Navier-Stokes eqs as $\alpha \to 0$
- closed reverse-flow region: $A^+(x), B^+(x)$
- extended skin-friction formula: $B^\times(p^\times)$
- global separation