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Abstract

We report on our current progress in developing a code to be applied in the context
of the cleaning of wafer surfaces by hydromechanical forces. Our goal is to study the
detachment of (submicron) particles, exposed to a shear flow, from a wall by means of
direct numerical simulation. The particles will be treated as rigid bodies with a two-way
interaction with the fluid.

Our software is based on OpenFOAM. Following Uhlmann (2005) and Taira and Colo-
nius (2007) we implement an immersed boundary method with direct forcing. The inter-
polation between the fixed Eulerian grid and the Lagrangian marker points is performed
with the regularized δ-function introduced by Peskin (2002). For the time being we im-
plemented this approach in 2D using OpenFOAM’s standard solver icoFoam to solve the
incompressible Navier-Stokes equations. To validate the implementation we present re-
sults on standard benchmark tests of the flow around a cylinder with prescribed motion.

Keywords: Immersed-boundary method, direct forcing, finite-volume method, Open-
FOAM, Navier-Stokes equations, particulate flow

1 Introduction

The removal of impurities and particles from single crystal surfaces is an important technical
problem in semi-conductor insdustry. We consider the detachment of (submicron) particles
exposed to a fluid flow from a wafer surface. Due to their small size the particles essentially
face a simple laminar shear-flow. We want to investigate the details of the flow around the
particles and study the removal mechanisms numerically.

For this purpose we develop a code that can handle moving particles in a fluid. The particles are
treated as rigid bodies with a resolved particle/fluid interface and a two-way interaction with
the fluid. We start by considering circular respectively spherically particles, but the numerical
method should be extendible to arbitrary shapes. Furthermore, we are seeking for an efficient
numerical method that also allows to handle many-particle systems.
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For the above reasons we selected the immersed boundary method with direct forcing. In this
method the fluid equations are solved on a fixed Cartesian grid that does not conform with the
particle surface and the particle’s presence in the fluid is realized by a volume force entering
the momentum equation.

Our code is based on the free and open-source software OpenFOAM that, besides providing
a solver for the incompressible Navier-Stokes equations and many pre- and post-processing
utilities, has MPI support built in on a low level which is necessary for 3D computations.

As we want to adapt the software to our needs on the top level of coding we follow the approach
of Uhlmann (2005) who uses direct forcing with the discretized δ-function introduced by Pe-
skin (2002) for the interpolation and spreading operations between the Cartesian grid and the
Lagrangian “marker points” that are attached to the particle. For the numerical computation
of the force we follow Taira and Colonius (2007) who treat the volume force as a Lagrangian
multiplier similar to the pressure.

In this paper we describe our numerical method and validate the code for standard 2D test
cases involving the flow over a cylinder with prescribed translational motion. In Section 2 we
state the problem of a particle in a fluid modeled by a surface force. We present the equations
of motion and, in particular, we derive the expressions for the total force and momentum the
fluid exerts on the particle in terms of the surface force. In Section 3 we describe the numerical
method we implemented by extending icoFoam. In Section 4 we provide numerical results and
compare them to values from literature.

2 Representation of particles in a fluid by a surface force

2.1 Particles suspended in a fluid

We consider a rigid particle suspended in a fluid and denote the domain of the particle by P (t)
with boundary ∂P (t) and the domain of the fluid by D\P (t). The fluid satisfies the incom-
pressible Navier-Stokes equations on D\P (t) and is subject to the no-slip boundary condition
ufluid = upart at ∂P (t) where upart denotes the rigid body surface velocity of the particle

upart(x, t) = U(t) + Ω(t)× (x−X(t)) at ∂P (t), (1)

X(t) being the particle’s center of mass, and U(t) := dX(t)/dt and Ω(t) it’s translational and
angular velocities.

In the absence of external forces the equations of motion for the particle are given by

M
dU

dt
= −

∫
∂P (t)

n . Π̃ΠΠ dO III .
dΩ

dt
= −

∫
∂P (t)

(x−X)× (n . Π̃ΠΠ) dO (2)

where n is the unit normal on ∂P (t) pointing from the particle into the fluid, Π̃ΠΠ is the stress
tensor of the fluid

Π̃ik = p̃ δik − η(∇iuk +∇kui), (3)

with η it’s dynamic viscosity and III is the moment of inertia of the particle, I ik =
∫
P (t)

ρ(x)(δikδlm−
δilδ

k
m)ζ lζmdV with ζ l := xl −X l.
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2.2 Representation of the particle by a surface force

In the immersed boundary method (originally introduced by Peskin (1972) for the flow around
flexible membranes) the influence of the particle on the fluid is represented by an additional
volume force in the momentum equation. The incompressible Navier-Stokes equations are
solved in the whole domain D which includes the region of the fluid as well as the particle

∂tu+ u · ∇u = −∇p+ ν∆u+ f in D, (4)

∇ · u = 0 in D, (5)

where f is a volume force that is constructed to enforce the no-slip boundary condition at the
interface ∂P (t). The constant density of the fluid ρ0 has been absorbed into p, ν and f .

There are various ways to formulate a force f with the above properties. Since we are only
interested in the fluid flow outside of the particle we consider f being non-zero only at the
particle surface, thereby mimicking a rigid hollow ball immersed in the fluid. We assume the
surface of the particle to be described by ξ(q, s, t), with q, s being coordinates on ∂P (t) and
write the volume force f as

f(x, t) =

∫
F (q, s, t)δ3(x− ξ(q, s, t)) dO(q,s), (6)

where δ3(x) = δ(x)δ(y)δ(z) with δ(x) being the Dirac δ-function satisfying∫ x0+ε

x0−ε
δ(x− x0) dx = 1,

∫ x0+ε

x0−ε
f(x) δ(x− x0) dx = f(x0), (7)

for any ε > 0.

As an example in 2D, for a circular particle with radius r0 centered at the origin the boundary
is described by ξ = r0(cosϕ, sinϕ)T and expression (6) in polar coordinates gives

f(x) = F (ϕ)δ(r − r0). (8)

Note, that the volume force f(x) diverges at r = r0, whereas F (ϕ) is finite.

2.3 The total force on the particle

The total force exerted on the particle by the fluid is given by (2) as a surface integral of the
fluid stress over the particle boundary ∂P (t). Since in our formulation the volume force f is
singular at the particle surface, care has to be taken when evaluating this integral. One rather
has to consider the limit limε→0

∫
∂Pε+

n ·ΠΠΠ dO with ∂Pε+ being any surface enclosing ∂P (t) that

tends to ∂P (t) from outside in the limit ε→ 0, i.e. limε→0 ∂Pε+ = ∂P+(t), see Fig. 1. The total
force on the particle then is given by

F tot = − lim
ε→0

∫
∂Pε+

n .ΠΠΠ dO (9)

In the above and in the following we denote by ΠΠΠ the stress tensor divided by the constant
density ρ0 and in all expressions involving the force we mean the force divided by the density.
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Figure 1: A circular particle with boundary ∂P (thick line) immersed in a fluid. ∂P is enclosed
by the surfaces ∂Pε+ and ∂Pε−. The fluid equations are integrated over the volume Vε enclosed
by ∂Pε+ and ∂Pε−

Consider a second surface ∂Pε− that in the limit tends to ∂P (t) from inside, i.e. limε→0 ∂Pε− =
∂P−(t) as sketched in Fig. 1 and integrate the fluid equations over the volume Vε enclosed by
∂Pε+ and ∂Pε−: ∫

Vε(t)

(∂tu+∇ · (uu))dV = −
∫
Vε(t)

∇ ·ΠΠΠdV +

∫
Vε(t)

fdV (10)

The second term on the left hand side and the first term on the right hand side can be converted
into surface integrals by means of the Gauss theorem. Using (6) the volume integral over the
force density also results in a boundary integral.∫

Vε(t)

∂tudV +

∫
∂Pε+ (t)

(n · u)u dO −
∫

∂Pε− (t)

(n · u)u dO =

−
∫

∂Pε+ (t)

n ·ΠΠΠ dO +

∫
∂Pε− (t)

n ·ΠΠΠ dO +

∫
∂P (t)

F (q, s, t) dO(q,s). (11)

Assume that u is continuous across ∂P and consider the limit ε → 0. Then the first term on
the left hand side in (11) tends to zero because the integrand stays finite while Vε → 0. The
second and the third terms cancel. The only remaining terms are∫

∂P+(t)

n ·ΠΠΠ dO =

∫
∂P (t)

F (q, s, t) dO(q,s) +

∫
∂P−(t)

n ·ΠΠΠ dO. (12)

Note, that the stress is discontinuous across ∂P . The total force the fluid exerts on the particle
therefore can be written as

F tot = −
∫

∂P+(t)

n ·ΠΠΠ dO = −
∫

∂P (t)

F (q, s, t) dO(q,s)− lim
ε→0

∫
Pε− (t)

∇ ·ΠΠΠ dV. (13)
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An alternative way to express the last term on the right hand side is by using the momentum
equation

− lim
ε→0

∫
Pε− (t)

∇ ·ΠΠΠ dV = lim
ε→0

∫
Pε− (t)

(∂tu+ (u · ∇)u)dV =
d

dt

∫
P (t)

udV. (14)

The volume force does not appear in this equation as it vanishes in Pε−(t). In the last step the
limit ε→ 0 was evaluated as u and its time derivative stay finite. So we can give the following
expressions for the total force

F tot = −
∫

∂P+(t)

n ·ΠΠΠ dO (15)

= −
∫

∂P (t)

F (q, s, t) dO(q,s)− lim
ε→0

∫
Pε− (t)

∇ ·ΠΠΠ dV (16)

= −
∫

∂P (t)

F (q, s, t) dO(q,s) +
d

dt

∫
P (t)

u dV (17)

Uhlmann (2004) shows for the two-dimensional case that the inertia force per fluid density of
the fluid inside the particle domain is determined by the acceleration of the particle times its

volume, i.e. d
dt

∫
P (t)

u dV = dU (t)
dt

VP (t). In this work we will compute the total force by (17) and

use the last term in (16) to check the convergence upon grid refinement.

Analogous computations can be carried out for the total torque per fluid density

M tot = −
∫

∂P+(t)

(x−X(t))× (n ·ΠΠΠ) dO (18)

= −
∫

∂P (t)

(ξ(q, s, t)−X(t))× F (q, s, t) dO(q,s)− lim
ε→0

∫
Pε− (t)

(x−X(t))× (∇ ·ΠΠΠ) dV (19)

= −
∫

∂P (t)

(ξ(q, s, t)−X(t))× F (q, s, t) dO(q,s) +
d

dt

∫
P (t)

(x−X(t))× u dV. (20)
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2.4 Summary of the equations

Summarizing, we solve the following problem

∂tu+ u · ∇u = −∇p+ ν∆u+ f in D, (21)

∇ · u = 0 in D, (22)

U(q, s, t) :=

∫
D

u(x, t)δ3(x− ξ(q, s, t))dV

= U(t) + Ω(t)× (ξ(q, s, t)−X(t)), ξ(q, s, t) ∈ ∂P (t), (23)

dX(t)

dt
= U(t), (24)

M
dU

dt
= −ρ0

∫
∂P

F (q, s, t) dO(q,s) + ρ0
d

dt

∫
P (t)

u dV, (25)

III .
dΩ

dt
= −ρ0

∫
∂P (t)

(ξ(q, s, t)−X(t))× F (q, s, t) dO(q,s) + ρ0
d

dt

∫
P (t)

(x−X)× u dV, (26)

with f related to F by (6) All the numerical results presented in this paper are performed for
a particle with prescribed motion. In the following we will therefore consider the discretization
of (21) – (23).

3 Numerical Implementation

3.1 Direct forcing

The Navier-Stokes equations (21) and (22) are solved on a Cartesian grid. Following Uhlmann
(2005) we evenly distribute NL marker points at positions {X l} over the surface of the particle,
such that the distance between two marker points approximately equals the grid spacing h of
the Cartesian grid, ∆Xl := |∆X l| ≈ h. The marker points move with the particle, whereas the
Cartesian grid is fixed. The no-slip condition (23) will be imposed at the marker points by a
suitable force field F (Xl). In the following we restrict ourselves to the two dimensional case.

As proposed by Peskin (2002) we use a distributed δ-function both to interpolate quantities
from the Cartesian grid to the marker points as well as to spread the force F (Xl) back to the
Eulerian grid:

U(Xl) =
∑
xi

u(xi)δ
2
h(xi −X l)h

2 (27)

f(xi) =
∑
Xl

F (Xl)δ
2
h(xi −X l)∆Xl (28)

where δ2
h(x) = δ(x)δ(y) and δh(x) := 1

h
φ(x/h).
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As our solver is based on the finite volume method (FVM) on a collocated grid we use the
4-point approximation proposed by Peskin (2002) for the δ-kernel

φ(r) =


1
8
(3− 2|r|+

√
1 + 4|r| − 4r2) for 0 ≤ |r| < 1

1
8
(5− 2|r| −

√
−7 + 12|r| − 4r2) for 1 ≤ |r| < 2

0 for 2 ≤ |r|
(29)

For a uniform grid with ∆x = ∆y = h the above approximation satisfies∑
xi

δh(xi −X l)h
2 = 1,

∑
xi

(xi −X l)δh(xi −X l)h
2 = 0 ∀X l (30)

From the above property it follows that∑
xi

f(xi)h
2 =

∑
Xl

F (Xl)∆Xl (31)

i.e. the total force representing the particle in the fluid can be computed either on the Cartesian
grid or on the Lagrangian marker points.

Note that the composition of the interpolation and spreading operations (27) and (28) in
combination with (29) does not yield the identity as it would for the continumm Dirac δ-
function. E.g. interpolation of the force density f(xi) to the marker points Xl is given by

G(Xl) :=
∑
xi

f(xi)δ
2
h(xi −X l)h

2 =
∑
Xm

∑
xi

δ2(xi −Xm)δ2(xi −X l)h
2∆Xm︸ ︷︷ ︸

Mlm

F (Xm) 6= F (Xl),

(32)
as the Nl ×Nl matrix Mlm is not the identity matrix.

There are several possibilities to numerically compute an approximation to the force density
f . In this paper we follow the approach of Taira and Colonius (2007), who consider the force
as a Lagrange multiplier that guarantees no-slip at ∂P (t). They use a fractional step scheme
and solve a modified Poisson system simultaneously for the pressure p and the force F .

The idea is the following: consider an intermediate velocity ũ obtained from solving the mo-
mentum equation

Aũ = rhsn, (33)

where A is a discretization matrix that depends on the details of the scheme and rhsn only
depends on the variables at the previous time step tn. An approximation to the velocity un+1

un+1 = ũ−A−1∇p+A−1f (34)

(A−1 being a numerical approximation to the inverse of A) would be divergence free and would
satisfy the no-slip condition at X l if p and F solve the the following coupled system∑

i,j

(ũ(xi)− (A−1)ij∇p(xj))δ2(xi −X l)+∑
m

∑
i,j

(A−1)ijδ
2(xj −Xm)δ2(xj −X l)h

2∆XmF (Xm) = Upart(Xl), (35)

∇ · (A−1∇p−A−1f) = ∇ · ũ. (36)

7
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f in (36) is understood to be expressed in terms of F by (28). Equation (35) represents NL

equations stating that Un+1(Xl) = Upart(Xl), the derivation being analogous to (32). Equation
(36) is a Poisson equation, modified by the presence of the force, guaranteeing ∇ · un+1 = 0.

3.2 icoFoam – OpenFOAM’s standard solver for incompressible flow

We base our code on the free and open-source software OpenFOAM (Open Field Operation and
Manipulation), in particular we use the 1.5-dev version from the Project project. The software
provides the finite volume method to solve partial differential equations on an unstructured grid.

The solver icoFoam for the incompressible Navier-Stokes equations is based on a fractional step
method using the PISO algorithm (see e.g. Jasak, 1996). It involves a momentum predictor

ddt(u) +∇(unu∗)− ν∆u∗ = −∇pn, (37)

and a correction loop involving a Poisson equation for the pressure to compute a divergence
free velocity un+1. The correction loop roughly runs along the following lines: the left hand
side of (37) is discretized as

A(un)u∗ − (H(un)u∗ +
un

∆t
) (38)

where A and H are matrices that depend on the solution of the previous time-step. A is
diagonal, whereas H only has off-diagonal entries. Equation (37) is solved and a series of
corrections is applied by setting

ũ = A−1(Hui + un/∆t)

∇ · (A−1∇p) = ∇ · ũ
ui+1 = ũ−A−1∇p (39)

for 0 ≤ i < ncorr, with u0 = u∗ and uncorr = un+1. In the spirit of Rhie-Chow care is taken
with the discretization and interpolation in (39) in order to avoid unphysical oscillations in the
solution (see e.g. Peng Kärrholm (2008)).

We choose ddt(u) := (u∗ − un)/∆t for all the runs in this paper and use linear interpolation
when interpolating from cell centers to cell faces. On a Cartesian grid the above algorithm with
these settings is second order in space and first order in time.

3.3 Modification of icoFoam to include direct forcing

As a first step we implemented the immersed boundary method with direct forcing in Open-
FOAM in two spatial dimensions by extending icoFoam. To this end a new C++ class was
defined to handle the particle, it’s marker points as well as the interpolation and spreading
operations.

The only modifications to the algorithm of icoFoam necessary to incorporate direct forcing are
to add the force f to the momentum predictor (37) and to extend the correction loop (39) to
the system (35)–(36). However, we do not solve (35)–(36) as a coupled system but decouple the
equations by fixing p to it’s latest value when solving (35) for F and vice versa. The correction
loop is run through twice, i.e. ncorr = 2. In Sec. 4 we will demonstrate that this way the
no-slip condition is fulfilled satisfactorily.
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3.4 Discretization of the total force

The computation of the total force and moment on the particle is performed by discretizing

(17) and (20), where the last term in (17) is replaced by dU (t)
dt

VP (t).

We also compute the last term in (16) which should equal dU (t)
dt

VP (t), in order to have an
indicator for convergence of the method upon grid refinement close to the particle. However,
as the stress jumps across ∂P we do not approximate the integral by a sum over the whole
particle region but exclude the points close to the boundary, where the δ-kernel is non-zero.
I.e. we perform the sum over a region P̃ ⊂ P (t) that results from subtracting the region of
support of the δ-kernel from P (t).

4 Numerical Results

In the following we present a number of two-dimensional test cases of the flow over a cylinder
with prescribed motion immersed in a fluid. We introduce the particle Reynolds number Rep =
d V/ν, with d being the diameter of the cylinder and V being a characteristic velocity of the
test case. The time unit is given by T = d/V . For all the examples the relative movement of
the particle to the flow is in the x-direction. The drag and lift coefficients are given by

CD =
1

1
2
ρ0V 2d

F x
tot, CL =

1
1
2
ρ0V 2d

F y
tot. (40)

For all tests we selected a uniform grid close to the cylinder with a grid spacing h. The grid
is stretched away from the cylinder up to some maximum grid spacing ∆xmax at the outer
boundaries (in general ∆x 6= ∆y in the outer region).

4.1 Stationary cylinder at Rep = 40

We consider a stationary cylinder in uniform cross flow ux = V . The computational domain is
taken to be D = 40d×40d with the cylinder centered at X = (20d, 20d). We set ux = V, uy = 0
at all boundaries except for the outlet. At these boundaries the normal gradient of the pressure
is required to vanish. At the outlet a homogenous Neumann condition is applied for the velocity,
i.e. ∂xu

x = ∂xu
y = 0 and the pressure is set to 0.

We consider three spatial resolutions with 210× 210, 318× 318 and 358× 358 grid points. The
grid spacing close to the cylinder is h = 0.05d, h = 0.025d and h = 0.0125d, the maximal grid
spacing at the outer boundary is ∆xmax = 0.8d for all runs. The time step is ∆t = 0.005T for
all resolutions corresponding to a maximal Courant number of 0.116994, 0.233872 and 0.4677.

At Rep = 40 the solution is stationary. Table 1 lists the drag coefficient for the three resolutions
and compares them to results of Taira and Colonius (2007) as well as to an estimated mean
value from the experimental results of Tritton (1959). Comparing to the numerical results of
Taira and Colonius (2007) as well as those cited in their paper the present results show a slight
over-prediction of the drag by ∼ 1% for the highest resolution.

As the cylinder is stationary the integral of the divergence of the stress over the particle region
should vanish in the continuum limit. Table 1 lists the numerical values of the integral. For

9
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this test case the quantity converges roughly quadratically. The error in the no-slip boundary
condition at the particle surface is less than 2× 10−8 for all resolutions.

CD
∫
Pε−
∇ ·ΠΠΠdV

h = 0.05d 1.593 2.27× 10−3

h = 0.025d 1.571 0.65× 10−3

h = 0.0125d 1.56 0.14× 10−3

Taira and Colonius (2007) 1.54
Tritton (1959) 1.59

Table 1: The drag coefficient for a stationary cylinder at Rep = 40. Comparisons to the
numerical results of Taira and Colonius (2007), who use a domain size of D = 60d× 60d and a
minimal grid spacing of h = 0.02 and an estimated mean value from the experimental results of
Tritton (1959). The second column lists the contribution from the stress in the particle region
that should vanish in the continuum limit.

4.2 Stationary cylinder at Rep = 100

At a particle Reynolds number Rep = 100 the flow is periodic in time. We compute the
drag and lift coefficients and the Strouhal number St = fd/V with f being the frequency of
oscillation.

We apply the same boundary conditions as in the previous subsection. Concerning the domain
size and the resolution we use similar parameters as Uhlmann (2005) in order to compare to
his results. The domain is taken to be D = 26.67d × 26.67d with the particle located at
X = (6.17d, 13.33d). The grid spacing close to the cylinder is h = 0.025d, the maxium grid
spacing at the outer boundaries is ∆xmax = 0.5d giving rise to a total number of 274×232 grid
points. The time step is ∆t = 0.003T yielding a maxium Courant number of 0.1632.

Table 2 lists the mean drag coefficient, the variations in drag and lift as well as the Strouhal
number. As can be seen the present results show an over-prediction of all the quantities
(except for the variation of the lift) when compared to the results of Liu et al. (1998). The
over prediction of mean drag and lift variation is more than 10%. This might be due e.g. to
insufficient resolution and/or the domain size being to small.

C̄D C ′D C ′L St
h = 0.025d 1.475 ±0.012 ±0.379 0.171

Uhlmann (2005) 1.501 ±0.011 ±0.349 0.172
Liu et al. (1998) 1.350 ±0.012 ±0.339 0.165

Table 2: Mean value of the drag C̄D, variations of drag and lift C ′D and C ′L as well as the
Strouhal number St for a cylinder in uniform flow at Rep = 100. Uhlmann (2005) uses the
same domain and a uniform grid with h = 0.026d.

10
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4.3 Oscillating cylinder in quiescent fluid at Rep = 100, KC = 5

We consider a circular cylinder oscillating in x-direction in an otherwise quiescent fluid. The
cylinder oscillates with an amplitude A = 5d/V and a frequency f = V/5d such that the
prescribed motion is given by X(t) = X0− 5d sin(2πV t/(5d))/(2π). The characteristic velocity
V corresponds to the maximal velocity attained by the cylinder. The value of A corresponds
to a Keulegan-Carpenter number of KC = 5.

We choose a domain of D = 50d × 50d with the cylinder oscillating around X0 = (25d, 25d).
At all boundaries we set the velocity to zero and put homogenous Neumann conditions for the
pressure.

We consider three grid resolutions with h = 0.05d, h = 0.025d and h = 0.0125d in the vicinity
of the cylinder and a maximum grid spacing of ∆xmax = 0.5d giving rise to a total number of
342× 342, 486× 486 and 692× 692 grid-points. The time step for the two coarser resolutions
was ∆t = 0.003T leading to a maxium Courant number of 0.085, respectively 0.149. For the
finest resolution the maximum Courant number was fixed to 0.2 resulting in the time step being
in the interval ∆t ∈ [0.002T, 0.0035T ].

Fig. 2 shows the drag coefficient as a function of time. As can be seen the drag exhibits
quite large unphysical spikes close to the turning points. However these spikes decrease when
increasing the resolution as can be seen more clearly in Fig. 3. The small oscillations clearly
visible at the coarsest resolution stem from the movement of the marker points through the
Cartesian grid. The amplitude of theses oscillations decreases with increasing resolution. The
maximal value of the drag is over predicted by about 3% as compared to the results given

in Kim and Choi (2006). Fig. 3 shows the error in limε→0

∫
Pε− (t)

∇ · ΠΠΠ dV − dU (t)
dt

VP (t) that

converges to zero linearly. In Fig. 4 we plot the maximal violation of the no-slip boundary
condition. Convergence of the error is quadratic between the second and third resolution.

5 Conclusions and Outlook

In Section 4 we demonstrated that our numerical implementation of direct forcing in Open-
FOAM gives good results for 2D flow problems over a cylinder with prescribed motion. The
no-slip boundary condition at the particle surface is fulfilled satisfactorily. Drag and lift co-
efficients when compared to literature show a slight over-prediction with the exception of the
problem in Section 4.2 where the over-prediction exceeds 10%. The latter needs further inves-
tigation. For the oscillating cylinder the drag coefficient exhibits an unphysical “spike” close
to the turning point of the cylinder, which reduces with increasing grid resolution. We also
showed that the error in limε→0

∫
Pε− (t)

∇ ·ΠΠΠ dV converges to zero.

As a next step for validating the implementation we will consider a rotating cylinder as well
test cases for the fully coupled problem.
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Figure 2: The drag coefficient for the three local resolutions as a function of time. τ denotes
the period of the oscillation. The vertical line at t/τ = 0.75 indicates one of the turning points.
The drag coefficient shows unphysical spikes close to the turning point. As can be seen in the
next figure these spikes decrease with increasing resolution.
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Figure 4: The violation of the no-slip boundary conditions for the three local resolutions. The
error is maximal close to the turning points. Quadratic convergence can be observed between
the second and third resolution.
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