PROGRAM

3rd Congress of the Alps Adria Acoustics Association

27–28 September 2007
Hotel Weitzer, Graz – Austria
Ultrasonic particle manipulation approaches in on-line ATR FTIR

S. Radel, J. Schnöller, B. Lendl, M. Gröschl and E. Benes

Institute of Chemical Technologies and Analytics
Institute of General Physics
Table of contents

• Introduction
• ATR FTIR examples
• Ultrasonics standing wave (USW) enhanced ATR FTIR spectroscopy
• Conclusion & Acknowledgments
The electromagnetic spectrum

Introduction

ATR FTIR
USW in ATR FTIR
The End

Mid-IR: 2.5 – 25 µm (4000 - 400 cm⁻¹)
Mid-IR vs. Raman-Spectroscopy

$\Delta E = \frac{h^*c}{\lambda}$

Introduction

ATR FTIR USW in ATR FTIR The End
Introduction

Fourier Transform InfraRed spectrometry

Interferometer

Monochromatic light source

Polychromatic light source
Information contained in Mid-IR and Raman spectra

- Functional groups, fingerprint
 Identification of analytes
 Simultaneous determination of several analytes

- Inter- and intramolecular Interactions
 Determination of secondary structure of Proteins

- Information on latent variables
 Octane number, wine varieties, cancer
Transmission FTIR spectroscopy

Spectrum Acquisition

\[I_0 = f(\lambda) \]

\[I = f(\lambda) \]

\[A = \log \frac{I_0}{I} \] Lambert-Beer
Identification of analytes

Measurement of natural emissions

Attenuated Total Reflection FTIR

Spectrum acquisition

\[
E(z) = E_0 \exp\left(-\frac{z}{d_p}\right)
\]

\(d_p\): penetration depth
Determination of latent variable

Classification of red wines

Solid Phase Extraction

1. Conditioning
2. Sample loading
3. Washing
4. Elution

FTIR Spectroscopy (Attenuated Total Reflection)

Introduction ATR FTIR USW in ATR FTIR The End
Classification of red wines: result

Spectra of phenolic extracts

Hierarchical clustering

ZW: Zweigelt, SL: St. Laurent, BF: Blaufränkisch
ME: Merlot, CS: Cabernet Sauvignon, PN: Pinot Noir
Assessment of cells in suspension

Operation in the stopped flow mode

Flow “on”

Measurement of dissolved reactants

Measurement of cells

Flow “off”
Is PHB in the E.coli amorphous or crystalline?

![Absorbance vs Wavenumber, 1/cm graph]

- PHB amorphous
- PHB crystalline
- E. coli with PHB settling
ATR FTIR for fermentation control

Experimental set-up

Fermentor

Peristaltic pump

Syringe pump

Holding Cell

Sagittarius V2

FTIR ATR

F

Acetate buffer

NaHCO₃

H₂O

Waste

Waste
Stopped flow spectra during fermentation
Problem: biofilm formation

ATR FTIR

USW in ATR FTIR
USW reduces biofilm formation

without US field

[Graphs showing absorbance versus wavenumber for data with and without US field]
Ultrasound Enhanced ATR FTIR flow cell

- Aggregation of cells in the nodes of the US field
- Application of standing 2 MHz US field before settling and rinsing

Introduction

ATR FTIR
USW in ATR FTIR
The End
Pictures of Experimental Set-up
USW reduces biofilm formation

without US field

with US field
Increased settling by application of USW

without US field

with US field
Settling speed

increased about 2.5 fold (185 vs. 70s)
Conclusions

USW enhanced ATR FTIR spectroscopy

Significant improvements in terms of

- Measurement speed, and
- Robustness

could be made.

Still sterility issues and flexibility demand in-line set-up
Acknowledgement

Paper supported by

• FWF (Austrian science foundation) Project No. P13350
• FWF translational research scheme Project No. L416-N17