COMBINED RAMAN AND FTIR STUDY OF THECOTRICHITE AND RELATED EFFLORESCENCE

Anna Schönemann¹,², Hartmut Kutzke³, Bernhard Lendl⁴, and Gerhard Eggert⁵

THE PHENOMENON OF THECOTRICHITE

The cotrichite as well as related calcium acetate efflorescence were noted on art objects like ceramics, limestone, shells, mollusca, and other calcium containing materials. It is supposed that the acetic acid evaporates from wooden cabinets or sealing materials of show-cases. Nitrate and chloride salts may be contained in the object itself. Former cleaning procedures or contaminations during burial can be a source.

Compounds of the efflorescence

- Thecotrichite
 \[\text{Ca}_3(\text{CH}_3\text{COO})_3\text{Cl}(\text{NO}_3)_2 \times 7\text{H}_2\text{O} \]
- Calciumacetatenitrate
 \[\text{Ca}_2(\text{CH}_3\text{COO})_3(\text{NO}_3)_2 \times 2\text{H}_2\text{O} \]
- Calciacite
 \[\text{CaCl}(\text{CH}_3\text{COO}) \times 5\text{H}_2\text{O} \]
- Calcium acetate
 \[\text{Ca}(\text{CH}_3\text{COO})_2 \times \text{H}_2\text{O} \]

Further compounds of the system Ca-CH₃COOH-Cl-NO₃ may be found in future.

The efflorescence occurred on calcium containing objects stored in oak wooden cabinets for a long period of time.

ANALYTICAL DATA

Raman

The Raman spectra of the cotrichite and an object sample provide both a pattern of sharp, very intense signals which are well separated.

FTIR

Infrared spectroscopy was performed as complementary method to Raman spectroscopy. The FTIR spectra give information about frequencies related to the present anions.

XRD

In the powder X-ray diffractogram of an object sample the pattern matches with the XRD data of thecotrichite given by Tennant.

Conclusion

Raman spectroscopy is an excellent method for the examination of efflorescence of this group of compounds. It represents an alternative for the identification of thecotrichite to X-ray diffraction. The Raman spectrum of thecotrichite gives a characteristic pattern derived from vibrations of the acetate, nitrate, and chloride group. For this study reference compounds were synthesized for comparison. On this basis efflorescence on art objects were successfully identified.

Preparation of Reference Materials

Reference salts were synthesized by evaporation of solutions of salts in specific molar ratios. By the preparation of a medieval copper pigment a further modification occurred as minor product.

Institutions and Acknowledgement:
1 The Getty Conservation Institute, Los Angeles, USA
2 Academy of Fine Arts Vienna, Austria, contact: a.schoenemann@akbild.ac.at
3 University of Applied Sciences, Cologne, Germany
4 Technical University, Vienna
5 State Academy of Art and Design, Stuttgart, Germany

We express our thanks to Giacomo Chiari and Karen Trentelman, The Getty Conservation Institute, Los Angeles, Michael Steiger, University Hamburg, Eva Sulzer, Württembergisches Landesmuseum Stuttgart, and Stephan Schmidt-Wulffen, Academy of Fine Arts Vienna.