Endbericht für das Projekt

"AQUELLA“ Köflach
Bestimmung von Immissionsbeiträgen in Feinstaubproben

Erstellt von
H. Bauer, I. Marr, A. Kasper-Giebl, A. Limbeck,
A. Caseiro, M. Handler, N. Jankowski, B. Klatzer, P. Kotianova,
P. Pouresmaeil, Ch. Schmidl, H. Puxbaum

und dem AQUELLA - TEAM

Im Auftrag von

AMT DER STEIERMÄRKISCHEN LANDESREGIERUNG
FACHABTEILUNG 17C
Durchführung und Berichterstellung

Technische Universität Wien
Institut für Chemische Technologien und Analytik
Arbeitsgruppe für Umweltanalytik
1060 Wien, Getreidemarkt 9/164 UPA

Wien, 17.8.2007
Bericht UA/AQKöflach 2007 64S

Auftraggeber:
Amt der Steiermärkischen Landesregierung
Fachabteilung 17C - Technische Umweltkontrolle
Referat Luftgüteüberwachung
Landhausgasse 7 8010 Graz

Bericht-Nr. Lu-10/07

© August 2007

Informationen im Internet: http://umwelt.steiermark.at/
Unter dieser Adresse ist auch dieser Bericht im Internet verfügbar
Bei Wiedergabe der Ergebnisse ersuchen wir um Quellenangabe!
INHALT

1 PROJEKTDATEN ... 5

2 EINFÜHRUNG UND AUFGABENSTELLUNG .. 7
 2.1 Einführung zur Feinstaubproblematik ... 7
 2.2 Anwendung von Quellenmodellen ... 8
 2.3 Aufgabenstellung des gegenständlichen Projektes ... 9
 2.4 CMB in AQUELLA .. 9

3 QUELLENANALYSE MIT TRACERN .. 14
 3.1 PM10 Messstelle in Köflach .. 14
 3.2 Begleitende Messparameter im Raum Köflach .. 14
 3.3 Probenahme und Analytik .. 14
 3.3.1 Filterbehandlung .. 14
 3.3.2 Poolen der Filter .. 15
 3.3.3 Analysenplan .. 16
 3.3.4 Analytische Methoden .. 20
 3.3.5 Nachweisgrenzen ... 25
 3.4 Qualitätssicherung .. 26
 3.5 Herstellung von PM10 – Proben aus gekehrten Staubproben 28
 3.6 Entwicklung eines Macrotracer-Modells ... 29
 3.7 Zeitverläufe von PM10 ... 32
 3.8 Analysenergebnisse / Quellen ... 33
 3.9 Analysenergebnisse Köflach ... 35
 3.9.1 Monatsmittelwerte von Winter – und Sommermonaten 35
 3.9.2 Metalle .. 35
 3.9.3 Organische Tracer ... 36
 3.9.4 Zeitverläufe .. 40
 3.10 Quellenanalyse mit dem Makrotracer-Modell .. 42
 3.10.1 Mittelwert der Überschreitungstage ... 42
 3.10.2 Quellenanteile der Überschreitungsperioden .. 44
 3.10.3 Vergleiche von Tagen mit und ohne Überschreitung 46
 3.10.4 „Sommer – Winter“ Vergleich ... 49
 3.11 Quellenanalyse mit dem CMB-Modell ... 50
 3.11.1 Modellparameter .. 50
 3.11.2 CMB Analyse von ausgewählten Perioden und Vergleich mit den Makrotracer-
 Ergebnissen ... 51
 3.11.3 Der spezielle Fall des Holzrauchs ... 54
 3.11.4 Die Aufteilung des Verkehrs-Beitrags ... 55
 3.11.5 Die Mineralstaubanteile ... 55
 3.12 Vergleich mit der AQUELLA - Hintergrundmessstelle Bockberg 56
1 Projektdaten

Auftragnehmer:
Technische Universität Wien
Institut für Chemische Technologien und Analytik
Getreidemarkt 9/164 UPA
A-1060 Wien

Titel des Projektes:
AQUELLA – Köflach; Bestimmung von Immissionsbeiträgen in Feinstaubproben

Laufzeit:

Projektleiter:
Ao Prof. Dr. Hans Puxbaum
+43 1 58801 15170

Koordination:
Dr. Heidi Bauer
+43 1 58801 15177

Analytische Betreuer:
Heidi Bauer (EC/OC, Kohlenstoffspezifizierung, Filter Pooling)
Anne Kasper-Giebl (Ionenchromatographie, Anhydrozucker)
Andreas Limbeck (ICP-OES, AAS)
Iain Marr (Qualitätskontrolle)

Wissenschaftliche Mitarbeiter:
Yo Abé (Emissionsprofile Kochen, Holzbearbeitung, Tierhaltung)
Alexandre Caseiro (HPLC-E-Chem.Detektion, Anhydrozucker)
Markus Handler (ICP-OES, Filter Transport, Straßenstaubsammlung)
Nicole Jankowski (Straßenstaubprofile)
Barbara Klatzer (TOC, HULIS, Filter Pooling)
Petra Kotianova (GC-MS (non-polar)
Parissa Pouresmaeil (Thermographie, EC/OC, Filter Management)
Christoph Puls (AAS – As, Sb, Pb)
Barbara Rollinger (GC-MS polar)
Christoph Schmidl (Holzrauchprofile)
Johannes Zbiral (RFA – Si, Al, Fe)

Externe Beratung / Mitarbeit
Prof. Axel Berner (PM10 Emissionssammler Design, PM10 Ambient Sampler Design)
Johannes Frank (Konstruktion von Eigenbau-Geräten)
Prof. James J. Schauer (Externe Beratung, GC-MS Kalibrierung, Auswertung, CMB Beratung)
Prof. Vasil Simeonow (CMB AQUELLA Modellierung)

Weitere Mitarbeiter:
Lorena Andrade Sanchez (EC/OC)
Christian Effenberger, Carlos Ramirez Santa Cruz (Ionenchromatographie)
Lorena Andrade Sanchez (Filteraliquotsierung)
2 Einführung und Aufgabenstellung

2.1 Einführung zur Feinstaubproblematik

AQUELLA ein eigenes Aerosolquellen-Modell, das Makrotracer-Modell entwickelt und erfolgreich angewendet.

2.2 Anwendung von Quellenmodellen

Als wichtigste Aerosolquellenmodell-Typen werden von Cooper und Watson (1980) genannt:

- Analyse der Anreicherungsfaktoren
- Zeitreihenuntersuchungen
- Konzentrationswindrosen (Untersuchung der räumlichen Verteilung)
- Chemische Massenbilanzen (CMB)
- Multivariate statistische Verfahren (Faktorenanalyse und verwandte Methoden)

Auch an der TU Wien wurden in der Frühzeit der Rezeptormodellierung Arbeiten mit multivariaten statistischen Verfahren durchgeführt (Wopenka 1982 \[v\]; Puxbaum und Wopenka 1984 \[vi\]). Zu dieser Zeit basierten die Quellenanalysen auf anorganischen Parametern (Schwermetalle, Ionen) und für den KFZ-Verkehr diente Blei als Tracer.

Aus den Erfahrungen mit den Quellenprofilen entstand im Rahmen von AQUELLA ein eigenes Quellenmodell, das Makrotracer-Modell. Das Makrotracer-Modell basiert auf dem CMB Ansatz, wobei die Zahl der Tracerkomponenten auf eine möglichst geringe reduziert wird. Als Tracerkomponenten werden jedoch soweit als möglich Makrokomponenten herangezogen, die sich als besonders zuverlässig hinsichtlich der Quellenidentifizierung erwiesen haben.

2.3 Aufgabenstellung des gegenständlichen Projektes

2.4 CMB in AQUELLA

Eine schematische Darstellung der Abläufe in der Chemischen Massenbilanz Modellierung ist in Abbildung 1 dargestellt.

![Schema des CMB in AQUELLA](image)

Abbildung 1: Schematische Darstellung der Aktivitäten im CMB Modell. Durchgezogene Pfeile: AQUELLIS – Bereich; Gepunktete Pfeile: AQUELLA – Bereich

Quellen- und Immissionsproben werden auf denselben Tracersatz analysiert. Die Daten der Quellenprofile befinden sich in einer Datenbank und werden bei der Anwendung des CMB Modells verwendet. Die Bestimmung der Quellenbeiträge erfolgt für individuelle, meist

Auswahl der Quellen

Abbildung 2: Aerosolquellenverteilung PM10 nach ARC in Österreich – unter Einbezug eines gemessenen Anteils von 35% sekundär anorganischen Komponenten
Tabelle 1: „Haupt-Quellen“ und Unterteilungen, deren Unterscheidungsmöglichkeit in AQUELLIS untersucht wird

<table>
<thead>
<tr>
<th>„Haupt-Quellen“</th>
<th>Unterteilungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>KFZ-Abgas</td>
<td>Diesel-Motor, Otto-Motor</td>
</tr>
<tr>
<td>Kohle-Verbrennung</td>
<td></td>
</tr>
<tr>
<td>Holzverbrennung/Holzrauch</td>
<td></td>
</tr>
<tr>
<td>Erdgasverbrennung</td>
<td></td>
</tr>
<tr>
<td>Kochvorgänge</td>
<td></td>
</tr>
<tr>
<td>Brems- und Reifen-Abrieb</td>
<td></td>
</tr>
<tr>
<td>Mineralischer Staub</td>
<td>Straßenabrieb, Splittverwendung</td>
</tr>
<tr>
<td></td>
<td>Baustellen-Staub, Fassaden-Erosion, geogene Stäube, Landwirtschaft/Felder</td>
</tr>
<tr>
<td>Auftausalz (v.a. NaCl)</td>
<td></td>
</tr>
<tr>
<td>Sekundäres Anorganisches Aerosol</td>
<td>Sulfat, Nitrat, Ammonium</td>
</tr>
<tr>
<td>Sekundäres Organisches Aerosol (Rest OM)</td>
<td>HULIS*, Oxalsäure* u.a.</td>
</tr>
</tbody>
</table>

* Teilfraktion

Eine Reihe der Emissionstypen spielt in Städten eine untergeordnete Rolle. Eine Auflistung der in Betracht gezogenen Haupt-Quellen enthält Tabelle 1, in welcher auch mögliche weitere Unterteilungen angeführt sind.

Ausgehend von Erfahrungen früherer Arbeiten wird angenommen, dass insbesondere Sekundäre anorganische Aerosole, Straßenstaub (verbunden mit Splittstreuung), KFZ-Emissionen und Holzrauch als bedeutende Quellen anzusehen sind.

Auswahl der Tracer

Als Tracer wurden die in Tabelle 2 angeführten Komponenten analysiert. Die genannten Elemente und Verbindungen stellen dabei ein Minimalprogramm dar; tatsächlich fallen bei den Multielement- und Multikomponentenmethoden weitere Analysendaten an, die gegebenenfalls auch genützt werden können.

Tabelle 2: Tracerkomponenten

Metalle (gesamt-Anteile nach Mikrowellenunterstütztem Aufschluss – ICP-OES; AAS)
- Blei, Cadmium, Kupfer, Zink, Mangan, Eisen, Vanadium, Nickel, Calcium, Magnesium, Titan,
 - Barium, Antimon, Arsen
- Silicium, Aluminium (RFA)

Ionen (Löslich) (IC)
- Chlorid, Sulfat, Nitrat, Oxalat, Ammonium, Calcium, Magnesium, Natrium, Kalium

TC/BC/OC/CC (Thermographie, Verbrennungsanalyse)
- Russ und organischer Kohlenstoff, Karbonat-Kohlenstoff

Anhydrozucker (HPLC-Echem.Det.)
- Levoglucosan, Mannosan, Galactosan

PAH (GC-MS)
- Benzo(e)pyren, Indeno(cd)fluoranthen, Indeno(cd)pyren, Benzo(de)anthracen-7-on, Reten

Alkane (GC-MS)
- Heptacosan, Octacosan, Nonacosan, Hentriacontan, Tritriacontan

Fettsäuren (Derivatisierung/GC-MS)
- 9-Hexadecensäure, Dodecansäure, Tetradecansäure, Palmitinsäure, Stearinsäure,
 - Malonsäure, Bernsteinäsäure, Adipinsäure

Harzsäuren (Derivatisierung/GC-MS)
- Abietinsäure

Andere Polare (Derivatisierung/GC-MS)
- Nonanal

Tabelle 3: Wichtige Tracer im CMB Modell („unique“ und Haupt-Tracer)

<table>
<thead>
<tr>
<th>Hauptquelle</th>
<th>„Unique Tracer“</th>
<th>„Haupttracer“</th>
</tr>
</thead>
<tbody>
<tr>
<td>KFZ-Abgas</td>
<td>Ruß (EC)</td>
<td></td>
</tr>
<tr>
<td>Kohleverbrennung</td>
<td>As</td>
<td></td>
</tr>
<tr>
<td>Holzverbrennung</td>
<td>Levoglucosan</td>
<td>Reten, Harzsäuren (Weichholz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Syringole (Hartholz)</td>
</tr>
<tr>
<td>Erdgasverbrennung</td>
<td>Benz(a)anthracen-7,12-dion</td>
<td>Benz(de)anthracen-7-on</td>
</tr>
<tr>
<td>Kochen</td>
<td>Partikuläres Nonanal</td>
<td>9-Hexadecensäure</td>
</tr>
<tr>
<td>Reifenabrieb</td>
<td></td>
<td>n-Tetracontan</td>
</tr>
<tr>
<td>Bremsabrieb</td>
<td>Sb</td>
<td></td>
</tr>
<tr>
<td>Mineralstaub</td>
<td>Si, Al, Ca</td>
<td></td>
</tr>
<tr>
<td>Auftausalz</td>
<td>Na, Cl</td>
<td></td>
</tr>
</tbody>
</table>

Allgemeine Anforderungen bei CMB

In der früheren Entwicklung der CMB Modelle bediente man sich der Profile von Komponenten, die jeweils aus einer Analysenmethode erhalten wurden (z.B.
Neutronenaktivierungsanalyse, ICP-MS, GC-MS etc.). Heute setzt man „mixed models“ ein, wobei Spurenmetalle, Matrixkomponenten, Russ und zahlreiche polare und nicht polare organische Verbindungen analysiert werden.

Von Bedeutung ist dabei, dass die gleichen, aus bestimmten Gründen vorgesehenen Komponenten, in Quellen- und in Rezeptorproben bestimmt werden. Von besonderer Bedeutung ist hierbei die Relation (Massenverhältnis) der analytischen Komponente zur PM10 (oder PM2.5) Partikelmasse in einer Probe. Dies gilt für Emissions- und Immissionsproben. Der Massenstrom oder das beprobte Volumen gehen in die CMB Analyse nicht ein.

Daraus ergeben sich Konsequenzen:

Ein vorgegebener Datensatz ist in Emissions- wie auch in Immissionsproben zu analysieren. Die Emissionsproben sind mit einer Verdünnungseinrichtung zu ziehen, die es ermöglicht die Beprobung bei < 50°C zu ermöglichen. Beprobt wird, wie bei der Immission, auf zwei unterschiedliche Substrate (organisch und anorganisch).

Proben von fugitivem Staubmaterial können durch Keh rung oder Saugung beprobt werden. Aus diesen Proben werden dann im Labor Anteile <10 µm (PM10) in einer speziellen Vorrichtung erhalten.

Im CMB-Modell geht man in den USA den Weg, Hauptquellen zu unterscheiden, wobei den wichtigen Fällen, wie z.B. der Unterscheidung von Partikeln aus Diesel- und Benzin- Motoren hohe Aufmerksamkeit geschenkt wird.

Weitere bedeutende Anforderungen bei Anwendung von CMB-Modellen sind:

- Die wichtigsten Quellen (jedenfalls mit etwa > 3% Anteil am PM10) müssen im Quellenkatalog enthalten sein.
- Die Tracerkomponenten müssen zu einem hohen Prozentsatz durch die Quellen erkläbar sein.
- Die Quellenprofile dürfen untereinander nicht korreliert sein
- Die Quellenprofile sollen das mittlere Emissionsmuster der Gruppe darstellen, die durch ein Profil repräsentiert werden.
3 Quellenanalyse mit Tracern

3.1 PM10 Messstelle in Köflach

Die Messstelle in der Stadt Köflach befindet sich vor der Schule.

Abbildung 3: Lage der AQUELLA – Messstelle Köflach

3.2 Begleitende Messparameter im Raum Köflach

An der Luftgütemessstation Köflach, die von Amt der Steiermärkischen Landesregierung, Fachabteilung 17C, Referat Luftgüteüberwachung, betrieben wird, werden standardmäßig die Luftgüteparameter SO₂, NO, NO₂, PM10, Temperatur, Windgeschwindigkeit sowie Windrichtung erfasst.

3.3 Probenahme und Analytik

3.3.1 Filterbehandlung

Mitarbeiter des Instituts für Chemische Technologien und Analytik der TU Wien holen die beprobten und gewogenen Quarzfaserfilter der steirischen AQUELLA – Messstellen vom Amt der Steiermärkischen Landesregierung ab, diese werden in Wien für die verschiedenen Analysen zugeschnitten und gepoolt. Die gepoolten Filteraliquote werden bis zur Analyse bei −20°C gelagert. Die Zelluloseester-Filter werden zuerst für die Bestimmung von Silizium und Aluminium (zerstörungsfreie Röntgenfluoreszenzanalyse – Tagesproben) verwendet, dann aufgeschlossen und der Schwermetallanalyse zugeführt.
3.3.2 Poolen der Filter

Die Filter wurden entweder nach Episoden oder nach Höhe der Belastung (<50 µg/m³ und > 50 µg/m³) gepoolt. Dieses Poolen wurde jedoch so vorgenommen, dass für alle Parameter Monatsmittel berechnet und somit auch die verschiedenen Aquella – Messstellen anderer Bundesländer miteinander verglichen werden können. Quarzfaser- und Zelluloseester-Filter werden jeweils gleich gepoolt.

Zur Bildung der Probenpools kamen folgende Kriterien zur Anwendung:

- Einzeltage und Pools nach Höhe der Überschreitung
- Vergleich von Tagen < 50 µg/m³ und > 50 µg/m³ im Winter
3.3.3 Analysenplan

Tabelle 4: Liste der gepoolten und nicht gepoolten Analysen

<table>
<thead>
<tr>
<th>Tagesproben</th>
<th>Gepoolte Proben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenstoff-Summenparameter</td>
<td>Anhydrozucker</td>
</tr>
<tr>
<td>Mineralische Komponenten: Si, Al</td>
<td>HULIS</td>
</tr>
<tr>
<td>Apolare organische Tracer</td>
<td></td>
</tr>
<tr>
<td>Polare organische Tracer</td>
<td></td>
</tr>
<tr>
<td>Lösliche Ionen</td>
<td></td>
</tr>
<tr>
<td>Schwermetalle</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5: Liste der analysierten Pools (Rote Schrift: Überschreitungsperioden, schwarze Schrift: Perioden ohne Grenzwertüberschreitung)

<table>
<thead>
<tr>
<th>Pools</th>
<th>Anzahl der Tage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.-30.07.05</td>
<td>26</td>
</tr>
<tr>
<td>9.-31.08.05</td>
<td>22</td>
</tr>
<tr>
<td>1.-19., 22.-29.10.05</td>
<td>27</td>
</tr>
<tr>
<td>Ü1 20.-21.10.05</td>
<td>2</td>
</tr>
<tr>
<td>Ü2 30.-31.10.05</td>
<td>2</td>
</tr>
<tr>
<td>Ü3 1.-4.11.05</td>
<td>4</td>
</tr>
<tr>
<td>5.-26., 28.-29.11.05</td>
<td>24</td>
</tr>
<tr>
<td>Ü4 22.-27., 30.-31.3.05</td>
<td>2</td>
</tr>
<tr>
<td>1.-11., 14.-19., 21., 24.-31.12.05</td>
<td>26</td>
</tr>
<tr>
<td>Ü5 12.-13.12.05</td>
<td>2</td>
</tr>
<tr>
<td>Ü6 20., 22.-23.12.05</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbildung 6a
AQUELLA Köflach August 2005

Abbildung 6b

AQUELLA Köflach Oktober 2005

Abbildung 6c
Abbildung 6d

Abbildung 6e

Abbildung 6a-e: PM10-Verlauf an der Köflacher AQUELLA Messstelle und Probenpools. Rot umrandete Episoden wurden einzeln analysiert, blau und grün umrandete wurden jeweils in kombinierten Pools analysiert.
3.3.4 Analytische Methoden

Lösliche Ionen: \(\text{Cl}^- \), \(\text{NO}_3^- \), \(\text{SO}_4^{2-} \), Oxalat, \(\text{Na}^+ \), \(\text{K}^+ \), \(\text{NH}_4^+ \), \(\text{Ca}^{2+} \), \(\text{Mg}^{2+} \)

Kohlenstoff-Summenparameter: TC/CC/EC/BC/OC

Gesamtkohlenstoff (Total Carbon, TC)

Elementarer Kohlenstoff (Elemental Carbon, EC)

Die Bestimmung des EC erfolgt durch eine zweistufige Pyrolyse der Proben („Cachier-Methode“). In einem ersten Schritt wird eine Filterstanze (\(\varnothing 12\text{mm} \)) 2 h bei 340° C im Sauerstoffstrom (Sauerstoff 4.8, Messer) in einem Ofen belassen, um den gesamten organischen Kohlenstoff zu entfernen (Cachier et al. 1989). Der auf der Filterstanze
verbliebene Kohlenstoff (EC) wird in einem zweiten Schritt bei 1000°C verbrannt (die TC-Bestimmung und die Kalibration erfolgt wie beim Gesamtkohlenstoff). Der Karbonat-Kohlenstoff muss abgezogen werden – er wird nach der unten angeführten Methode (Karbonat-Kohlenstoff CC) bestimmt. In bestimmten Fällen (bei geringen CC-Anteilen, die aufgrund des säurelöslichen Kalzium-Anteils abgeleitet werden kann) kann die Ermittlung des CC entfallen.

Karbonat-Kohlenstoff (Carbonate Carbon, CC)
Der Karbonat-Kohlenstoff wurde über den löslichen Ca-Anteil bestimmt, unter der Annahme, dass Ca vollständig als Karbonat vorliegt. Ausgewählte Proben wurden zur Überprüfung mittels Thermo-optischer Analyse untersucht und ein gutes Übereinstimmen der beiden Methoden festgestellt.

Schwarzer Kohlenstoff (Black Carbon, BC)

Organischer Kohlenstoff (Organic Carbon, OC)
Der organische Kohlenstoff wird als Differenz TC-CC-EC berechnet.

Thermo-optische Kohlenstoffbestimmung
Organische Tracer:

Apolare Verbindungen: Benzo(e)pyren, Indeno(cd)fluoranthen, Indeno(cd)pyren, Benzo(de)anthracen-on, Kohlenwasserstoffe (C27, C28, C29, C31, C33), Reten, Hopane, Sterane, Coronen, Benzo(ghi)perylen

Die gaschromatographischen Analysen werden mit einem HP-6890 Gaschromatographen durchgeführt. Die Probe wird im Splitless Mode (2 min, 300 °C) mit einem HP-7683 Autosampler injiziert. Der Gaschromatograph ist mit einer deaktivierten Fused Silica Vorsäule (1 m x 0.32 mm) und einer Kapillarsäule DB-5 MS (95% Dimethyl, 5% Phenylpolysiloxan, 30 m x 0.25 mm ID x 0.25 µm Filmdicke) ausgestattet. Das Temperaturprogramm startet mit 50 °C für 2 min, danach ein Heizprogramm, das mit 8 °C/min auf 98 °C und dann mit 6 °C/min auf 290 °C aufheizt, danach folgt ein Halt bei 290 °C für 20 Minuten. Helium wird als Träergas verwendet. Der Gaschromatograph ist mit einem Massenspektrometer HP-7683 (70eV) verbunden.

Polare Verbindungen: Hexadecen-9-säure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Pimarsäure, Abietinsäure, Nonanal, Syringol, Syringolaldehyd, Ölsäure, Linolsäure, Cholesterin

Gaschromatographische Analysen werden mit einem HP-5890 Gaschromatographen durchgeführt. Die Probe wird im Splitlessmode (2 min; 300 °C) mit einem Autosampler GC-PAL injiziert. Der Gaschromatograph ist mit zwei Kapillarsäulen (95% Dimethyl, 5% Phenylpolysiloxane; 30 m x 0.25mm I.D. x 0.25µm Filmdicke) ausgestattet. Das Temperaturprogramm startet mit 50 °C für 2 min, danach ein Heizprogramm, das mit 8 °C/min auf 98 °C und dann mit 6 °C/min auf 290 °C aufheizt, danach folgt ein Halt bei 290 °C für 20 Minuten. Helium wird als Träergas verwendet. Der Gaschromatograph ist mit zwei Detektoren ausgestattet, mit einem Flammenionisationsdetektor und einem Massenspektrometer HP-5971-A (70eV).
Anhydrozucker: Levoglucosan, Galactosan, Mannosan

Ein Filteraliquot (4,5 – 6,3 cm²) wird mit 3 ml bidestilliertem Wasser versetzt und 20 min im Ultraschallbad eluiert und anschließend 3 Minuten mit 13400 rpm zentrifugiert. Anschließend wird der Überstand ionenchromatographisch analysiert (Säule: Carbo Pac PA10; Eluent: NaOH Gradient, Anfangskonzentration: 12% NaOH, Endkonzentration: 16% NaOH). Das verwendete ionenchromatographische System ist ein Bio-LC System der Firma Dionex mit amperometrischer Detektion (ED40). Die Quantifizierung erfolgt gegen externe Standards.

Cellulose

Für die enzymatische Cellulose-Bestimmung werden Filteraliquote (ca. 4,5 – 6 cm²) mit 3 ml einer 0,05 molaren Citronensäurelösung mit 0,05% Thymol (pH 4,8) versetzt und 15 min im Ultraschallbad eluiert. Danach erfolgt die Zugabe von je 100 µl der gereinigten, verdünnten *Trichoderma reesei* – Cellulase (Celluclast, 1:10 verdünnt) und *Aspergillus niger* – Cellubiase (Novozym 188, 1:100 verdünnt). Dieser Ansatz wird in einem Röhrchen verschlossen 24 h bei 45°C im Wasserbad inkubiert. Anschließend werden die Enzyme durch Erhitzen auf über 80°C (10 min) denaturiert. Nach dem Abkühlen der Lösung auf Raumtemperatur wird zentrifugiert und der Überstand photometrisch bei 340 nm bestimmt. Für die Analyse wurde ein Testkit von Boehringer Mannheim / R – Biopharm zur Bestimmung von D – Glucose in Lebensmitteln eingesetzt.

HULIS (humic like substances)

Mineralische Komponenten: Silizium, Aluminium

Die Analysen der mineralischen Komponenten Silizium und Aluminium werden auf einem Röntgenspektrometer des Typs Philips X’Unique II durchgeführt. Als Primärstrahlungsquelle zur Anregung der Fluoreszenzlinien der nachzuweisenden Elemente wird eine Rh-Röhre verwendet, wobei die Anregungsspannung mit 50kV und die Stromstärke mit 40mA gewählt wurde. Si und Al werden nach spektraler Zerlegung des Fluoreszenzspektrums mit einem PET 200-Analysatorkristall nachgewiesen.

Die Auswertung der gemessenen Intensitäten erfolgt über die Messung von 4 Standards – das sind Celluloseester-Filter, auf die eine genau definierte Menge einer zertifizierten Staubprobe mit den nachzuweisenden Elementen aufgebracht wurde. Aus den gemessenen Intensitäten der zu analysierenden Elemente und den aus der Zusammensetzung des
Standardstaubs und aufgebrachter Staubmenge berechneten Mengen der Elemente ergibt sich eine Kalibrierfunktion. Nach dieser wurden die in den Luftfiltern gemessenen Elemente als Masse pro Filter ausgewertet.

Spurenmetalle:

ICP-OES: Ca_{ges}, Mg_{ges}, Cd, Cr, Cu, Zn, V, Fe, Mn, Ba, Ti, Sr, Sn

Die auf Celluloseester-Filtern gesammelten Proben (1-3 Filter) werden in 100ml Teflonbomben mit Königswasser (2 ml HNO$_3$ konz; 2,5 ml HCl konz; 200 µL HF) im Mikrowellenofen (Multiwave 3000) aufgeschlossen. Während eines 70-Minuten-Programms wird die Probe auf ~190°C erhitzt und erreicht einen Druck von ~20 bar. Nach dem Abkühlen werden die Bomben belüftet und die Lösungen in 7 ml Teflonbomben überführt und mit etwas Wasser nachgespült.

Nach Zugabe von 100-200 µL Perchlorsäure werden die Proben langsam auf 150°C erhitzt und nahezu bis zur Trockene eingedampft. Der Rückstand wird nun in 4ml HCl (5%) aufgenommen, in eine Eprouvette überführt, mit Wasser auf 10g aufgefüllt und mit ICP-OES gemessen. Fallweise sind Verdünnungen (1:50) notwendig.

AAS: Antimon, Arsen, Blei

Für die Pb-Bestimmung mittels ET-AAS müssen die Proben nach dem Königswasseraufschluss 1:10 verdünnt werden, um im linearen Bereich des Messgerätes zu bleiben. Antimon und Arsen werden meist direkt aus dem Königswasseraufschluss gemessen und nur bei Bedarf verdünnt.
3.3.5 **Nachweisgrenzen**

Die Nachweisgrenzen der angewendeten Methoden sind in Tabelle 6 angeführt.

Tabelle 6: Nachweisgrenzen der analysierten Komponenten

<table>
<thead>
<tr>
<th>Anorganische Stoffe</th>
<th>NWG</th>
<th>Einheit</th>
<th>Organische Stoffe</th>
<th>NWG</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anionen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorid</td>
<td>0,1</td>
<td>µg/m³</td>
<td>Gesamt-C, TC</td>
<td>1</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Nitrat, Sulfat</td>
<td>0,02</td>
<td>µg/m³</td>
<td>Elementarer C, EC</td>
<td>0,1</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Acetat etc.</td>
<td>0,01</td>
<td>µg/m³</td>
<td>Black carbon, BC</td>
<td>0,2</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Kationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0,1</td>
<td>µg/m³</td>
<td>Levoglucosan</td>
<td>4</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Ca</td>
<td>0,03</td>
<td>µg/m³</td>
<td>HULIS (als C)</td>
<td>0,1</td>
<td>µg/m³</td>
</tr>
<tr>
<td>NH₄, K</td>
<td>0,02</td>
<td>µg/m³</td>
<td>Kohlenwasserstoffe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0,002</td>
<td>µg/m³</td>
<td>Alkane, C24–C36</td>
<td>0,02</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Hauptelemente - RFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al, As, S</td>
<td>0,001</td>
<td>µg/m³</td>
<td>Polare org. Verbindungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe, Ni</td>
<td>0,002</td>
<td>µg/m³</td>
<td>Monocarboxyäuren</td>
<td>0,1-0,3</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Si</td>
<td>0,003</td>
<td>µg/m³</td>
<td>Dicarboxyäuren</td>
<td>0,6</td>
<td>ng/m³</td>
</tr>
<tr>
<td>P</td>
<td>0,004</td>
<td>µg/m³</td>
<td>Abietinsäure</td>
<td>0,1</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Ca</td>
<td>0,007</td>
<td>µg/m³</td>
<td>Nonanal</td>
<td>0,3</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Spurenelemente - ICP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>10</td>
<td>ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca, Cu, Fe, Zn</td>
<td>1</td>
<td>ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba, Mn, Pb</td>
<td>0,1</td>
<td>ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg, Sr</td>
<td>0,02</td>
<td>ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 Qualitätssicherung

Im Rahmen der chemischen Analytik wurden folgende Qualität sichernde Maßnahmen durchgeführt:
- Dokumentation der Daten – Filtercodes
- Rückstellproben
- Ringversuche
- interne Qualitätssicherung – Blindwerte

Dokumentation der Daten – Filtercodes

Die Filter wurden vom Labor der Steiermärkischen Landesregierung mit einem Code versehen, der während der Analysen und der Lagerung (Kennzeichnung der Rückstellproben) der Filter beibehalten wurde. Eine weitere Maßnahme um Verwechslungen zu vermeiden, besteht in der nach Station getrennten Lagerung der beprobten Filter.

Rückstellproben

Es wird, um eine spätere Überprüfung der Analysen durchführen zu können, von jeder gezogenen Probe eine Rückstellprobe aufbewahrt.

Teilnahme an Ringversuchen

Interne Qualitätskontrolle – Blindwerte

Die Ergebnisse der Analysen wurden durch Erstellung von Ionenbilanzen und Vergleich von Gesamtmasse und Masse aller bestimmten Komponenten rechnerisch überprüft. Wurden bei Bildung der Ionenbilanz mehr als 30% Abweichung (positiv oder negativ) vom Gleichgewicht festgestellt, wurde die Analyse wiederholt. Überstieg die Summe aller identifizierten Komponenten die Masse des gesamten abgeschiedenen Aerosols, so wurden alle Analysen wiederholt und auch die Dokumentation der Massen der Filter vor und nach der Probenahme überprüft.

Blindwerte: Zur Bestimmung der Laborblindwerte wurden die in Abschnitt 3 beschriebenen Analysenmethoden herangezogen, als Proben wurden Quarzfaserfilter direkt aus der Packung verwendet. Zur Bestimmung der Feldblindwerte wurden die in Abschnitt 4.3.1
beschriebenen Analysenmethoden herangezogen, als Proben wurden Quarzfaserfilter verwendet, welche gleich wie die beprobten Filter behandelt wurden und auch gemeinsam mit den beprobten Filtern in die Magazine der High-Volume Sammler eingelegt waren aber nicht beprobt wurden. Zu den Blindwerten bei der Schwermetallanalyse werden Feldblindwerte und HNO₂-Blindwerte gezählt.

Standards: Bei Analyse der ionischen Komponenten erfolgte die Kalibration durch 4-5 externe Wiederholstandards pro Run. Die Standards werden von den Mitarbeitern des CTA hergestellt und bei jeder Neuzubereitung mittels Merck® Standard überprüft. Dazu wurden der Anionen-Mehrelementstandard II (Nr.1.11448) für Nitrat, Sulfat und Chlorid und die Nitritstandardlösung (Nr. 1.198999) fit 1:1000 verdünnt und mit den selbst hergestellten Standards verglichen. Der Mehrelementstandard VII (Nr.1.10322) wird nach 1:100 Verdünnung zur Überprüfung aller Kationenstandards der herangezogen. Die verwendeten Substanzen zur Standardherstellung (Anionen: Na₂NO₃, Na₂NO₂, Na₂SO₄, Natriumoxalat, KCl, Kationen: NaCl, NH₄NO₃, Ca(NO₃)₂·4H₂O, KNO₃ und MgSO₄·7H₂O) wiesen alle die Reinheit p.a. auf.

3.5 Herstellung von PM10 – Proben aus gekehrten Staubproben

Abbildung 7: Elutriator – Gerät zur Herstellung von PM$_{10}$-Proben (roter Pfeil: PM10-Sammeleinheiten)

Straßenstaub

3.6 Entwicklung eines Macrotracer-Modells

Im Verlauf der AQUELLA-Projekte zeigte sich, dass bereits für wichtigste Aerosolquellen entweder einzigartige Tracer oder zumindest Haupt-Tracer zur Verfügung stehen, die als Makrokomponenten im Quellenprofil anzusehen sind. Ausgehend von diesen Tracern wurde ein einfaches Massenbilanz-Modell erstellt, mit welchen 9 Quellen/bzw. Quellengruppen aus den Immissionsdaten erklärt werden können. Die verwendeten Makrotracer und deren Anwendung sind in Tabelle 7 angeführt.

Tabelle 8 enthält für PKW, LDV und HDV die mittleren Non-Exhaust Emissionsfaktoren und zum Vergleich typische Exhaust Emissionsfaktoren. Im gewichten Mittel (für eine Flotte mit etwa 10 % HDV) liegt der Non-Exhaust-Anteil bei 30% des Exhaust-Anteils. Nach Düring und Lohmeyer [xiii] können Non-Exhaust-Anteile auch bis zum 3-fachen des Abgasanteiles ausmachen, je nach Verschmutzungsgrad der Straße und Fahrbedingungen. In unserer Analyse finden sich die mineralischen Bestandteile des Straßenabriebes im Quellenanteil Mineralstaub. Für die organischen Anteile des Reifen- und Bremsabriebes werden als Schätzgröße das 0,3 fache des Abgasanteils angenommen (aus SNAP Code 070700, 070800). Dies stellt nach eigenen Messungen (Kaisermühlentunnel) eine Untergrenze dar, beim Kaisermühlentunnel mit täglichen Staus lag der organiske non-exhaust Anteil im groben Bereich (PM10-2,5) bei 0,9. Da in Tunnels der Anteil des wieder aufgewirbelten

Abbildung 8: PM10 Proben auf 47 mm – Filtern aus Kehrstaubproben
Materials höher anzunehmen ist, als in offenen Straßen, wird konservativer Weise der Faktor 0,3 angewendet. Der mineralische Anteil von Abrieb und Wiederaufwirbelung ist im Quellenanteil von Mineralstaub enthalten.

Tabelle 7: Makrotracer und abgeleitete Quellen im Makrotracer-Modell

<table>
<thead>
<tr>
<th>Makrotracer</th>
<th>Umrechnungsfaktoren</th>
<th>Abgeleitete Quelle</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruß (EC)</td>
<td>EC_D=EC - EC_H
DA=EC_D*(EC_D^0,33)
(DA: Diesel-Abgas)
EC_H=M_H^0,15
EC_C=M_C^0,4</td>
<td>EC aus Diesel Diesel Emission KFZ+off road
EC aus Holzrauch
EC aus Kohleverbrennung.</td>
<td>Tunnelmessungen, Eigene Daten EPA SPECIATE</td>
</tr>
<tr>
<td>As</td>
<td>M_C=As*f_C §</td>
<td>Kohlefeuerung Haushalte</td>
<td>EPA SPECIATE</td>
</tr>
<tr>
<td>Levoglucosan</td>
<td>M_V=Levo*10,7</td>
<td>Holzrauch Haushalte</td>
<td>Eigene Daten</td>
</tr>
<tr>
<td>HULIS</td>
<td>1x</td>
<td>Organisch Sekundär</td>
<td>Limbeck et al. 2005</td>
</tr>
<tr>
<td>Cellulose</td>
<td>Cellulose*2</td>
<td>Pflanzen-Debris</td>
<td>Puxbaum&Tenze-Kunit 2003^iv</td>
</tr>
<tr>
<td>Pilz-Sporen</td>
<td>13 pg C/Spore</td>
<td>Bio-Aerosol (Pilze)</td>
<td>Bauer et al. 2002</td>
</tr>
<tr>
<td>NaCl</td>
<td>> 1% von PM10</td>
<td>Auftausalz</td>
<td>-</td>
</tr>
<tr>
<td>Si, Ca</td>
<td>(Si^2,7)+(Ca^2,5)</td>
<td>Mineralstaub</td>
<td>Geogene Verhältnisse</td>
</tr>
<tr>
<td>Ammonium, Sulfat,</td>
<td>(NH_4+SO_4+NO_3)1,1(für 10% Wasser)</td>
<td>Anorganisches Sekundäraerosol</td>
<td>-</td>
</tr>
<tr>
<td>Nitrit identifiziert</td>
<td></td>
<td>v.a. sekundär organisch, unbekannte Bioaerosole</td>
<td>-</td>
</tr>
</tbody>
</table>

§ Bereich von f_C = 300-1000

Tabelle 8: Non-Exhaust PM10 Emissionen (Einfache Methodik) und Vergleich mit typischen Abgas-Emissionsraten von Diesel-Fahrzeugen. (aus ["xii"])

<table>
<thead>
<tr>
<th>Fahrzeugklasse</th>
<th>Reifenabrieb g/km</th>
<th>Bremsabrieb g/km</th>
<th>Straßenabrieb g/km</th>
<th>Non-Exhaust Summe g/km</th>
<th>Abgas (Diesel) g/km</th>
<th>Non-Exhaust % von Abgas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKW</td>
<td>0,0064</td>
<td>0,0073</td>
<td>0,0075</td>
<td>0,021</td>
<td>0,06</td>
<td>35</td>
</tr>
<tr>
<td>LDV</td>
<td>0,0101</td>
<td>0,0115</td>
<td>0,0075</td>
<td>0,029</td>
<td>0,08</td>
<td>36</td>
</tr>
<tr>
<td>HDV</td>
<td>0,0270</td>
<td>0,0320</td>
<td>0,0380</td>
<td>0,097</td>
<td>0,40</td>
<td>24</td>
</tr>
<tr>
<td>Gew. Mittel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Motoren) bestimmt werden. Der „mineralische“ Anteil von 8% stammt nach Literaturangaben nur zum Teil (<1%) aus Inhaltsstoffen des Motoröls und von Abriebsvorgängen im Motorbereich [xv].

Tabelle 9: Mittelwert von EC- und OC-Konzentrationswerte im Kaisermühlentunnel – Außenluft bereinigte Werte (Limbeck et al., in Vorbereitung)

<table>
<thead>
<tr>
<th>PM2,5</th>
<th>EC Abgas</th>
<th>OC Abgas</th>
<th>OM Abgas</th>
<th>Anorganisch</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/veh km</td>
<td>% PM2,5</td>
<td>% (EC+OM)</td>
<td>% PM2,5</td>
<td>% (EC+OM)</td>
<td>% PM2,5</td>
</tr>
<tr>
<td>„Abgas“ = EC * f</td>
<td>18</td>
<td>69</td>
<td>75</td>
<td>5</td>
<td>---</td>
</tr>
</tbody>
</table>

Tabelle 10: Vergleich von Umrechnungsfaktoren von Levoglucosan auf Holzrauch-OC.

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Fuel Type</th>
<th>EC mg/g PM</th>
<th>OC mg/g PM</th>
<th>Levoglucosan [mg/g OC]</th>
<th>K mg/g PM</th>
<th>Factor OC/Levogl.</th>
<th>K/Levogl. ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire place NE – US PM2,5</td>
<td>Hardwood</td>
<td>108</td>
<td>866</td>
<td>129</td>
<td>10,6</td>
<td>7,8</td>
<td>0,09</td>
<td>Fine et al. 2001</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>149</td>
<td>911</td>
<td>76,4</td>
<td>10,8</td>
<td>11,9</td>
<td>0,16</td>
<td></td>
</tr>
<tr>
<td>Fire place South-US PM2,5</td>
<td>Hardwood</td>
<td>34</td>
<td>787</td>
<td>136</td>
<td>8,7</td>
<td>7,4</td>
<td>0,08</td>
<td>Fine et al. 2004</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>161</td>
<td>1000</td>
<td>42,6</td>
<td>5,4</td>
<td>23,5</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>Fire place MidW&W-US PM2,5</td>
<td>Hardwood</td>
<td>20</td>
<td>767</td>
<td>183</td>
<td>8,9</td>
<td>5,5</td>
<td>0,06</td>
<td>Fine et al. 2004</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>121</td>
<td>890</td>
<td>123</td>
<td>3,5</td>
<td>8,1</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Wood stove US PM2,5</td>
<td>Hardwood</td>
<td>106</td>
<td>553</td>
<td>164</td>
<td>17,4</td>
<td>6,1</td>
<td>0,05</td>
<td>Fine et al. 2004</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>143</td>
<td>620</td>
<td>353</td>
<td>7,5</td>
<td>2,8</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Wood stove Austria PM10</td>
<td>Beech</td>
<td>513</td>
<td>79</td>
<td>2,1</td>
<td>12,6</td>
<td>0,05</td>
<td>Schmidl 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spruce</td>
<td>537</td>
<td>206</td>
<td>1,6</td>
<td>5,0</td>
<td>0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian biomass fuel PM2,5</td>
<td>Leaves, straw, dung, etc.</td>
<td>32</td>
<td>525</td>
<td>79</td>
<td>20</td>
<td>6,6</td>
<td>0,5</td>
<td>Sheesley 2003</td>
</tr>
<tr>
<td>Forest Fire SE US PM2,5</td>
<td>Pine dominated</td>
<td>39</td>
<td>603</td>
<td>95</td>
<td>5,7</td>
<td>10,5</td>
<td>0,1</td>
<td>Lee et al. 2005</td>
</tr>
<tr>
<td>Rec. Ave. US PM2,5</td>
<td>70/20/10 MWA</td>
<td>(150)*</td>
<td>519</td>
<td>180</td>
<td>1,7</td>
<td>5,6</td>
<td>0,02</td>
<td></td>
</tr>
</tbody>
</table>

A Massengewichtetes Mittel bei 70/20/10 % Anteil Fichte, Buche und Briketts (Fichte)
* Messwerte korrigiert (Verkohlung)

Die Aufteilung der Quellengruppe Diesel-Emissionen in Anteile aus Verkehr und anderen fossilen Quellen erfolgt in Verkehr- und Off-Road Anteile nach dem Schlüssel 3:1 \[^{[xx]}\].

Nicht einfach und relativ unsicher ist die Ableitung eines EC-Wertes für Emissionen aus Kohlefeuerungen. Ein Haupt-Tracer ist zweifellos Arsen, dessen Emissionsrelation zur PM10 Emission bei Kohlefeuerungen zwischen 300 und 10.000 liegt.

3.7 Zeitverläufe von PM10

Der PM10 Jahresverlauf an der AQUELLA-Messstelle Köflach während der Untersuchungsperiode ist in Abbildung 9 dargestellt. Es zeigt sich, dass Überschreitungen des PM10-Grenzwerts für den Tagesmittelwert praktisch nur während der kalten Jahreszeit vorkommen. Bis Mitte Oktober liegen die Messwerte durchwegs unter 50 µg/m³.

In der warmen Jahreszeit liegen die höchsten PM10 Werte (TMW) bei etwa 30-40 µg/m³, während in der kalten Jahreszeit Spitzen bis zu 90 µg/m³ auftreten, etwa einen Faktor 3 höher, als in der warmen Jahreszeit. Die Zunahme der PM10-Werte im Winter ist im Wesentlichen auf zwei Faktoren zurückzuführen: a) auf verringerten Luftaustausch im Winter und b) zusätzlich wirksame Emissionsquellen.

3.8 Analysenergebnisse / Quellen

Abbildung 10: Zusammensetzung der Straßenstäube von Köflach
3.9 Analysenergebnisse Köflach

3.9.1 Monatsmittelwerte von Winter – und Sommermonaten

Die analysierten Komponenten im Projekt AQUELLA können in Makro- und Mikrokomponenten unterteilt werden. Zu den Makrokomponenten zählen EC und OC, Ionen sowie die Gestein bildenden Metalle Si, Al, Ca und Fe.

Tabelle 11: Mittelwerte der Analysenergebnisse für drei Wintermonate und einen Sommermonat im Messzeitraum 2005 an der Messstelle Köflach. OM=OC*1,7; Silikate=Si*2,7; Karbonate=Ca*2,5. n.a.: nicht analysiert

<table>
<thead>
<tr>
<th>Köflach</th>
<th>µg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monat</td>
<td>PM10</td>
</tr>
<tr>
<td>Juli</td>
<td>17</td>
</tr>
<tr>
<td>Oktober</td>
<td>37</td>
</tr>
<tr>
<td>November</td>
<td>37</td>
</tr>
<tr>
<td>Dezember</td>
<td>40</td>
</tr>
</tbody>
</table>

Die Ergebnisse der wichtigsten Makrokomponenten für die Winter- und Sommermonate zeigt Tabelle 11. Die Ergebnisse für OM, Silikate und Karbonate sind allerdings bereits abgeleitete Werte. Für OM wird der Umrechnungsfaktor von 1,7 angewendet; Silikat wird aus Si*2,7 berechnet, entsprechend dem Vorkommen von Si in der Erdkruste; Karbonate werden vom Wert des Säure löslichen Kalziums mit dem Faktor 2,5 abgeleitet.

3.9.2 Metalle

Die „Metalle“ werden im CMB Modell eingesetzt. Der Ausdruck Schwermetalle wird an sich für jene potentiell toxischen Metalle verwendet, die nicht gesteinsbildend sind. Tatsächlich sind die Grenzen nicht scharf gezogen: a) Alle Metalle weisen auch einen geogenen Anteil auf; b) von den potentiell toxischen Metallen gehören nicht alle den Schwermetallen (Dichte über 5 kg/dm³) an.

In Abbildung 11 sind die Schwermetalle an der Messstelle Köflach für die Überschreitungstage dargestellt. In absteigender Konzentration treten auf: Zink, Titan, Mangan, Blei, Kupfer, Chrom und Nickel. Titan ist den geogenen Komponenten
hinzuzählen, bzw. kann als Pigment im weißen Farbstoff in der Straßenmarkierung und in Verputzen eine Rolle spielen. Zink kann auch aus biogenen Quellen stammen.

Abbildung 11: Schwermetalle in PM10 im Herbst/Winter 2005

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Ba</th>
<th>Cu</th>
<th>Cr</th>
<th>Fe</th>
<th>Mn</th>
<th>Ni</th>
<th>Pb</th>
<th>Sb</th>
<th>Ti</th>
<th>V</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter (Okt-Dez)*</td>
<td>1,6</td>
<td>5,5</td>
<td>9,0</td>
<td>6,1</td>
<td>378</td>
<td>11</td>
<td>4,0</td>
<td>12</td>
<td>2,3</td>
<td>14</td>
<td>0,2</td>
<td>78</td>
</tr>
<tr>
<td>Sommer (Juli)*</td>
<td>0,8</td>
<td>3,0</td>
<td>5,1</td>
<td>4,9</td>
<td>243</td>
<td>6,2</td>
<td>7,8</td>
<td>3,4</td>
<td>0,8</td>
<td>11</td>
<td>0,4</td>
<td>30</td>
</tr>
<tr>
<td>Winter/Sommer</td>
<td>2,1</td>
<td>1,8</td>
<td>1,8</td>
<td>1,3</td>
<td>1,6</td>
<td>1,8</td>
<td>0,5</td>
<td>3,6</td>
<td>2,1</td>
<td>1,2</td>
<td>0,6</td>
<td>2,6</td>
</tr>
</tbody>
</table>

*Wintermittel: Oktober-Dezember; Sommer: Juli

3.9.3 Organische Tracer

Holzverbrennungs- und zum Teil Gasverbrennungs-Tracer. Organische Säuren stammen aus vielfältigen Quellen, einschließlich sekundären.

Abbildung 12: n-Alkane Monatsmittelwerte

Abbildung 13: Relative Darstellung – Vergleich der n-Alkane an der Messstelle Köflach
Abbildung 14: Vergleich der PAH an der Messstelle Köflach

Abbildung 15: Relative Darstellung: Vergleich der PAH an der Messstelle Köflach
AQUELLA Köflach: polare Tracer an Überschreitungstagen

Von den apolaren Verbindungen weisen die untersuchten n-Alkane und PAH deutliche jahreszeitliche Unterschiede in den Konzentrationswerten und den Mustern auf.

Das Auftreten von PAH in der Köflacher Luft ist einer dramatischen Saisonalität unterworfen: Die Konzentration im Dezember ist doppelt so hoch wie im Oktober und um eine Größenordnung höher als Juli. Ein Teil des Unterschieds kann auf unterschiedliche Verweilzeiten der PAH im Sommer und im Winter zurückgeführt werden. Überwiegend scheinen sich aber die Quellen auszuwirken. Bei Erdgasverbrennung werden zwar nur sehr geringe Anteile an PM10 emittiert, es kommt jedoch zu einer Emission bestimmter PAH, die als Tracer für Erdgasverbrennung fungieren können. Einer jener Tracer, die bei...
Erdgasverbrennung emittiert werden, ist Benzo(de)anthracen-7-on. Aus Abbildung 14 und 15 ist ersichtlich, dass diese Komponente (abgekürzt als 7-on) an der Messstelle Köflach auch im Juli über der Nachweisgrenze lag. Die weiteren PAH, die aus verschiedenen anderen Verbrennungsprozessen wie Biomasseverbrennung, Kohleverbrennung und Verbrennungsmotor-Emissionen stammen können, dürften an der Messstelle Köflach im Untersuchungszeitraum überwiegend aus der Raumwärmeerzeugung und anderen kleinen Quellen stammen. Reten ist ein Holzrauchtracer, und wird vorwiegend bei der Verbrennung von Holz von Nadelbäumen gebildet.

3.9.4 Zeitverläufe

Zeitverläufe silikatischer Mineralstaub

Die Zeitverläufe sind in Abbildung 17-19 dargestellt.

Abbildung 17: Zeitlicher Verlauf (Tagesmittelwerte) von PM10, Silizium und Aluminium an der Messstelle Köflach, Jul-Dez 2005.

Zeitverläufe EC und OC

Abbildung 19: Verlauf von EC und OC im Vergleich zu PM10; TMW Feb-Jun 2005; Messstelle Köflach

3.10 Quellenanalyse mit dem Makrotracer-Modell

3.10.1 Mittelwert der Überschreitungstage

Eine der zentralen Fragen im Projekt AQUELLA ist jene nach den Ursachen der Überschreitungen. Um die verursachenden Quellen ableiten zu können, werden detaillierte Analysen der Zusammensetzung an der Messstelle durchgeführt.

Tabelle 13: Übersicht der zu Überschreitungspools zusammengefassten Überschreitungstage

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zeitraum</th>
<th>Anzahl der Tage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ü 1</td>
<td>20.-21.10.2005</td>
<td>2</td>
</tr>
<tr>
<td>Ü 2</td>
<td>30.-31.10.2005</td>
<td>2</td>
</tr>
<tr>
<td>Ü 3</td>
<td>1.-4.11.2005</td>
<td>4</td>
</tr>
<tr>
<td>Ü 4</td>
<td>27., 30.11.2005</td>
<td>2</td>
</tr>
<tr>
<td>Ü 5</td>
<td>12.-13.12.2005</td>
<td>2</td>
</tr>
<tr>
<td>Ü 6</td>
<td>20., 22.-23.12.2005</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbildung 20: Mittelwerte der abgeleiteten Ergebnisse (in µg/m³) für die Überschreitungstage im Untersuchungszeitraum (Jul-Dez 2005) an der AQUELLA-Messstelle in Köflach.

Es fällt auf, dass der Holzrauch sowie sekundär gebildetes Ammonnitrat und Ammonsulfat mit je ca. 30% den größten Beitrag zum Feinstaub liefern. Der Anteil der Kfz- und Off-Road Abgas-Emission am Feinstaub beträgt an der Messstelle Köflach nur 4% (Tabelle 14).
Tabelle 14: Relative Anteile von Quellen an Überschreitungstagen an der Messstelle Köflach – Mittel Oktober-Dezember 2005

<table>
<thead>
<tr>
<th>Quellengruppe</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfat, Nitrat, Ammonium (Sekundär anorganisch)</td>
<td>29</td>
</tr>
<tr>
<td>Mineralstaub durch Winterbedingungen</td>
<td>14</td>
</tr>
<tr>
<td>Streusalz</td>
<td>3</td>
</tr>
<tr>
<td>Holzrauch und organisch sekundär</td>
<td>34</td>
</tr>
<tr>
<td>Sonstige organische Anteile</td>
<td>8</td>
</tr>
<tr>
<td>Verkehr und andere fossile Quellen:</td>
<td>5</td>
</tr>
<tr>
<td>Abrieb (v.a. Brems-, Reifenabrieb)</td>
<td>1</td>
</tr>
<tr>
<td>Abgas KFZ (v.a. „Dieselruß“)</td>
<td>3</td>
</tr>
<tr>
<td>Abgas sonstige Quellen</td>
<td>1</td>
</tr>
<tr>
<td>Nicht erklärt</td>
<td>8</td>
</tr>
</tbody>
</table>

3.10.2 Quellenanteile der Überschreitungsperioden

Abbildung 22: Verlauf von zusammengefassten Quellenanteilen (Holzrauch und sekundäre organische Stoffe; KFZ- und Off Road-Abgas; Sulfate und Nitrate; Mineralstaub; Streusalz) an Überschreitungstagen im Herbst und Winter 2005 an der Messstelle Köflach. Ü1-U6: Überschreitungsperioden
Tabelle 15: Relative Quellenanteile an der Messstelle Köflach an Überschreitungsepisoden – Makrotracer-Modell.

<table>
<thead>
<tr>
<th>Epi Nr</th>
<th>Köflach Episode/ Pools</th>
<th>µg/m³</th>
<th>N Tage</th>
<th>% KFZ/ OffRd Abgas</th>
<th>% KFZ/ OffRd Abrieb</th>
<th>% Holzrauch</th>
<th>% Hydro-LIS</th>
<th>% Rest OM</th>
<th>% NH4</th>
<th>% NO3</th>
<th>% SO4</th>
<th>% NaCl</th>
<th>% Silikate</th>
<th>% Karbonate</th>
<th>% Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.-21.10.2005</td>
<td>56</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>23</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>30.-31.10.2005</td>
<td>82</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>19</td>
<td>10</td>
<td>21</td>
<td>13</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1.-4.11.2005</td>
<td>68</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>21</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>19</td>
<td>15</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>27.+30.11.2005</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>55</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>12.-13.12.2005</td>
<td>66</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>35</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20., 22.-23.12.2006</td>
<td>72</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>32</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td>68</td>
<td>4</td>
<td>1</td>
<td></td>
<td>28</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>13</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Der Anteil der mobilen Quellen ist im gegenständlichen Modell nicht analytisch abgrenzbar von Kfz und anderen Quellen mit Dieselmotoren (Off-Road Verkehr, Bahn) oder auch von Kohleverbrennung aus kleineren Feuerungsanlagen.

3.10.3 Vergleiche von Tagen mit und ohne Überschreitung

Die unterschiedlichen Zusammensetzungen von PM10 an Tagen unter und über 50 µg/m³ in Köflach ist in der Abbildung 23 dargestellt. Die relative Zusammensetzung ist bei den Fällen < 50 und > 50 µg/m³ zum Teil ähnlich. Dies deutet darauf hin, dass die überwiegende Zunahme von geringen zu hohen Werten innerhalb eines Monats eher durch geringeren Luftaustausch verursacht wird. Der relative Verkehrsannteil ist bei den Fällen < 50 höher und der relative Anteil nicht identifizierter Quellen ist während der Perioden > 50 deutlich höher. Der erhöhte nicht identifizierte Anteil scheint im Zusammenhang mit lokalen Verbrennungsvorgängen zu stehen.
Abbildung 24: Messstelle Köflach, Vergleich dreier Ergebnisse an Tagen sehr unterschiedlicher chemischer Zusammensetzung von PM10; relative Darstellung.
3.10.4 „Sommer – Winter“ Vergleich

Abbildung 25: Vergleich der Quellenanteile im Jänner und Juli 2004 an der Messstelle Köflach

\[\text{NH}_4\text{NO}_3 = \text{NH}_3 + \text{HNO}_3 \quad \text{(Glg. 1)} \]

Beim Ferntransport von Sulfaten ist zu berücksichtigen, dass dieser nicht ausschließlich auf Sulfat beschränkt ist, sondern vielmehr damit zu rechnen ist, dass Nitrate, Ruß und organische Verbindungen simultan dem Transport unterliegen.

3.11 Quellenanalyse mit dem CMB-Modell

3.11.1 Modellparameter

Die Modellierung erfolgte mit dem open source Modell CMB 8.2 [xxv]. Folgende Quellen-Profile wurden verwendet (in Klammer: Herkunft des Profils):

- Diesel-Emissionen (USA [xxvi, xxvii])
- Bremsabrieb (USA [xxvi, xxviii])
- Reifenabrieb (USA [xxvi, xxviii])
- Gasverbrennung (USA [xxvi, xxx])
- Straßenstaub (TU Wien)
- Holzrauch (TU Wien)
- Kochen (TU Wien)
- Nitrate und Sulfate (Einzelfertigung)
- HULIS (Einzelfertigung)
- Streusalz (Einzelfertigung)

3.11.2 CMB Analyse von ausgewählten Perioden und Vergleich mit den Makrotracerm-Ergebnissen

Die CMB-Analyse der Überschreitungsperioden führt ähnlich wie bei den Makrotracer-Analysen zu unterschiedlichen Quellenanteilen bei den verschiedenen Perioden.

Abbildung 26: Überschreitungsperiode 20.-21.10.05 an der Messstelle Köflach; Absolutwerte.
Abbildung 27: Überschreitungsperiode 13.-20.2.05 an der Messstelle Köflach; Absolutwerte.

Abbildung 28: Überschreitungsperiode 1.-3.3.05 an der Messstelle Köflach; Absolutwerte.

Die Vergleichsdaten im Detail sind in der Tabelle 16 angeführt.
Tabelle 16: Vergleichsdaten von Makrotracer und CMB Modellergebnissen für AQUELLA-Ereignisse in Köflach; Angaben in % von PM10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MT</td>
<td>CMB</td>
<td>MT</td>
</tr>
<tr>
<td>KFZ/OffRoad</td>
<td>18</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Holzrauch+HULIS</td>
<td>8</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Sulfate+Nitrate</td>
<td>25</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>Mineralstaub</td>
<td>23</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>Streusalz</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sonst. OM</td>
<td>13</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

Da sich die Makrotracer bereits in mehreren Studien bewährt haben, werden auch im gegenständlichen Projekt die Makrotracer zur Bewertung der Ergebnisse herangezogen. Der Bereich zwischen Makrotracer- und CMB-Ergebnissen deutet auch auf den „Range“ der Prognose hin und erlaubt somit eine Bewertung der „Unsicherheit“.
3.11.3 Der spezielle Fall des Holzrauchs

Rauch bei der Verbrennung von Biomasse (Holz, Rinde, Zweige, Blätter, Stroh, sonstiges Biomaterial) enthält so genannte Anhydrozucker (Levoglucoan, Mannosan, Galactosan), die bei der Verbrennung von Cellulose und Hemicellulose gebildet werden. Diese Komponenten werden mit weiteren Holzrauch-Verbindungen (Reten, Harzsäuren, Syringole) als Tracer für Holzrauch, bzw. allgemein Biomasse – Rauch herangezogen.

In Europa wurde das Projekt „CARBOSOL“ durchgeführt, für welches unser Institut die Levoglucosan-Daten lieferte. Eine Aufstellung der Ergebnisse enthält Tabelle 17.

<table>
<thead>
<tr>
<th>Beitrag zu OM [%]</th>
<th>Azoren</th>
<th>Aveiro</th>
<th>Puy de Dome</th>
<th>Schauinsland</th>
<th>Sonnblick</th>
<th>K-Puszta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommer</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Winter</td>
<td>18</td>
<td>44*</td>
<td>21</td>
<td>21</td>
<td>23</td>
<td>47</td>
</tr>
</tbody>
</table>

* Emissionsfaktor für Portugal: 4, für andere Orte 7,35 [OC/Levoglucosan].

Vergleich mit den Werten von CARBOSOL liegen die Werte für Europa in einem ähnlichen Bereich.

In Köflach lag der Anteil von Holzrauch an Überschreitungstagen bei Einbeziehung des organischen sekundären Materials, das auf Holzrauch zurückzuführen ist, im Mittel bei 34%.

Es ist überraschend, dass die Identifizierung von Biomasse-Rauch als bedeutende Quelle und bedeutendster Beitrag zu organischen feinen Teilchen in Europa nicht früher nachgewiesen wurde.

3.11.4 Die Aufteilung des Verkehrs-Beitrags

Bei Vernachlässigung eines Einflusses von Kohlefeuerungen ergeben sich an Überschreitungstagen 1% für Off-Road Emissionen, 2% für Kfz-Abrieb (Reifen- und Bremsabrieb) und 5% für Kfz-Emissionen, davon je etwa die Hälfte (je 3%) für PKW und für Liefer- und Lastfahrzeuge.

3.11.5 Die Mineralstaubanteile

Der Mineralstaubanteil an der Messstelle Köflach beträgt im Zeitraum Oktober-Dezember 2005 im Mittel nur 14%. Im Oktober und November dominiert der Silkatanteil, während im Dezember wie auch in den Kehrproben der Silikatanteil überwiegt.
3.12 Vergleich mit der AQUELLA - Hintergrundmessstelle Bockberg

4 Zusammenfassung

Die bedeutendsten Quellen an Überschreitungstagen an der Messstelle Köflach sind:

1. Holzrauch / Biomasse Rauch
2. Sulfat- und Nitratäerosol (mit Ferntransportanteilen)
3. Winterlicher Straßenstaub mit Splittanteilen
4. Nicht erklärte organische Anteile, vermutlich aus der Verbrennung von festen Brennstoffen
5. KFZ-Emissionen incl. Reifen-, Bremsabrieb, Off-Road u.a. fossile Quellen

In Köflach traten zwei unterschiedliche Arten von Überschreitungsperioden auf: Bei den Perioden 1-3 dominierten Ferntransportanzeiger (Sulfate und Nitrate); bei den Perioden 4-6 dominierten lokaler und regionaler Holzrauch sowie (bei den Perioden 5 und 6) zusätzlich Streusalz und mineralische Stäube. Die Genese von Holzrauch und Mineralstaub dürfte jedenfalls lokal und regional sein, wie etwa Holzrauch als Folge der Verbrennung von Holz in kleinen Öfen oder Kaminen (v.a. Scheitfeuerung) und von Mineralstaub im Zusammenhang mit Winterdienst-Streuung (gemeinsames Auftreten mit Streusalz).

Für Reduktionsmaßnahmen in Köflach sollten daher folgende Bereiche verfolgt werden:

- Maßnahmen bei Einzelfeuerungen von Biomasse und anderen festen Brennstoffen (v.a. mit Scheitfeuerung, bzw. Feuerung mit teilweiser Rauchentwicklung);
- Maßnahmen beim Winterdienst und sonstiger Staubbekämpfung insbesondere in der kühlen Jahreszeit.
Für die Reduktion der anorganisch sekundären Komponenten wäre von Bedeutung:

- Unterstützung der EU Vorhaben bei der Reduktion von PM und NO\textsubscript{x} Emissionen bei Neufahrzeugen.
- Unterstützung der EU Vorhaben bei der Reduktion von SO\textsubscript{2} und NO\textsubscript{x} Emissionen in neuen Beitrittsländern
- Verbesserung des Wissensstandes bei Ammoniak-Emissionen

Die Anteile an Holzrauch liegen in Köflach bei über 30% vom PM10. Wie man die Holzrauch-Emissionen reduzieren kann, sollte interdisziplinär mit Fachleuten des Immissionsschutzes und der Holzwirtschaft erörtert und untersucht werden.
5 Verzeichnisse

5.1 Verzeichnis der Abbildungen

Abbildung 1: Schematische Darstellung der Aktivitäten im CMB Modell. Durchgezogene Pfeile: AQUELLIS – Bereich; Gepunktete Pfeile: AQUELLA – Bereich ... 9
Abbildung 2: Aerosolquellenverteilung PM10 nach ARC in Österreich – unter Einbezug eines gemessenen Anteils von 35% sekundär anorganischen Komponenten .. 10
Abbildung 3: Lage der AQUELLA – Messstelle Köflach ... 14
Abbildung 4: Aufteilung der Quarzfaserfilter .. 15
Abbildung 5: Segmentierung der Dezember - Proben ... 16
Abbildung 6a-e: PM10-Verlauf an der Köflacher AQUELLA Messstelle und Probenpools. Rot umrandete Episoden wurden einzeln analysiert, blau und grün umrandete wurden jeweils in Pools analysiert .. 19
Abbildung 7: Elutriator – Gerät zur Herstellung von PM10-Proben (roter Pfeil: PM10-Sammeleinheiten) .. 28
Abbildung 8: PM10 Proben auf 47 mm – Filtern aus Kehrrstaubproben ... 29
Abbildung 10: Zusammensetzung der Straßenstäube von Köflach .. 34
Abbildung 11: Schwermetalle in PM10 im Herbst/Winter 2005 ... 36
Abbildung 12: n-Alkane Monatsmittelwerte .. 37
Abbildung 13: Relative Darstellung – Vergleich der n-Alkane an der Messstelle Köflach ... 37
Abbildung 14: Vergleich der PAH an der Messstelle Köflach ... 38
Abbildung 15: Relative Darstellung: Vergleich der PAH an der Messstelle Köflach ... 38
Abbildung 16: Mittelwerte der polaren Tracerkomponenten an Überschreitungstagen bzw. Perioden in Köflach ... 39
Abbildung 17: Zeitlicher Verlauf (Tagesmittelwerte) von PM10, Silizium und Aluminium an der Messstelle Köflach, Jul-Dec 2005 .. 41
Abbildung 19: Verlauf von EC und OC im Vergleich zu PM10; TMW Feb-Jun 2005; Messstelle Köflach ... 42
Abbildung 20: Mittelwerte der abgeleiteten Ergebnisse (in µg/m³) für die Überschreitungstage im Untersuchungszeitraum (Jul-Dec 2005) an der AQUELLA-Messstelle in Köflach .. 43
Abbildung 21: Quellenanteile an Überschreitungstagen im Jahr 2005 an der Messstelle Köflach ... 45
Abbildung 22: Verlauf von zusammengefassten Quellenanteilen (Holzrauch und sekundäre organische Stoffe; KFZ- und Off Road-Abgas; Sulfate und Nitrate; Mineralstaub; Streusalz) an Überschreitungstagen im Herbst und Winter 2005 an der Messstelle Köflach. Ü1-Ü6: Überschreitungspериод ... 45
Abbildung 23: Vergleich der PM10 Zusammensetzung an Wintertagen < 50 und > 50 µg/m³ an der Messstelle Köflach, sowie relative Anteile (rechts im Bild) .. 47
Abbildung 24: Messstelle Köflach, Vergleich dreier Ergebnisse an Tagen sehr unterschiedlicher chemischer Zusammensetzung von PM10; relative Darstellung .. 48
Abbildung 25: Vergleich der Quellenanteile im Jänner und Juli 2004 an der Messstelle Köflach .. 49
Abbildung 26: Überschreitungspериоде 20.-21.10.05 an der Messstelle Köflach; Absolutwerte. .. 51
Abbildung 27: Überschreitungspериоде 13.-20.2.05 an der Messstelle Köflach; Absolutwerte. .. 52
Abbildung 28: Überschreitungspериоде 1.-3.3.05 an der Messstelle Köflach; Absolutwerte. .. 52
5.2 Verzeichnis der Tabellen
Tabelle 1: „Haupt-Quellen“ und Unterteilungen, deren Unterscheidungsmöglichkeit in AQUELLIS untersucht wird..11
Tabelle 2: Tracerkomponenten..12
Tabelle 3: Wichtige Tracer im CMB Modell („unique“ und Haupt-Tracer)...................................12
Tabelle 4: Liste der gepoolten und nicht gepoolten Analysen...16
Tabelle 5: Liste der analysierten Pools (Rote Schrift: Überschreitungsperioden , schwarze Schrift: Perioden ohne Grenzwertüberschreitung) ..17
Tabelle 6: Nachweisgrenzen der analysierten Komponenten ..25
Tabelle 7: Makrotracer und abgeleitete Quellen im Makrotracer-Modell30
Tabelle 8: Non-Exhaust PM10 Emissionen (Einfache Methodik) und Vergleich mit typischen Abgas-Emissionsraten von Diesel-Fahrzeugen. (aus [[xii]])..............................30
Tabelle 9: Mittelwert von EC- und OC-Konzentrationswerte im Kaisermühlentunnel – Außenluft bereinigte Werte (Limbeck et al., in Vorbereitung)...31
Tabelle 10: Vergleich von Umrechnungsfaktoren von Levoglucosan auf Holzrauch-OC.......31
Tabelle 11: Mittelwerte der Analysenergebnisse für drei Wintermonate und einen Sommermonat im Messzeitraum 2005 an der Messstelle Köflach. OM=OC*1,7; Silikate=Si*2,7; Karbonate=Ca*2,5. n.a.: nicht analysiert..35
Tabelle 12: Konzentrationswerte von Schwermetallen (ng/m³) in Köflach 2005; Winter- und Sommermonate und Winter/Sommer – Verhältnis...36
Tabelle 13: Übersicht der zu Überschreitungspools zusammengefassten Überschreitungstage ...43
Tabelle 14: Relative Anteile von Quellen an Überschreitungstagen an der Messstelle Köflach – Mittel Oktober- Dezember 2005..44
Tabelle 15: Relative Quellenanteile an der Messstelle Köflach an Überschreitungsepisoden – Makrotracer-Modell. ...46
Tabelle 16: Vergleichsdaten von Makrotracer und CMB Modellergebnissen für AQUELLA-Ereignisse in Köflach; Angaben in % von PM10 ..53
Tabelle 17: Relativer Beitrag (%) von „Biomasse Rauch“ zu Organischem Material (OM) in PM2,5 Proben. 2-Jahres Durchschnitt für Sommer und Winter Quartale. Daten von Puxbaum et al. [[1]] ..54
Tabelle 18: Abkürzungen der Substanznamen..61
5.3 Verzeichnis der Abkürzungen

Tabelle 18: Abkürzungen der Substanznamen

<table>
<thead>
<tr>
<th>Abkürzung PAH</th>
<th>Benzo(de)anthracen-7-on</th>
<th>Reten</th>
<th>Benzo(e)pyren</th>
<th>Benzo(ghi)perylen</th>
<th>Coronen</th>
<th>Indeno(cd)fluoranthen</th>
<th>Indeno(cd)pyren</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BeP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monocarbonsäuren

<table>
<thead>
<tr>
<th>MCA C12</th>
<th>Dodecansäure / Laurinsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA C14</td>
<td>Tetradecansäure / Myristinsäure</td>
</tr>
<tr>
<td>MCA C16:1</td>
<td>cis-9-Hexadecensäure / Palmitoleinsäure</td>
</tr>
<tr>
<td>MCA C16</td>
<td>Hexadecansäure / Palmitinsäure</td>
</tr>
<tr>
<td>MCA C18:1</td>
<td>cis-9-Octadecensäure / Olsäure</td>
</tr>
<tr>
<td>MCA C18:2</td>
<td>(cis,cis)-9,12-Octadiensäure / Linolsäure</td>
</tr>
<tr>
<td>MCA C18</td>
<td>Octadecansäure / Stearinsäure</td>
</tr>
</tbody>
</table>

Sonstige

<table>
<thead>
<tr>
<th>Abietinsäure</th>
<th>Abietinsäure / Sylvinsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonanal</td>
<td>Nonanal / Pelargonaldehyd</td>
</tr>
</tbody>
</table>
6 Literatur

xii Emission Inventory Guidebook 2003, Road vehicle tyre & break wear, & road surface wear. Activities 070700-070800.

