Editorial Committee

Professor A. Bramley, University of Bath, UK
Professor J. Corbett, Cranfield University, UK
Professor G. Dini, University of Pisa, Italy
Professor D. Dornfeld, University of California, USA
Professor F. Klocke, University of RWTH Aachen, Germany
Professor G. Levy, University of Applied Sciences St Gallen, Switzerland
Professor D.A. Lucca, Oklahoma State University, USA
Professor L. Monostori, Hungarian Academy of Sciences, Budapest
Professor S. Tichkiewitch, INPG, Laboratory 3S, Grenoble, France
Professor M. Tsang, Hong Kong University of Science & Technology, Hong Kong
Professor K. Ueda, University of Tokyo, Japan
Professor K. Weinmann, University of California, USA

The papers published in this issue of the CIRP Annals have been subjected to stringent peer review and accepted by the Editorial Committee.

CIRP Secretariat
9 rue Mayran
75009 Paris - France
Tel.: 33 1 45 26 21 80
Fax: 33 1 45 26 92 15
Email: cirp@cirp.net
Website: http://www.cirp.net

ISSN 0007-8506 (journal)
ISSN 1660-2773 (inserted CD-Rom)
57th General Assembly of CIRP
57ème Assemblée Générale du CIRP
57. Mitgliederversammlung des CIRP

Dresden, Germany – August 19–25, 2007
Table of Contents

Authors: (1) Fellow (2) Associate Member (3) Corporate Member / Submitted by a Fellow

Session on Assembly (A) Session on Cutting (C)

A1 - Incorporating Lifecycle Considerations in Axiomatic Design
E. Stassnie, M. Shpitalni (1) .. 1

A2 - Optimization of Steel Production to Improve Life-cycle Environmental Performance
T.W. Sutherland (2), K.R. Hoopola 5

A3 - An Integrated Methodology to Estimate the External Environmental Costs of Products
S. Kara (2), S. Mannek, H. Kaebernick (1) 9

A4 - 'Odds Algorithm'-based Opportunistic Maintenance Task Execution for Preserving Product Conditions
B. Lung, E. Levrat, E. Thomas / M. Veron (1) 13

A5 - An Alternative Approach for the Cost-efficient Laser Welding of Zinc-Coated Sheet Metal
H. Bley (1), L. Weyand, A. Luft 17

A6 - An Electrostatic Sorting Device for Microparts
G. Fantoni, M. Porta, M. Santochi (1) 21

A7 - Flexible Automation for the Assembly in Motion
G. Reinhard (1), J. Werner ... 25

A8 - Development of Specific Technologies and Assembly Systems for the New Challenge of Electro-Optical Devices
K. Feldmann (1), D. Craiovan, M. Roesch 29

A9 - Bioanalogous Mechanical Joints for Authorized Disassembly
K. Saitou, M. Shalaby, L.H. Shu (2) 33

A10 - Development of Hybrid Assembly Workplaces
G. Seliger (1), S. Consiglio, N. Weinert 37

A11 - Co-Evolution of Product Families and Assembly Systems
A. Bryan, J. Ko, S.J. Hu (2), Y. Koren (1) 41

A12 - Micro Handling Devices Supported by Electrostatic Forces
J. Hessebich (2), J. Wrege, A. Raatz 45

A13 - Augmented Reality Aided Assembly Design and Planning
S.K. Ong (2), Y. Pang, A.Y.C. Nee (1) 49

C1 - Requirements for Ductile-mode Machining Based on Deformation Analysis of Monocrystalline Silicon by Molecular Dynamics Simulation
H. Tanaka, S. Shimada (1), L. Anthony 53

C2 - Grain Size and Orientation Effects When Microcutting AISI 1045 Steel
A. Simoneau, E. Ng, M.A. Elbestawi (1) 57

C3 - Finite Element Modeling and Cutting Simulation of Inconel 718
E. Uhmann (2), M. Schulte / T. Schraubing, R. Zettler 61

C4 - Residual Stress Modeling in Orthogonal Machining
S.Y. Liang, J-C. Su / G.D. Lahoti (1) 65

E. Gardoni, L. Perfido (2), J. Umbrello, F. Micari (1) 69

C6 - Fundamental Wear Mechanisms when Machining Austempered Ductile Iron (ADI)
F. Klocke (1), C. Klöpper, D. Lung, C. Essig 73

C7 - An Innovative Methodology for the Performance Evaluation of Coated Cemented Carbide Inserts in Milling of Inconel 718
K.D. Bouzakis (1), N. Michailidis, S. Gerards, M. Batsiolas, M. Papa, E. Lili, J. Münzdis, J. Mueller, R. Cremer 77

C8 - Virtual High Performance Milling
Y. Altintas (1), D.S. Merrod 81

C9 - Improvement of Dynamic Properties in Milling by Integrated Stepped Cutting
B. Karpuschewski (1), S. Batt 85

C10 - An Integrated Force Sensor Solution for Process Monitoring of Drilling Operations
G. Byrne (1), G.E. O'Donnell 89

C11 - Temperature Measurement of Cutting Edge in Drilling — Effect of Oil Mist —
T. Ueda (2), R. Nuzani, A. Hishizawa 93

C12 - Tribological Action and Cutting Performance of M01 Media in Machining of Aluminum
T. Wakabayashi, S. Suda, I. Inasaki (1), K. Terasaka, Y. Musha, Y. Toda 97
Session on Electro-Physical & Chemical Processes (E)

E1 - New Developments in Laser Sintering of Diamond Cutting Disks
V. Kovalenko (2), L. Golovko, J. Meijer (1), M. Anyakin

E2 - Striation-free Laser Cutting of Mild Steel Sheets
L. Li (2), M. Gobih, P. Crouse

E3 - Interaction between Electrical Arc and Nd: YAG Laser Radiation
U. Stube (3), P. Klings, J. Hermsdorf / H. Trumpold (1)

E4 - An Experimental Study on Laser Cutting Mechanisms of Polycrystalline Diamond Compacts
Q.F. Zhang, B. Zhang (2), Z.H. Deng, J.F. Cheng

E5 - Selective Laser Sintering of PEEK
M. Schmidt (3), D. Pohle, T. Rechtenwald / M. Geiger

E6 - Layered Laser Vaporization of PMMA Manufacturing 3D Mould Cavities
L. Romoli, G. Tantussi, G. Dini

E7 - Study on Nano EDM Using Capacity Coupled Pulse Generator
M. Kunieda (2), A. Hayasaka, X.D. Yang, S. Sano, I. Arata
Session on Forming (F)

F1 - Modelling of the Forming Limit Band - A new method to increase the robustness in the simulation of sheet metal forming processes
D. Banabic (2), M. Vos .. 249

F2 - Buckling of Sheet Metals in Contact with Tool Surfaces
/V. Van Trinhovich (1) ... 263

F3 - Paddle Forming: a Novel Class of Sheet Metal Forming Processes
J.M. Allwood (2), D.R. Shoather 257

F4 - An Approach to Modelling the Forming Process of Sheet Metal-Polymer Composites
P.F. Baniari (1), S. Bruschi (2), A. Ghio, G. Lucchetta .. 261

F5 - Mechanism of Springback-Free Bending of High-Strength Steel Sheets under Warm Forming Conditions
J. Yanagimoto (2), K. Oyamada 265

F6 - Design of Hot Stampig Tools with Cooling System
H. Hoffmann (2), H. So, H. Steinbeiss .. 269

F7 - Laser Assisted Incremental Forming: Formability and Accuracy Improvement
J.R. Dufou (2), B. Callebaut, J. Verbert.
H. De Baerdemaeker .. 273

F8 - Forming Limit Curves in Single Point Incremental Forming
M. Ham, J. Jeswiet (1) .. 277

F9 - Deformation Machining: A New Hybrid Process
S. Smith (1), B. Woody, J. Ziegert, Y. Huang .. 281

F10 - Cold Deep Drawing of Commercial Magnesium Alloy Sheets
K. Mori (2), H. Tsuji .. 285

F11 - Investigation of Post-Superplastic Forming Properties of AZ31 Magnesium Alloy
M.K. Khraisheh, F.K. Abu-Farha, KU. Wahlmann (1) .. 289

F12 - Fracture of Magnesium Alloy in Cold Forging
R. Matsutomo, T. Kubo, K. Osakada (1) .. 293

F13 - Lubrication Mechanism in Hot Rolling by Newly Developed Simulation Testing Machine
A. Azushima (2), W.D. Xue, Y. Yoshida .. 297

F14 - Contact Conditions in Skin-Pass Rolling
H. Kijima, N. Bay (1) .. 301

F15 - Improved Process Design and Quality for Gear Manufacturing with Flat and Round Rolling
R. Neugebauer (1), M. Putz (3), U. Hellfrutzsch .. 307

F16 - Implementing a high accuracy Multimesh Method for incremental Bulk Metal Forming
G. Hirt, R. Kopp (1), O. Hofmann, M. Franzke, G. Paullon .. 313

F17 - Simulation-Based Analysis of Composite Extrusion Processes
M. Schikorra, M. Kleinert (1) .. 317

F18 - Investigation of Laser Heating in Microforming Applying Sapphire Tools
J.P. Wulfsberg, M. Terzli / D. Schmoeckel (1) .. 321

Session on Abrasive Process (G)

G1 - The Use of the Size Effect in Grinding for Work-hardening
C. Heinzel, N. Reafl / J. Pets 1 .. 327

G2 - In-process Identification of Material-Properties by Acoustic Emission Signals
N.J. Kramer / K.G. Guenther (1) .. 331

G3 - Profiled Superabrasive Grinding Wheels for the Machining of a Nickel Based Superalloy
D.K. Aspinwall (2), S.L. Soo, D.T. Curtis, A.L. Mante (3) .. 335

G4 - Factors Affecting Grinding Performance with Electroplated CBN Wheels
R.P. Unandaya (3), I.H. Fiorel (3) / S. Malkin (1) .. 230
G5 - Power and Wheel Wear for Grinding Nickel Alloys with Plated CBN Wheels
C. Guo (3), Z. Shi, H. Attia (3), D. McIntosh (3) 340

G6 - Intelligent Centerless Grinding: Global Solution for Process Instabilities and Optimal Cycle Design
I. Gallego (3) / R. Bueno (1) .. 347

G7 - Grindability of Conventionally Produced and Powder-Metallurgy High-Speed Steel
J. Badger / J. Webster (1) .. 353

G8 - CMP Pad Break-in Time Reduction in Silicon Wafer Polishing
H.D. Jeong, K.H. Park, K.K. Cho (1) 357

G9 - Development of Silica Polyvinyl Alcohol Wheels for Wet Mirror Grinding of Silicon Wafer
Y. Tani (2), T. Okuyama, S. Murai, Y. Kamimura, H. Sato (1) .. 361

M1 - Time Minimum Trajectory Planning of a 2-DOF Translational Parallel Robot for Pick-and-place Operations
T. Huang (2), P.F. Wang, J.P. Mei, X.M. Zhao, D.G. Chetwynd ... 365

M2 - A Newly Developed Linear Motor Driven Aerostatic X-Y Planar Motion Table System for Nano-Machining
H. Shinno (2), H. Yoshikawa, K. Taniguchi 369

M3 - Compensation of Axial Vibrations in Ball Screw Drives
A. Kamalzadeh, K. Erkorkmaz (2) 373

M4 - Adaptive Vibration Damping for Machine Tools
A. Ait, S. Braun, P. Eberhard, U. Heisel (1) 379

M5 - A New Method for Simulation of Machining Performance by Integrating Finite Element and Multi-body Simulation for Machine Tools
M.F. Zeeh (2), D. Spedt ... 383

M6 - Modeling and Identification of an Industrial Robot for Machining Applications
E. Abele (2), M. Weigold, S. Rothenbücher 387

M7 - Precision Compensators Using Giant Superelectricity Effect
E.L. Rivin (1) .. 391

M9 - Development for High Performance Machine Tool Spindles
C. Brecher (2), G. Spachholz, F. Paepenmüller 395

M10 - Development of a Medical CAD/CAM System for Orthopedic Surgery

M11 - Quick 3-D Modeling of Machining Environment by Means of On-machine Stereo Vision with Digital Decomposition
X. Tan, H. Deng, M. Fujishima, K. Yamazaki (1) 411

M12 - A More Realistic Cutting Force Model at Uncut Chip Thickness Close to Zero
H. Paris, D. Brissaud (1), A. Gouskov 415

Session on **Production Systems and Organizations (O)**

O1 - Strategic Development of Factories under the Influence of Emergent Technologies
E. Westkämper (1) .. 419

O2 - A Toolbox Approach for Flexibility Measurements in Diverse Environments
K. Georgoulas, N. Papakostas, S. Makris, G. Chryssochou (1) ... 423

O3 - Evolving Production Network Structures
M. Grunow, H.O. Günther, H. Burdenk, L. Alling (1) 427

O4 - Solution Approaches to Real-time Control of Customized Mass Production
L. Monostori (1), B. Kádár, A. Pfeiffer, D. Karmark 431

O5 - Advanced Automation Solutions for Future Adaptive Factories
E. Carpanzano, F. Jovane (1) 435

O6 - High Resolution Production Management
G. Schuh (2), S. Gottschalk, T. Höhne 439

O7 - Turbulence Germs and their Impact on Planning and Control – Root Causes and Solutions for PPC Design
H.-H. Wiendahl / G. Spur (1) 443

O8 - Chaotic System Thinking for Novelty in Contemporary Manufacturing
F.M. van Eijndt, G.D. Putnik, A. Sluga (2) 447

O9 - Techniques for Planning and Control Dependent on Different Types of Flexibility
P. Schoensleben / J. Milberg (1) 451

O10 - Impact of Product Life Cycle on Manufacturing Systems Reconfiguration
K.K.B. Hon (1), S. Xu ... 455

O11 - Universal Manufacturing Platform for CNC Machining
S.T. Newman, A. Nassehi / A.N. Bramley (1) 459

O12 - An Emergent Synthesis Approach to Simultaneous Process Planning and Scheduling
K. Ueda(1), N. Fuji, R. Inoue 463

O13 - Mathematical Modeling for Reconfigurable Process Planning
A. Azab, H.A. ElMaraghy (1) 467

O14 - Extensible Operation Sequencing for
Turned-Milled Components
T. Mwinuka, S. Hinduja (1), O.O. Owodunni 473

O15 - Extended Multi Customer Supplier Panels
in the Automotive Industry
W. Sihn (2), K. Schmitz 479

O16 - Practical Applications of Logistic
Operating Curves
P. Nyhuis / H.-P. Wiendahl (1) 483

O17 - A Rolling Horizon Approach to Plan
Outsourcing in Manufacturing-to-Order
Environments Affected by Uncertainty
T. Toliol (2), M. Urso 487

O18 - An Approach for Adaptability Modeling in
Manufacturing - Analysis Using Chaotic
Dynamics
N. Papakostas, N. Mourtzie (2) 410

Session on Precise Engineering
& Metrology (P)

P1 - Enhancement and Proof of Accuracy of
Industrial Computed Tomography (CT)
Measurements
M. Bartscher, U. Hilpert, J. Goebbel, G. Weidemann
/ H. Kunzmann (1) 495

P2 - Semi-Calibration of On-Axis Rotary Encoders
X.-D. Lu, D.L. Trumper (2) 499

P3 - A Two Dimensional Scanning Setup for
Precise Addressing of Fibers in a Fiber
Bundle
R. Schmitt, K. Edor / T. Pfeifer (1) 505

P4 - Non-Contact and In-Process Measurement of
Film Coating Thickness by Combining Two
Principles of Eddy-Current and Capacitance
Sensing
T.O. Kim, H.Y. Kim, C.M. Kim, J.H. Ahn (2) 509

P5 - An Ultrasound In-Process Measuring
System to Ensure a Minimum Roundness
Deviation for Rings During Turning
D. Stoebener, M. Dijkmann / C. J. Evans (1) 513

P6 - Geometrical Specification Model for Gear
Expression, Metrology and Analysis
J.Y. Dantan, J. Bruyere, C. Baudouin, L. Mathieu (1) 517

P7 - A Novel Cooling System to Reduce
Thermally-Induced Errors of Machine Tools
M.A. Donmez, M.H. Hahn, J.A. Soons / J. Bryan (1) 521

P8 - Long Range 3D Scanning Tunnelling
Microscopy
A. Weckmann (1), J. Hoffmann 525

P9 - A Three-axial Displacement Sensor with
Nanometric Resolution
W. Gao (2), A. Kimura 529

P10 - High Aspect Ratio Nanometrology using
Carbon Nanotube Probes in Atomic Force
Microscopy
F.Z. Fang (2), Z.W. Xu, S. Dond, G.X. Zhang (1) 533

P11 - Extraction of the Mechanical Surface in
Measurement of Nano Structures
M. Dietzsch, S. Gröger, M. Gerlach, M. Krystek
/ P. Vanherck (1) 537

Session on Surfaces (S)

S1 - Fabrication of Ultra Precision Optics by
Numerically Controlled Local Wet Etching
K. Yamamura / T. Masuzawa (1) 541

S2 - Geometrical Accuracy and Optical
Performance of Injection Moulded and Injection-
compression Moulded Plastic Parts
W. Michalski, G. Heitner, F. Kleinwaks, J. Forster
/ W. Eversheim (1) 545

S3 - Surface Segmentation by Variable
Illumination
F. Puente León (2), C. Lindner, D. van Gorkom 549

S4 - Freeform Surface Characterisation - A Fresh
Strategy
X. Jiang, P. Scott, D. Whitehouse (1) 553

S5 - Feature-Oriented Measurement Strategy in
Atomic Force Microscopy
E. Savio (2), F. Marinella, F. Deiari, S. Gammiai 557

S6 - Dynamic Phenumena at Mode-I Crack Front
in Silicon Simulated by Extended Molecular
Dynamics
T. Inamura (2), N. Takezawa, K. Shibuya, K. Yamada 561

S7 - Stress Assisted Dissolution of Biomedical
Grade CoCrMo: Influence of Contact Loads and
Residual Stresses
A. Chandra, A. Mitchell, P. Shrotriya, D.A. Lucca (1) 565

S8 - Microscopic Grinding Effects on
Fabrication of Ultra-fine Micro Tools
H. Ohmori (2), K. Katahira, T. Naruse, Y. Uehara,
A. Nakao, M. Mizutani 569

S9 - Surface Properties of Diamond Coatings for
Cutting Tools
L. Settineri (2), F. Buociotti, F. Cesano, M.G. Faca 573

S10 - Repair of Damaged Mold Surface by Cold-
spray Method
Extended Multi-Customer Supplier Parks in the Automotive Industry

W. Sihn (2) 1,2, K. Schmitz 1,2

1 Institute of Management Sciences, Dept. of Industrial and Systems Engineering, Vienna University of Technology, Austria
2 Fraunhofer Project Group for Production Management and Logistics (PPL), Vienna, Austria

Abstract

One great challenge for OEMs is to manage the complex supply processes. In order to reduce this complexity, they could integrate large suppliers into so-called Automotive Supplier Parks. In the end, large suppliers would have many small one-to-one plants in Supplier Parks with low economies of scale and high costs. This paper illustrates the key problems of traditional Supplier Parks and presents a new solution: the concept of Extended Multi-Customer Supplier Parks (MCSP+). Requirements, logistic processes and structures will be explained. Furthermore, the paper will present an approach to integrate suppliers in an MCSP+ that are not located in a Supplier Park.

Keywords:
Logistics, Integration, Supplier Parks

1 INTRODUCTION

Central and Eastern Europe (CEE) play a leading part in the development of the automotive industry, being one of the fastest growing manufacturing regions where more than 2,000,000 vehicles will be produced by local plants in 2008 [1]. This setting up of new structures opens up the opportunity to build innovative supply structures that cannot be implemented in Western Europe any more on account of the existing and historically linked production structures [2]. As a rule, production plant structures which have already been implemented and have been proceeding with high sums of investment and long-term contracts can only be altered with great difficulties: the service life of manufacturing plants that cover several decades is nothing extraordinary.

Especially over the last few years the establishment of suppliers in the immediate proximity of the original equipment manufacturer (OEM) plant or directly within a Supplier Park have been implemented by the car manufacturers on account of structural measures. This action had to be taken in order to meet the challenges of the logistics because of the out-sourcing of modules and systems on the suppliers paired with a Just-In-Time (JIT)/Just-in-Sequence (JIS) delivery [3]. Particularly on account of the proximity to the OEM, an improvement of reaction time, of the production speed passing through duration, of the delivery performance as well as a reduction of stock of finished products will be achieved [4]. Scientific research, however, shows that Supplier Park and related structures are more effective in comparison with spatially divided structures of suppliers around an OEM assembly plant [3-4].

Apart from the distinctive advantages, the building and operation of the JIT/JIS plants, tailored to customers’ personal requirements, also causes a great number of challenges for the supplier. The greatest problems are the uncertainty related to the future delivery of quantities, because of the increasingly difficult process of prognostication, and the non-contractually guaranteed quantities, as well as the missing critical volume for the economically maximum operation of the JIT/JIS plants [5-7]. The plants are built with the least possible investment in order to minimise the risk factor and they mainly carry out sequential operations and low-key value production. Undesired complex production networks from several locations, consisting of component plants and numerous mini-plants are the subsequent result (Figure 1).

![Figure 1: Production Structure of a Supplier.](image)

Figure 2 Trends concerning JIT/JIS plants.

The strategy to build JIT/JIS plants within an availability-driven production strategy, where the actual production capacity must be adjusted to the merely temporarily demanded highest amount, in order to satisfy the high demands of the clients with respect of the guaranteed supply, is further worsened by the following trends (Figure 2) [8]:

Trend 1: The intensified introduction of new models

Trend 2: Reduction of product life cycles
Trend 2: The incessant reduction of model life cycles within the car industry makes it increasingly difficult to amortize the completed investments by means of a model cycle.

Especially in the region CEE the spatial split production structure of the supplier causes a negative impact in terms of the logistics costs on the component plants in Western Europe as well as on the JIT/JIS plants in Eastern Europe. Apart from the suppliers’ own production structures this also applies to the supply network which can to a great extent be found in the traditional markets of Western Europe [1].

Following aspects can be derived from that: If it is successful to build up a concept in CEE

- which breaks up the complex productions structures of the suppliers consisting of component plants and JIT/JIS plants,
- which clusters more asset production in the CEE and
- which takes advantages of spatially concentrated structures such as Suppliers Parks,

a considerably improved situation can be achieved in contrast to the present structures.

The Extended Multi-Customer Supplier Park (MCSP+), which is more closely described in the paper, is a starting point for a likely solution. The MCSP+ concept is based on the fundamental idea that spatially concentrated structures produce a higher productivity than spread-out compartmentalised structures.

2 EXISTING SUPPLY STRUCTURES

In practice intelligent supply structures have been successful in the European car industry. Apart from the loose establishment in the proximity of an OEM plant without a particular structure, (e.g. in an industrial area), the concepts Supplier Parks and Logistics Centres have been established since the beginning of the 90’s [3].

A Supplier Park is a cluster of more than two suppliers located adjacent or close to a final assembly plant. The well-defined area includes buildings as well as infrastructure and is purpose-built in order to serve the assembly plant and the suppliers. An operator provides and maintains the whole Supplier Park. Objectives of parks are cost reductions and service improvements of the procurement logistics as well as protecting business relationships [8-10].

In contrast to the Supplier Park where suppliers themselves carry out key asset production activities for their parts, this will be undertaken by a logistics service provider (LSP) with a central infrastructure in a Logistics Centre close to the plant. The delivery of the parts to the assembly line of the OEMs is managed by a LSP catering for both supplier structures.

Numerous logistic success criteria from already established structures can be derived and adapted to the MCSP+ concept despite the different adjustment of OEM-channellled Supplier Parks and Logistics Centres which are in contrast to a spatial concentration of component plants that are in greater distance from the multi customer-oriented MCSP+ idea: Clustering of inbound product flows in the parks (e.g. VW plant in Emden), clustering of park-internal logistical services, such as storage and sequential operations (e.g. GM in Russelsheim), central IT-systems for managing the logistics (e.g. VW in Hannover), clustering of the outbound product-flows.

The very readiness only to outsource logistic activities to an external LSP enables the exploitation of inter-related potentials. On account of experiences gathered from numerous Tier 1 suppliers, with Supplier Parks and Logistic Centres that are built in the proximity of plants, these concepts can be transferred to the MCSP+ idea.

3 MULTI CUSTOMER SUPPLIER PARKS

3.1 The Basic Idea

The basic idea of the MCSP+ is the supply of several OEMs from a region (e.g. within a radius of 400 km) of an intelligent supplier structure where several suppliers with component production are established. The intelligence of the MCSP+ is the increased productivity of the spatially concentrated structure in comparison with the spread-out compartmentalised structures with individual supplier locations, as well as the supply of more OEMs from this structure.

![Figure 3: The integration of components and JIT/JIS Plants.](image)

Three effects result from the concept:

- Due to the MCSP+ the construction of JIT/JIS plants is not required any more, the supply of the OEMs is centrally managed through a component JIT/JIS plant within the park (Figure 3).

- Synergy effects can be achieved through the centralisation of production cycles in one plant: improvement of productivity through increased output; flexibility of capacity through more customers; cluster effects through higher product volume (Figure 4).

- Due to the combined establishment of suppliers in a spatially concentrated structure and the transfer of logistic activities to the park synergy effects in the logistics can be opened up by means of increased amounts and clustering’s (see Chapter 2).

![Figure 4: Capacity Equalization and Economies of Scale.](image)

The construction of a MCSP+ entails considerable changes with regard to the plants structures of the suppliers. On account of the non-existence of a great number of new plants within a MCSP+, the realisable concept is mainly present only in regions of growth. Like in CEE where new OEM plants and subsequent suppliers’ structures are built on account of Local Sourcing.
Strategies of the OEMs [11]. The construction of component plants in CEE reduces the transportation of parts across Europe; therefore decreases the logistic costs and utilizes the advantages of labour costs in the region. Apart from central locations within a region with several OEMs, also peripheral locations with special location factors (distinct advantages of labour costs, the most favourable logistical connection, e.g. through a port) can be considered. The arrangement of the concept implies two aspects under the influence of two system-theoretical underlying principles. Both structures need to be created and processes need to be put in place. Figure 5 depicts the structure and the logistic processes of the MCSP+.

![Figure 5: MCSP+](image)

3.2 Structure

The MCSP+ consists of:

- Suppliers which produce components in time for several OEMs.
- One Central Logistic Hub which is operated by one or more LSP and carried out the logistical operations for all suppliers.
- One Central Production Hub which carries out production services for all suppliers by means of centralised plants such as paintworks plants.
- One Central Park Operator that is in charge of the infrastructure (production building on a rental base, central building, services, etc.).

The global supply network of the MCSP+, divided into regions, is connected with the transport carriers: train, ship and truck. The integration with the OEMs which can be established some several hundred kilometres away from the park is managed through the transport carriers: train and truck. The LSP of the park are in charge of the supply and distribution logistics.

The fundamental pre-condition of this structure forms an early and stable transmission of the sequential requests coming from the OEMs. Contrary to demands of delivery with recalls of a few hours, a more stable "horizon" of several days is necessary because of the greater distance to the OEM, and the more complex value production steps within the plants. The KOPV concept of BMW as well as the pearl-chain-concept of Daimler-Chrysler makes this possible [12]. Similar concepts however have not been implemented all OEMs yet.

3.3 Logistic processes

The spatial concentration of suppliers within the park and thus the sensitive clustering of the complete logistical operations allow the formation of logistical processes with maximum performance (delivery time, competence of delivery, flexibility of delivery, etc.) at minimal costs (transport costs, handling costs, stock costs, etc.).

The logistic process is divided into 3 partial processes, namely Inbound-Logistics, Park Logistics and Outbound-Logistics.

The Inbound-Logistics uses a multi-step logistic system with consolidation points for the different supply regions and also means of direct transportation. A combination of JIT/Vendor Managed Inventory and the classical stock supply is used for the inbound processes, dependent on the part-volumes and part-values.

Within the park all logistical operations are clustered: a central depot (suppliers don't possess an own depot anymore) and a central IT-System with intersections to the clients, sub-suppliers and settled suppliers in the park. The central IT-System presents a key factor for the realisation of the synergy effects. Furthermore the internal-park transport of goods is put into reality by milkruns from the central depot all the way to the suppliers.

For the Outbound-Logistics the supply forms JIT/JIS with the transport carriers: train and truck are mainly used. The information-technological procedure of the relevant role is managed by the logistical service provider through the central IT-system.

The consolidation of the goods flow from the sub-suppliers in the park and from the park to the OEM makes it possible to combine small loose transport goods of the suppliers with large more economic loose transport goods. Consequently, the costs of transport items, the item costs at the product entry and exit, as well as the stock in the entire supply chain are decreased [13].

![Figure 6: Conjunctions of Sequences](image)
of transport by train for cost reduction. Moreover, there is the opportunity for the not-in-the-park integrated supplier to improve the logistic performance and the logistic costs through an integration in the park.

Contrary to the ideas of Ritéra [14], who can only envisage a virtual Supplier Park on the basis of a virtual cooperation, the fundamental idea of the concept is to create a win-win situation between the Supplier Park and the not-in-the-park integrated suppliers through a virtual integration of both parties.

By doing this, the physical production flows are managed by milk-runs and direct traffic flows; an integration in the central IT-system must consequently follow suit. Apart from the utilization of the inbound and outbound processes of the park the additional efficiencies such as storage and sequencing can be used. Through the integration of material and information flows SME’s which are settled in spatial proximity to the park can be used to take better advantage of the potential of the global supply market and to offer JIT/JIS supplies for the OEMs.

Beyond that the market offers the possibility for suppliers from further field to take charge of warehouse activities, low-key assembly operations and the entire logistic management. Suppliers turn to JIT/JIS suppliers despite the distance of several 1000 km.

5 SUMMARY

In this paper a new support structure the MCSP+ was presented to the car industry. The concept helps to master the problem of increasingly more complex production structures of suppliers in a more effective and efficient way. The existing complex production structures consist of component plants and numerous JIT/JIS plants, tailored to customers’ personal requirements, in close proximity of OEMs or in a Supplier Park. While the independent setting up of a component JIS plants for suppliers causes difficulties for economic reasons, the MCSP+ offers this possibility through the opening up of cluster effects.

Advantages

<table>
<thead>
<tr>
<th></th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity improvement and decrease in logistic costs through economies of scale</td>
<td>Loss of competitive leads, through uncontrollable outflow of know-how</td>
</tr>
<tr>
<td>Decrease in capital demand through joint investment</td>
<td>Risk of loss of organisational identity and loss of options for differentiation</td>
</tr>
<tr>
<td>Complexity reduction of the plants’ structures (reduction of the JIT/JIS plants)</td>
<td>Increased logistic costs in respect of a settlement close to the plant</td>
</tr>
<tr>
<td>Reduction of interfaces for the OEM</td>
<td>Simplified change of suppliers for the OEM</td>
</tr>
<tr>
<td>Simple and flexible accessibility to resources</td>
<td>Loss of core competence through outsourcing</td>
</tr>
<tr>
<td>Inter-organisational learning and the development of cooperative core competence</td>
<td>Risk of finding insufficient workforce and risk of poaching staff</td>
</tr>
</tbody>
</table>

Table 1: Advantages and disadvantages of the concept.

The existing supply structures with inflexible processes that are directed towards an OEM are developed further by the concept through the provision of a combined logistics, infrastructure for component plants with consolidated supply processes, a central internal logistics and the JIT/JIS supply for more customers. Apart from the establishment of component plants in MCSP+ complex and critical supply processes, consisting of Tier 1, Tier 2 and Tier 3 suppliers can be continuously constructed. Moreover, the MCSP+ integrates suppliers that are not settled in the park and improve the logistic performance and the costs of the integrated suppliers (just SME’s).

Apart from the advantage it is the very establishment of such a supply structure with a joint integration of several suppliers in CEE that involves risks as well (Table 1). Regarding the feasibility of the concept, considerable efforts still need to be made as a matter of consequence. The requirement of OEMs and suppliers as well as the adaptation of different interests present some of the great challenges. Detailed analyses and a conception of the MCSP+ that is adapted to the participating businesses are the next steps to be carried out with further research projects within the framework. Concerning this, first experiences with a Supplier Park in South Africa which supplies 4 OEMs within a radius of 30 km have been gathered [15].

REFERENCES

