PROCEEDINGS
INTERNATIONAL CONFERENCE ON
COMPETITIVE MANUFACTURING

COMA '07
The Challenge of Digital Manufacturing

31 JANUARY - 2 FEBRUARY 2007
STELLENBOSCH, SOUTH AFRICA

Organised by
Departments of Industrial Engineering & Mechanical Engineering
PROCEEDINGS

International Conference on Competitive Manufacturing

COMA '07

31 January – 2 February 2007

Organised by

Departments of Industrial Engineering and Mechanical Engineering

Editor: Dimitri Dimitrov
About CIRP

CIRP was founded in 1951 with the aim to address scientifically, through international cooperation, issues related to modern production science and technology. The International Academy of Production Engineering takes its abbreviated name from the French acronym of College International pour la Recherche en Productique (CIRP) and includes ca. 500 members from 46 countries. The number of members is intentionally kept limited, so as to facilitate informal scientific information exchange and personal contacts. In a recent development, there is work under way to establish a CIRP Network of young scientists active in manufacturing research.

CIRP aims in general at:
- Promoting scientific research, related to
 - manufacturing processes,
 - production equipment and automation,
 - manufacturing systems and
 - product design and manufacturing
- Promoting cooperative research among the members of the Academy and creating opportunities for informal contacts among CIRP members at large
- Promoting the industrial application of the fundamental research work and simultaneously receiving feedback from industry, related to industrial needs and their evolution.

CIRP has its headquarters in Paris, staffed by permanent personnel and welcomes potential corporate members and interested parties in CIRP publication and activities in general.

Foreword

Welcome to this third International Conference on Competitive Manufacturing hosted by the University of Stellenbosch and organised jointly by the Departments of Industrial Engineering and Mechanical Engineering.

In a small world where global trade is the new driving force conquering countries and continents alike, international competitiveness is becoming the ultimate challenge of the new millennium. It requires high quality products manufactured with state-of-the-art technologies at low cost under the assumption of highly efficient operations management as well as clear corporate goals and strategy. This in turn is facilitated by and dependent on improved engineering training, education, and relevant applied research, fueled by active interaction between academia and industry.

The main objective of the International Conference on Competitive Manufacturing (COMA '07) is to present recent developments, research results and industrial experience accelerating improvement of competitiveness in the field of manufacturing. The 70 papers selected to be delivered at the Conference deal with wide aspects related to rapid product development, agile manufacturing, operations management as well as enterprise design and integration. The worldwide participation and range of topics covered indicate that the Conference became truly a significant meeting of people striving similar aims. The event is an additional opportunity for communication between paper authors and attendees, which undoubtedly will serve as a further step towards exciting developments in the future. It also provides ample opportunities to further exploit international collaboration.

The Chairman and the Organising Committee express heartfelt thanks and gratitude to the Members of the International Programme Committee, who have given their help and expertise in refereeing the papers and will chair the technical sessions during the Conference, as well as to the authors for participating and ensuring that the high standards required on an International Conference were maintained. These thanks and gratitude is extended to our highly regarded keynote speakers.

The Chairman conveys sincere thanks to the conference sponsors for their generous support, which made this event possible, as well as to our exhibitors.

The International Academy of Production Engineering (CIRP) and the South African Institution of Mechanical Engineering are gratefully acknowledged for the scientific sponsorship given to the Conference.

Finally, the tremendous effort of the Organising Committee is appreciated. Grateful thanks are due particularly to the Conference Secretariat for ensuring the success of COMA '07.

We hope that you will find the Conference interesting and stimulating!

Prof. DM Dimitrov
Conference Chairman
ACKNOWLEDGEMENTS

Sincere thanks to our distinguished sponsors, whose generous support has contributed to success of the Conference

National Research Foundation

International Academy of Production Engineering

The South African Institution of Mechanical Engineering

KWV ESTABLISHED 1918

DISTELL

Sasol reaching new frontiers

DALIFF PRECISION ENGINEERING (PTY) LTD

INDU TECH Your Key to Manage Innovation

RGC Engineering Sales Division

amts advanced manufacturing technology strategy

UNIVERSITEIT. STELENBOSCH. UNIVERSITY
jou kennisvennoot • your knowledge partner

vii
Conference Chairman

D Dimitrov - Stellenbosch University, South Africa

Co-Chairmen

AH Basson - Stellenbosch University, South Africa
ND du Preez - Stellenbosch University, South Africa
CJ Fourie - Stellenbosch University, South Africa

International Programme Committee

AH Basson, Stellenbosch University, South Africa
A Bernard, IRCCYN-Nantes, France
H Bley, Saarland University, Germany
D Cattrysse, KULeuven, Belgium
L Cser, Corvinus University of Budapest, Hungary
ND du Preez, Stellenbosch University, South Africa
W Eversheim, Aachen University of Technology, Germany
CJ Fourie, Stellenbosch University, South Africa
M Geiger, University of Erlangen, Germany
M Janssens, Materialise, Belgium
HJJ Kals, University of Twente, The Netherlands
F Klocke, Aachen University of Technology, Germany
T Knothe, FhG-IPK Berlin, Germany
D Kochan, APT, Germany
J-P Kruth, KULeuven, Belgium
G Levy, University of Applied Sciences, St. Gallen, Switzerland
MC Leu, University of Missouri-Rolla, USA
D Luttorf, University of Twente, The Netherlands
R Neugebauer, Technical University of Chemnitz, Germany
J Ni, University of Michigan, USA
W Sihn, Technical University of Vienna, Austria
V Stich, Aachen University of Technology, Germany
R Teti, University of Napoli, Italy
D Tchakarsky, Technical University of Sofia, Bulgaria
H van Brussel, KULeuven, Belgium
FJAM van Houten, University of Twente, The Netherlands
E Westkämper, University of Stuttgart, Germany

Organizing Committee

N de Beer - Stellenbosch University, South Africa
N Treurnicht - Stellenbosch University, South Africa
C Schutte - Stellenbosch University, South Africa
A van der Merwe - Stellenbosch University, South Africa
K von Leipzig - Stellenbosch University, South Africa

Conference Secretariat

Marilie Oberholzer - Stellenbosch University, South Africa
Karina Smith - Stellenbosch University, South Africa
Anèl Uys - Stellenbosch University, South Africa
Table of Contents

Plenary Session: Innovative Manufacturing – State of the Art

Virtual Factories Between Clusters and Joint Ventures
G Schuh, M Schönung
Aachen University of Technology, Germany..3

Rapid Product Development – From Rapid Prototyping to Rapid Manufacturing
G Levy
University of Applied Sciences, St Gallen, Switzerland...11

Plenary Session: Intelligent Manufacturing Systems

Development and Design of Compact High Precision Machine Tools
C Brecher, R Klar, G Wenzel
Aachen University of Technology, Germany..25

Three-Dimensional Optical Measurements for Automotive Manufacturing
Z Huang, AJ Shih, J Ni
Conexx Inc., Ann Arbor, Michigan, USA
University of Michigan, Ann Arbor, USA...35

Plenary Session: The Way Ahead

International Collaboration in Applied Research – Fraunhofer and Manufuture
A Gossner
Fraunhofer-Gesellschaft, Munich, Germany...41

Managing the Knowledge Supply Chain to Support Innovation
ND du Preez, L Louw
Stellenbosch University, Stellenbosch, South Africa..65

STREAM A: RAPID PRODUCT DEVELOPMENT

Session A1: Product Modelling and Design Optimisation

Invited Paper: Design in the Era of Mass Customisation
FJAM van Houten
University of Twente, The Netherlands...61

Development of a High-Speed Sawing Machine through a Global Engineering Team
C Scheffer, DA Frew, T Valle França, M Del Guerra, JH Müller
Stellenbosch University, Stellenbosch, South Africa
Agência de Inovação Fabrica do Milenio
University of São Paulo, São Carlos, Brazil...101
Domain Integration by Means of Features
I Lutters-Weustink, D Lutters, FJAM van Houtan
University of Twente, Enschede, The Netherlands ... 107

Modelling of Thermal Stresses in Thermo-abrasive Blasting Nozzles
I Gorlach
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa 113

Session A2: Medical Applications of Rapid Technologies

Invited paper: Rapid Technologies in Medicine
M Janssens
Materialise, Belgium .. 119

New Developments in Application Rapid Manufacturing Process Chains in Medical Fields
I Dietrich, N Kochan, R Schonnerlein
University of Applied Sciences, Dresden, Germany
APT Dresden, Germany
GLASFOTO.COM Dresden, Germany .. 125

Platform Design for the Capillary Assembly by Optical Tweezers
C Tseng, H Hocheng, LS Fan
National Tsing Hua University, Hsinchu, Taiwan .. 131

Session A3: Competitive Tooling and Product Realisation

Invited Paper: Challenges for Tool Making Industries - a German Perspective
T Bergs
Fraunhofer Institute for Production Technologies (IPT), Aachen, Germany 137

Blow Moulding Process Performance Improvement using Conformal Cooling in Mould Design
D Dimitrov, A Bester
Stellenbosch University, Stellenbosch, South Africa .. 159

Edge Detection and Draft Angles in Feature Based Reverse Engineering
K Schreve, A Basson
Stellenbosch University, Stellenbosch, South Africa .. 165

Rapid Product Development Methodology and Technologies for Performance Improvement in Foundry Industry
A Bernard, N Perry
Ecole Centrale de Nantes, France .. 171
STREAM B: AGILE MANUFACTURING

Session R1: Intelligent Process Design

Invited Paper: Development of Process Chains for Micro-fabrication
A Schubert
Chemnitz University of Technology, Germany ..185

Mathematical Modelling of the Flow Behaviour of Hot Stamping Steels for a FE-based Process Design
M Merklein, M Geiger, J Leicher
University of Erlangen-Nuremberg, Germany ..191

Optimisation of Machining Parameters using Taguchi Design of Experiments Technique
A Dev, YS Negi, DK Dutta
Defence Electronics Applications Laboratory, Dehradun, India197

An Innovative Proposal for the Automated Manipulation of Products in Leather Industry
G Dini, F Faili, F Sebastiani
University of Pisa, Italy..205

Session B2: Innovative Processes Chain Optimisation

Invited Paper: Innovative Process Chain Optimization with TRIZ and TOC to Increase the Added Value within the Production
T Pfeifer, T Grundmann
Fraunhofer Institute for Production Technology IPT, Aachen, Germany...............211

Dual Sensor Quality Control and Reverse Engineering System for Agile Manufacturing Systems
G Bright, J Eganza
University of Kwa-Zulu Natal, South Africa ..217

Modular Mechatronic Control of Reconfigurable Manufacturing System for Mass Customization Manufacturing
B Xing, G Bright, N Tiale
University of Kwa-Zulu Natal, South Africa
CSIR, Pretoria, South Africa ...223

Solving a Real-World Three-Stage Two-Dimensional Bin Packing Problem
PY Tabakov, M Walker
Durban University of Technology, Durban, South Africa229
Session B3: Intelligent Manufacturing

Invited Paper: Molecular Dynamic Simulation of Plastic Material Deformation in Micro-Machining
JR Mayor, CJ Kim, J Ni
Georgia Institute of Technology, USA
SM Wu Manufacturing Research Center, University of Michigan ...235

Experimental Determination of Yielding of the Aluminium Wrought Alloy AA6016 for Biaxial Loading
W Hußnätter, M Merklein, M Geiger
Friedrich-Alexander-University of Erlangen-Nuremberg, Germany ...243

Mathematical Modelling of Thermal Area in Cutting Process
L Daschievici, D Ghelashe, I Gorlach, C Simionescu
University of “Dunarea de Jos” Galati, Romania
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa ...249

Industrial Drilling Process Optimisation by Intelligent Manufacturing System
GH Kruger, Tl van Niekerk
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa ...253

Session B4: Modern Manufacturing Concepts

Random Linear Problems in Manufacturing
I Deák, L Cser
Corvinus University of Budapest, Hungary ...259

A Model for XeF2 Isotropic Gaseous Chemical Milling of Silicon
G Floarea, I Stiharu, M Packirisamy
Concordia University, Montreal, Canada ...263

Modern Concepts for the Railroad Wheel Set Manufacturing and Maintenance
HJ Naumann
NILES-SIMMONS-HEGENSCHEIDT GmbH, Chemnitz and Erkelenz, Germany269

Session B5: Laser as Manufacturing Tool

Invited Paper: Lasers in Today’s Manufacturing
J Meijer
University of Twente, Enschede, The Netherlands ...279

Autonomous Production Cell for Laser Beam Welding
S Kaierle, M Dahmen, S Mann, R Poprawe
Department for Laser Technology, Aachen University, Aachen, Germany
Fraunhofer-Institute for Laser Technology, Aachen, Germany ...287

Improvement of the Surface Finish Obtained by Laser Ablation with a Nd: YAG Laser on Pre-ablated Tool Steel
J Steyn, K Naidoo, K Land
National Laser Centre, CSIR, Pretoria, South Africa ...293
Session B6: Software for Agile Manufacturing

Walking Worker Assembly Lines – A Contribution to Lean Production
H Bley, C Zenner, M Bossmann
Institute of Production Engineering / CAM, Saarland University, Saarbrücken...........297

Remote Maintenance of Manufacturing Systems via Internet
G Gruhler, T van Niekerk, T Hua
Reutlingen University, Germany
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.....................303

Software for Agile Manufacturing Factory
I Botef
University of the Witwatersrand, South Africa ..309

Adaptive Fuzzy Force Regulation in Friction Stir Welding Process
Tl van Niekerk, T Hua, KE Maiara
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.....................315

Session B7: Mechatronics and Robotics

Invited Paper: High-Precision Robots and Micro Assembly
A Raatz, J Hesselbach
Technical University Braunschweig, Germany..............321

Mechatronic Sensor System for Robotic and Automated Machines
A Shaik, G Bright, W Xu
University of Kwa-Zulu Natal, South Africa
Institute of Technology and Engineering, Massey University327

Modular Mechatronic Navigation and Guidance Systems for Cooperation of Mobile Robots
G Bright, A Pancham
University of Kwa-Zulu Natal, South Africa ..333

Reconfigurable Materials Handling System for Part Customization
P Naidu, G Bright
University of Kwa-Zulu Natal, South Africa ..339

STREAM C: OPERATIONS MANAGEMENT & ENTERPRISE ENGINEERING

Session C1: Knowledge Management

Knowledge Management Product Projects in the Automotive Industry
W Sihn
Vienna University of Technology, Austria...349
Organizational Knowledge Management: From Strategy to Operational Implementation
K Mertins, I Finke, R Orth, M Will
Fraunhofer Institute for Production Systems and Design Technology, Berlin, Germany.................................355

Improved Utilisation of Organisational Documents Using a Conceptual Framework
JW Uys, EW Uys, ND du Preez
Stellenbosch University, Stellenbosch, South Africa
Indutech (Pty) Ltd, South Africa..363

Design(er) Support based on Conceptual Frameworks
D Lutters, W Uys, ND du Preez
University of Twente, Enschede, The Netherlands
Stellenbosch University, Stellenbosch, South Africa
Indutech (Pty) Ltd, South Africa..371

Session C2: Product Life Cycle

A Benchmarking Service for Manufacturing Control
P Valckeniers, B Saint Germain, P Verstrate, Hadeli, H van Brussel
Katholieke Universiteit Leuven, Belgium.................................377

The ‘Gestaltung’ of Products Integrated into the Rapid Product Development of Innovative Products by Design for Manufacturing
S Roth-Koch, R Becker, E Westkämper
Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany..............................383

Shredding versus Disassembly
B Willems, JR Dufliou
Katholieke Universiteit Leuven, Belgium.................................389

Competitive Sustainable Products and Processes
G Seliger, R Geguschn, D Odry
Technical University of Berlin, Germany.................................395

Session C3: Enterprise Engineering Tools

QuickScan – An Assessment Tool for SME Based on the EFQM Excellence Model
P Kuhllang, J Jäger
Vienna University of Technology, Austria
Excellence Coaching & Consulting, Austria.............................401

Virtual Reality Technology as an Innovative Engineering Tool for Enterprises
R Neugebauer, D Weidlich, H Zickner
Chemnitz University of Technology, Chemnitz
Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz.................................401
The Implementation of a Conceptual Framework Based Approach for the Improved Viewing and Utilisation of Organisational Information
DJ Kotze, JW Uys, C Schutte, ND du Preez
Indutech (Pty) Ltd, Stellenbosch, South Africa
Stellenbosch University, Stellenbosch, South Africa ...413

Reliability Engineering: Comparative Analysis between Defence and Commercial Industries
RWA Barnard
Lambda Consulting, South Africa ...419

Session C4: Production Planning and Simulation

Integrated Sheetmetal Production Planning for Laser Cutting and Air Bending
B Verlinden, D Cattrysse, D van Oudheusden
Katholieke Universiteit Leuven, Belgium ...425

Assessment of the Lifetime Prolongation Capabilities of Discarded Products
B Willems, JR Duflou
Katholieke Universiteit Leuven, Belgium ...431

Potential for Adopting Operating Curves in Ramp-up Management
M Heins, J Pachow, P Nyhuis
University of Hanover, Germany ...437

Batch Size Reduction in Automobile Manufacturing – a Production Engineering Challenge
R Neugebauer, E Kunke, A Goeschel
Fraunhofer IWU, Chemnitz, Germany ...443

Session C5: Business Modelling and Re-engineering

Surveys on Production and Collaboration Aspects in the Automotive Supply Chain
D Palm, W Sihn
Fraunhofer Project Group for Production Management and Logistics, Vienna, Austria
Vienna University of Technology, Austria ..449

Collaboration among SMEs through Open-source ERP-Solutions
A Imtiaz, M Auerbach, V Stich
Aachen University of Technology / FIR, Germany ...455

Enterprise Modelling Approach Based on Maturity and Business Scope Perspectives
T Knothe, R Jochem
Fraunhofer IPK Berlin, Germany
University Kassel, Germany ...461

Business Modelling for Large Scale Collaborative Networks
A Imtiaz, A Quadt, P Laing
Aachen University of Technology / FIR, Germany ...469
Session C6: Enterprise Engineering Practice

Innovative Learning Environment for Factory Planning and Improvement
V Hummel, E Westkämper
University of Stuttgart, Germany ... 473

Introducing the Roadmap Concept to Inexperienced Users: A Case Study
D Lutters, M Johnson, ME Toxopeus, ND du Preez
University of Twente, Enschede, The Netherlands
Indutech (Pty) Ltd, South Africa
Stellenbosch University, Stellenbosch, South Africa 481

Applying SCOR to Dutch Small and Medium Enterprises
J Goedegebuur, JW Proper
Utrecht University for Professional Education
Breda University for Applied Sciences .. 487

Human Centered Product Data Exchange in Manufacturing Environments
THJ Vaneker, D Lutters, FJAM van Houten
University of Twente, The Netherlands 493

Session C7: Soft Issues in Manufacturing Environment

Life-cycle Dependency of Models for Product Development Processes
H Nieberding, E Lutters, N du Preez
Stellenbosch University, Stellenbosch, South Africa
University of Twente, Enschede, The Netherlands 499

The Application of Necessary but not Sufficient Principles to the Implementation of Product Lifecycle Management Software
D Dimitrov, L van der Walt
Stellenbosch University, Stellenbosch, South Africa 505

Case Study: The Implementation of a Radical Innovation Project
N du Preez, BR Katz
Stellenbosch University, Stellenbosch, South Africa
Indutech (Pty) Ltd, Stellenbosch, South Africa 511
Surveys on Production and Collaboration Aspects in the Automotive Supply Chain

D. Palm¹, W. Sihn²

¹Fraunhofer Project Group for Production Management and Logistics, Vienna, Austria
²Institute of Management Science, Vienna University of Technology, Vienna, Austria

Abstract

Based on desk research and interviews with decision makers of car manufacturers, suppliers and service providers in Europe several studies were worked out. The studies examine the development of the automotive industry in general and the impact of investments in new production facilities in Eastern Europe. The paper summarizes the key findings of the studies and shows that collaboration between OEM and suppliers as well as between suppliers and logistics service providers will change in the future.

Keywords

Supply Chain, Automotive, Survey, collaboration, supply chain management, production and logistics network

1 INTRODUCTION

It is apparent that the business model currently employed by the automotive industry of mass-producing identical products, is flawed and becoming dysfunctional. The industry suffers from global over-capacity and rising stock levels and exhibits inherently low profitability. Vehicle manufacturers have attempted to meet the challenges through a series of global mergers and acquisitions, hoping for better economies of scale through platform and component sharing. At the same time, previous core competencies, such as component or module assembly, are being outsourced to large first tier suppliers, some of which have overtaken their customers in terms of turnover and size by now [1].

The question is, how will this industry develop in the future, how can OEM, logistics service providers or suppliers react to cope with future demands, how will the supply chain look like in the future? In order to predict the future of car manufacturing and in its supply chain, the Fraunhofer Gesellschaft in collaboration with other institutions like Mercer Management Consulting and the Technical University of Vienna made a couple of studies.

Aim of this paper is to summarize the key findings related to the supply chain and the collaboration between all stakeholders.

2 STUDY 1 FAST: FUTURE AUTOMOTIVE INDUSTRY STRUCTURE 2015

The first study, done by several Fraunhofer-Institutes and Mercer Management Consulting was called FAST: Future Automotive Industry Structure 2015. It examines the value creation system of car industry and predicts the global development in this industry. It is based on a research how automotive brands developed in the last decades and the market perception of the brand by the customer. To be competitive in today’s hypercompetitive market, unique characteristics of the brand must be emphasized and used as a differentiation from competitors. Core questions from a brand perspective are [2]:

- What brand profile is being sought? What should the brand stand for in the future?
- Which brand differentiation will create an edge over the competition?
- How does the customer perceive the brand?
- How can the brand promise be kept? What is the contribution of the 'auto' product (besides services, processes, etc.)?
- Which functions and value creation features will serve the core of the brand?
- What competencies and resources are therefore mandatory in-house, and where is there room to manoeuvre?
- What are the resultant consequences and possibilities for the value creation structure?

The actual and future market position of the brand will highly influence the company’s decisions on its own core competencies and therefore the share of work, done by the supplier network. This development is affected by the technological development in the product and the introduction of innovations as well as by the strategy and the behavior of all players in the supply chain. Last but not least, all activities will finally hence the economic rules of a positive value contribution. This leads to a logical proceeding (see Figure 1) how the structural change in the automotive industry will happen in the future – starting from the customers.
2.1 Key Findings of the FAST-Study

Some key findings of the study are [2]:

- The automotive industry will grow on average 2.6% annually to the year 2015.
- Value creation from automotive development and production alone (without sales or after-sales) will grow from EUR 645 billion in 2002 to EUR 903 billion in 2015.
- Of the top decision-makers polled for the "FAST 2015" study, 80 percent expect that OEMs will consistently align their development and production competencies (and resources) on the (planned) positioning of their brands and will focus accordingly on areas that affect the brand experience (modules, value creation levels).
- The six brand clusters differ significantly in their value creation strategies and the amount of self-produced contents they retain. Although some premium brands (e.g., BMW, Mercedes-Benz and Audi) will increase their amount of self-production in absolute terms, they will lower it as a percentage of total output. The ones most strongly affected, however, will be mass-market brands, which will significantly lower their self-production in both relative and absolute terms.
- The amount of self-produced content among OEMs will thus drop from today's EUR 228 billion (35%) to EUR 200 billion (28%) by 2015. For some brands this will double the volume of outsourced value creation. Today's compétences and capacities must be reduced, especially in the areas of car body, sheet steel, paint and chassis. Along the value chain, OEMs will continue to withdraw especially from module fabrication and assembly (EUR = 57 billion), with development remaining constant at roughly EUR 30 billion.
- Value creation in the automotive industry will explode by some EUR 290 billion to EUR 700 billion by 2015, with the supplier sector growing by 86%. Automotive suppliers and service providers will thus offer huge growth potential in all the main modules, but especially in body, sheet steel, paint and powertrain. The greatest amount of growth will be found in electroed systems and electronics, where auto makers and suppliers alike will be involved. An additional 8 to 10 million jobs will thus emerge in the supplier sector, which will become the 'engine of growth and employment'.
- The process of concentration in the automotive supplier industry will continue unabated. By 2015 it is expected that the number of suppliers will be halved to roughly 2,800. The reasons for this are the ongoing cost pressure in practically all major vehicle modules, the expansion of the range of competencies (e.g., in electronics), the rising pressure of innovation among suppliers.

Figure 1 - Logic of structural change in Automotive Industry [2]

With this model it was possible to forecast the development of each brand, the performance of the vehicle modules in the car and the distribution of work between OEM and supplier network. This was done for several regions and together with market and macro-economic prognosis it was possible to predict production quantities for the vehicle series, investment needs and other indicators of the value creation system in the Automotive Industry. This model, the resulting business system and the roles of the several groups were validated in 60 interviews with key decision-makers (board members, CEOs, strategy planners ...) in the automotive industry (OEMs, suppliers, engineering service providers, etc.).

The FAST-Study then identifies several fields of action, where the Auto-industry as a whole or several players (OEMs, suppliers etc.) can increase the profitability of the car manufacturing business and give some recommendations for practical lines of action. The several working steps are shown in Figure 2.

Figure 2 - Proceeding in the FAST Study [2]
and the growing need for investment, and hence capital (e.g. for new production plants).

- Automotive suppliers will become indispensable partners of auto makers for the implementation of the impending growth and the planned model policy. New business designs and a "new quality" of cooperation will be required in order to cope with the structural change. Cooperation ventures will be characterized by transparency, trust, partnership, and the sharing of opportunities and risks, among other things. New forms of cooperation will evolve to handle operational implementation.

2 STUDY AREA: AUTOMOTIVE REGION EASTERN EUROPE

In a second study, Fraunhofer and the Vienna Technical University focused the examination of the Automotive Supply Chain on the development of the Automotive Region Eastern Europe (AREE). This area comprises the new member states of the European Union Hungary, Czech Republic, Poland and Slovenia and the PI candidate Romania (see map Figure 3). These countries had very high investments from the automotive industry in the last years. 7 Billion Euro were spent until 2006 to build new car production facilities or to increase existing car plants. In a radius of 300 Kilometres 11 car plants are currently in operation. Until 2008 5% of the total world car production (more than 3 million cars) will come from the AREE-countries. [3]

![Figure 3 - Car Production in AREE (3)](image)

The reasons for these immense foreign direct investments of the OEM were originally the low labour costs in AREE (only 17% of the average EU cost level) and very attractive conditions for investors (investment grants). This locational advantage was and is supported by extremely low tax rates for companies in comparison to the old EU-member states. [4]

The new car production facilities in Eastern Europe changed the structure of the whole supply chain. While bigger suppliers were able to follow quickly the OEM to the sites in Eastern Europe, the majority of companies especially small and medium sized enterprises (SME) did not move from their original location. This was due to low investment capabilities of the SME or a lack of experience building up new plants in a foreign country.

In the first step, this development resulted in an increase of logistics cost for the OEM. Only a few of the typically 400 to 600 suppliers of an automotive plant were located at the OEM's sites in Eastern Europe and parts from the rest of the suppliers had to be transported long distances. The study examined for example that 75% of parts of Volkswagen Bratislava in the Slovak Republic are transported from abroad. Only 16% of the parts are sourced locally. The logistics costs are 300 to 350 % of a comparable plant in South or West Europe. [5]

This led on one side to a sustained process of consolidation in the supplier sector. Bigger suppliers who had the ability to be locally present had an advantage against SMEs and were able to replace them. This development is emphasized by the tendency of the OEM to reduce their share of value creation and to outsource what is not necessary for core differentiation of the brand. The outsourcing ratio is extremely high for most of the brands manufactured in AREE countries (see Figure 4) [2], [3].

![Figure 4 - OEM value creation in different brand clusters (4), (5)](image)

On the other side, there is still an enormous opportunity for suppliers who are locally present because all OEMs would like to reduce logistics costs and source locally. The AREE study calculated a purchasing volume of 20 Billion Euro in 2008 from the different AREE countries (see Figure 5). [3]

![Figure 5 - Purchasing volume from AREE countries (5)](image)
While SMFs hesitate to transfer value adding to East Europe due to capital restrictions or risk considerations, OEM already act: in surveys done by the Fraunhofer Project Group for Production Management and Logistics, several small and medium sized enterprises reported an increasing pressure from purchasing agents of the OEM to open up subsidiaries in East European countries.[6]

3.1 Key Findings of the AREE-Study

For the suppliers from original locations such as Germany the question arises how to react. The first option, to supply the OEM facilities in AREE from existing locations has the risk, that sooner or later they will be substituted by local companies due to cost (labour and logistics costs) disadvantages. This can be a strategy for companies with specialized products and / or a unique position in the market. [7]

The second option is to build a separate plant close to the customers. Here is the risk, that the diversification of sites (in the extreme 11 sites at 11 OEM plants) will increase overhead costs enormously and that the investments in land, buildings, equipment and machinery will not pay off since a contract with an OEM is never longer than the production lifetime of a car (between 5 to 7 years — in comparison to a period of depreciation of 15 or more years for most investments). In addition high start-up costs such as employee trainings, contingency costs and high expenditure on supervision, coordination and control have increased the risk especially for SMEs who are not experienced with production in foreign countries. This option was already chosen by large international acting companies with the financial power, the experience to build up plants abroad and a critical volume of added value to have a healthy ratio between overhead costs and product value. [7]

So for the majority of companies and especially the small and medium sized companies, the only option is to rent a turnkey factory in a supplier park to avoid investments. This is already offered by some OEM owned parks in AREE e.g. in Lozorno (VW) or Tmava (PSA) but focused on Tier-1 suppliers with products of high variance and/or high volume. [8]

The study therefore comes to a conclusion, that Multi Customer Supplier Parks (MCSP) will be built which allow SMEs to rent production and logistics facilities in short distance to several OEM plants.[3] This park concept is already successfully realized in South Africa [8] and the geographical situation in AREE (11 OEM plants in a 300 km circle) offers also this opportunity. MCSP have the advantage that it reduces start-up and operating costs, SMEs can rent a turnkey facility within a park, and thus avoid high investment costs. Moreover the MCSP provides an environment for suppliers that need a highly fixed capacity for the economical operation because of increasing numbers of clients. [3], [7]

4 SUMMARY

Both studies show, that the automotive supply chain will change dramatically. The shift of value adding between OEM and supplier will lead to different forms of cooperation and a new understanding of the roles of OEMs and suppliers.

Structural change driven by the growth of the suppliers will lead to a sustained process of consolidation in the supplier sector. Balanced market relations between OEM and suppliers can be expected (Mega-Suppliers), the appointment of services and the demands of OEMs will change, with overall packages and modules going to suppliers and a new quality will be demanded from suppliers:

- Expanded range of products and services
- New areas of competence
- Additional resources
- Inter regional business relations

This development is accelerated by creation and transfer of production facilities to East European countries (or other low cost countries). The emerging opportunities can not be realized by small and medium enterprises so big international suppliers will double profit – from the replacement of SMEs due to their weaknesses on one side and from OEM reduction of value adding on the other.

The only way to survive for SMEs is the development of unique competencies or the cooperation with other suppliers or logistics service providers to share risk and investments. Supplier parks are means to support this cooperation. The unique situation in AREE with its high density of OEM plants is suited to expand the supplier park idea to the Multi Customer Supplier Park where even more synergy and cost sharing effects can be realized.
REFERENCES

6 BIOGRAPHY

Dipl.-Ing. Daniel Palm studied Mechanical Engineering at the Technical University of Stuttgart (Germany) and graduated 1997. Since 1997 he works with the Fraunhofer Gesellschaft. Since June 1998 he is project leader, since 2001 team manager in supply chain management and logistics. Since July 2004 he leads the newly founded Fraunhofer Project Group for Production Management and Logistics in Vienna. He is lecturer in Automotive Logistics at the Technical University of Vienna.

Wilfried Sihn studied commercial industrial engineering at Karlsruhe Technical College, specializing in manufacturing and computer science and graduated as certified industrial engineer in 1982. In 1992 he was awarded a Doctorate in Engineering Sciences from the University of Stuttgart. Since 2000 he was Deputy Director at the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA). 2004 appointment as Professor at the Vienna University of Technology, Institute of Management Science.