
PHYSICAL REVIEW B 84, 214436 (2011)

Effects of atomic and magnetic order on electronic transport in Pd-rich Pd-Fe alloys
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The transport properties of Pd-rich PdFe alloys are investigated as a function of the atomic and magnetic order on
the L21 (Cu3Au) lattice. The residual resistivity, anisotropic magnetoresistance (AMR), and anomalous Hall effect
are calculated from first principles in their dependence on the degree of atomic order. The calculations are based on
the relativistic generalization of the transport Kubo-Greenwood approach as formulated in the framework of the
first-principles tight-binding linear muffin-tin orbital (TB-LMTO) method and coherent potential approximation
(CPA). The effect of the thermal magnetic disorder on the resistivity (thermal magnetoresistance) and AMR
has been also studied using the disordered local moment approach based on the CPA. It is found that the
experimentally observed fast decrease of AMR ratio with temperature can be mostly ascribed to the spin disorder
effects. Our results are in an overall good agreement with available experimental data.
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I. INTRODUCTION

The residual resistivity in metallic alloys is one of the
important indications of substitutional atomic disorder and
has been a subject of intensive experimental and theoretical
studies.1 At zero temperature magnetically ordered random
alloys exhibit anisotropy of the resistivity in the applied
magnetic field due to spin-orbit coupling effects, the so-called
anisotropic magnetoresistance (AMR) which attracts a con-
siderable interest also from the point of view of technological
applications. Progress has been achieved in calculations of the
residual resistivities and AMR effects from ab initio theories
based on the local spin-density approximation (LSDA)2 in
the last decade. In particular, for substitutionally disordered
Fe-Ni permalloy alloys the zero temperature AMR ratio has
been calculated in a good agreement with experiment.3,4

However, the residual resistivity due to substitutional disorder
is strongly dependent on the degree of disorder present in
the alloy of the same atomic composition (vanishing in the
ideally ordered compound) which depends on the thermal
history of the sample.5 The AMR ratio as well depends on the
degree of disorder, but in a less obvious way. This interesting
problem has not received up to now much attention from the
theoretical point of view. To fill this gap we have undertaken a
thorough first-principles investigation of the effects of partial
order on residual resistivity and magnetotransport properties
choosing as a case study Pd-rich Fe-Pd alloys, where degree
of partial order can be relatively easily controlled by annealing
procedure and corresponding data on resistivity exists in
literature.6

The AMR ratio in cubic systems is usually defined as (ρzz −
ρxx)/ρ0, where ρxx = ρyy and ρzz are diagonal components of
the resistivity tensor in the magnetic field pointing along the
z direction and ρ0 = (2ρxx + ρzz)/3 is the isotropic residual
resistivity. One important property of the AMR in alloys is
a fast decrease of the AMR ratio with temperature, which

is a very unwanted feature for applications. For instance, the
AMR values at low temperature reach 18% in Ni-rich fcc-NiFe
alloys and this value decreases to 5% at room temperature. In
the Pd-rich PdFe alloys investigated here the AMR at low
temperatures can reach values up to 10%, but it decreases well
below 1% at room temperatures.6 It should be noted that much
larger values of the magnetoresistivity can be obtained for
artificially prepared metallic multilayers (the so-called giant
magnetoresistance). Authors of Ref. 6 have investigated the
dependence of magnetotransport on the amount of disorder in
the system by using samples with different thermal treatments.
The most important findings were: (i) the sample with higher
order has a smaller total resistivity; (ii) the AMR is larger in
nonstoichiometric Pd70Fe30 alloy as compared to stoichiomet-
ric Pd3Fe alloy; (iii) various amount of order influences the
AMR values only weakly in the stoichiometric samples, but it
leads to a pronounced increase of the AMR with order in the
nonstoichiometric samples; and (iv) the resistivity increases
with increasing temperature while the AMR values are reduced
to a small fraction of their values at room temperature.6

Authors ascribed this reduction to phonon scattering which
exceeds the impurity scattering at room temperature, but the
discussion of the influence of the spin disorder was omitted
and we will show that it plays an important role. Moreover,
our results show that the spin disorder effects alone may be
responsible for the experimentally observed fast decrease of
the AMR ratio with temperature.

The two mechanisms of scattering responsible for the
resistivity of magnetic metals are effective at finite temper-
atures, namely the scattering on phonons and on magnons.
With exception of very low temperatures, the phonon part
of the resistivity increases with temperature linearly.7 The
dependence of the resistivity on magnon scattering, the so-
called spin disorder,8 is quite difficult to describe theoretically
and it is still a challenge for the first-principles modeling.
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KUDRNOVSKÝ, DRCHAL, KHMELEVSKYI, AND TUREK PHYSICAL REVIEW B 84, 214436 (2011)

Below we utilize a model of the spin disorder based on
the uncompensated disordered local moment (DLM)9 picture
which will allow us to discuss the influence of temperature
on the magnetotransport properties from first principles. We
will also discuss the dependence of the anomalous Hall effect
(AHE) on the order in Pd-rich PdFe alloys despite the fact that
no experimental data are available.

Another aspect of the present work is a detailed study of
the relation of the atomic order with residual resistivity and
magnetoresistance for Pd-rich PdFe alloys (L21 structure) in
which exists some kind of antisite Pd-Fe disorder even at
the stoichiometric composition. The correlation of calculated
magnetotransport properties with the degree of chemical
order in the system may represent an additional possibility
to characterize the amount of order, complementary to con-
ventional methods based on the x-ray and neutron-scattering
experiments. We wish to mention related studies in which
the effect of the long-range5 or short-range10 orders on the
resistivity was studied for nonmagnetic alloys and in the case
of Ref. 5 neglecting also the spin-orbit effects.

II. FORMALISM

The ordered Pd3Fe alloy crystallizes in the Cu3Au-lattice
structure (L21) which can be imagined as four interpenetrating
simple-cubic sublattices of which three are occupied by Pd
atoms and one by Fe atoms. Together they form a network of
fcc-lattice sites in which the nearest-neighbor distance is that
among Pd and Fe atoms, that is, each Fe atom has as its nearest
neighbors Pd atoms.

Different thermal treatment leads to a different amount of
disorder in the system, which is present even in the stoichio-
metric Pd3Fe alloy. We characterize the amount of disorder by
the concentration of antisite Fe atoms on Pd sublattices xFe[Pd].
If xFe[Pd] = 0, the system is an ideal ordered Pd3Fe alloy, in
the limit xFe[Pd] = 0.25 we recover a completely disordered
fcc-Pd75Fe25 alloy. The nonstoichiometric Pd-rich alloys, for
example, Pd70Fe30, cannot possess full order. We choose as the
most ordered system the one with fully occupied Fe sublattice
and with the rest of the Fe atoms distributed randomly on three
Pd sublattices with the same concentrations on each sublattice.
The disorder is then characterized by the concentration of Pd
atoms on the Fe sublattice xPd[Fe]. Consequently, a completely
disordered Pd70Fe30 alloy corresponds to xPd = 0.7 on each
sublattice.

The experimental lattice constant of the ordered Pd3Fe
alloy (a = 3.849 Å) corresponding to the Wigner-Seitz radius
RWS = 2.843 a.u. was used for all studied alloys. We thus
neglect possible small variations of the lattice constant due
to disorder, chemical composition, and the temperature as our
main concern is the chemical ordering in the system.

The electronic structure calculations were performed in
the framework of the tight-binding linear muffin-tin orbital
(TB-LMTO) basis11 and the density functional theory (DFT)
as formulated in terms of the Green function approach.
This approach is necessary in order to include the effect
of substitutional disorder due to a possible presence of the
Pd-Fe swapping. The effect of substitutional disorder in the
system was described by the coherent potential approximation
(CPA).12 The local spin-density approximation (LSDA) for

the exchange-correlation part of the potential was used. The
calculations employed the s,p,d basis, the same atomic
radii were adopted for all atoms, and the Vosko-Wilk-Nusair
exchange-correlation potential13 was used. Relativistic cor-
rections were included approximately by adding the on-site
spin-orbit coupling term to the scalar-relativistic TB-LMTO
Hamiltonian and treating it as a perturbation in the sense that
the calculated spin-up and spin-down charge densities enter
the conventional LSDA solver.14 The value of the spin-orbit
coupling was determined self-consistently during calculations.

An early first-principles formulation of the spin-polarized
relativistic transport using the KKR-CPA method,3 in partic-
ular as it concerns the evaluation of the AHE, was incorrect.
A correct formulation of the linear-response theory in both
Dirac and weak-realtivistic (spin-orbit) approaches, based
on the Kubo-Středa formula, was developed in Ref. 15. Its
first-principles implementation in the framework of the fully
relativistic KKR-CPA approach has appeared recently16 and
the present formulation is very similar to it. Specifically, we
employ the TB-LMTO-CPA method including the spin-orbit
term. The formalism for diagonal elements of the resistivity
tensor was published recently,17 while full details of the
formalism can be found in Ref. 18. In addition to the treatment
of relativistic corrections in the framework of the spin-orbit
approach, the present implementation employs a nonrandom
velocity operator formulation.19 This has some advantages
over the conventional KKR-CPA approach16 in which the
velocity operator is a random quantity.

The conductivity tensor σ̃ for cubic systems in the TB-
LMTO method is

σμν ∝ Tr〈vμ(gα
+ − gα

−)vνgα
− − vμg+ vν(gα

+ − gα
−)〉

+ i Tr{(Xμvν − Xνvμ)〈gα
+ − gα

−〉}, (1)

where gα
± = gα(EF ± i δ) is the Green function matrix, δ is an

infinitesimal number, and vμ = −i [Xμ,Sα] is the nonrandom
effective velocity operator. In the above expression Sα is
the structure constant of the TB-LMTO theory, EF is the
Fermi energy, Xμ is the coordinate of the lattice site, the
symbol α denotes the screened LMTO representation, and
Tr denotes the trace taken over the lattice sites (X), orbital
(L), and spin moment (s) subspaces. The disorder-induced
vertex corrections are included in the framework of the CPA.20

Finally, the resistivity and conductivity tensors are related by a
simple relation ρ̃ = σ̃−1. Calculations were done assuming an
imaginary part of the complex energy δ [see Eq. (1)] equal to
10−5 Ry. A large number of points in the Brillouin zone (BZ)
(several millions points in the full BZ) were used to obtain
well-converged results.

Once the components of the resistivity tensor are calculated,
the total resistivity ρ0 and the AMR ratio can be determined.
In the present approach we employ a closely related definition
of the AMR, namely AMR = (ρzz − ρxx)/ρzz. The AHE is
given by the off-diagonal element σxy of the conductivity
tensor. According to Ref. 16 we can roughly separate out the
intrinsic and extrinsic parts of the AHE. The former one is due
to the coherent part of σxy (vertex corrections are neglected),
while the latter one can be identified with the vertex part of σxy .
The vertex part is thus simply a difference between full and
coherent parts of the AHE. Such identification is justified by
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the fact that the intrinsic part of the AHE exists even in perfect
systems without any disorder and it is determined only by the
band structure, spin-orbit coupling, and exchange splitting.
The coherent part of the AHE in disordered metals differs
from that of pure metals by substituting the δ-function-like
spectral densities of pure metals by broadened Lorentzian-like
spectral densities in disordered metals and this part of the AHE
is thus weakly concentration dependent. On the other hand,
vertex corrections are zero in a nonrandom system and are
strongly dependent on the impurity concentration so that they
can be roughly identified with skew-scattering contribution to
the AHE. Finally, we will also briefly discuss a simple model
of the spin disorder and how it influences magnetotransport
properties. The model we have in mind is an uncompensated
DLM approach.

III. RESULTS AND DISCUSSION

In this section we present results of the theoretical modeling
and compare them with available experimental data. In the
next subsection we discuss the influence of the disorder on the
ground state electronic structure and magnetic properties of
Pd-Fe alloys. Then we discuss our results concerning residual
resistivity and AMR and their dependence on the degree of
the chemical long-range order. The temperature effects on the
AMR ratio is the subject of study in third subsection, and we
conclude this section by presenting results related to the AHE.

A. Electronic and magnetic structure

We present the relativistic nonmagnetic density of states
(DOS) and its decomposition into contributions from Pd and
Fe sublattices in Fig. 1. A high value of the total DOS at the
Fermi energy clearly indicates (Stoner criterion) the instability
of the nonmagnetic state with respect to formation of the
ferromagnetic state. The most important contribution is due

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-0.6 -0.4 -0.2  0  0.2

T
ot

al
 l

oc
al

 D
O

S
 (

st
at

es
/s

pi
n/

R
y)

Energy (Ry)

Pd3Fetot

Fe

Pd

FIG. 1. The relativistic nonmagnetic total and component re-
solved densities of states for ideal ordered Pd3Fe alloy. The Fermi
energy is set to zero.
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FIG. 2. The relativistic spin-resolved ferromagnetic total densi-
ties of states for three different values of antisite concentrations xFe[Pd]

of Fe atoms on Pd sublattices in Pd3Fe alloy. The case xFe[Pd] = 0
corresponds to an ideal Pd3Fe alloy while the case xFe[Pd] = 0.25
corresponds to a completely disordered fcc-Pd75Fe25 alloy. The Fermi
energy is set to zero.

to Fe atoms, but there is also a small peak in the Pd-local DOS
at the Fermi energy induced by Fe-Pd hybridization.

The total DOS of the ferromagnetic Pd3Fe alloy with
increasing influence of Fe-antisite disorder is shown in Fig. 2.
The effect of disorder is largest in the energy region around the
Fermi energy, slightly below (above) it for majority (minority)
states and the disorder is in general stronger for minority
states. Present results for Pd3Fe alloy in both ordered and
fully disordered phases agree reasonably well with a previous
study21 in which self-consistent potentials of the ordered phase
were used also for the disordered phase. Small differences
can be ascribed to this approximation and to the neglect of
relativistic corrections in previous calculations.

Pd3Fe and Pd70Fe30 alloys differ by their electron con-
centrations and different behavior of electronic states at the
Fermi energy (transport relaxation time and velocities) which
both influence transport properties. To illustrate this point, we
present in Fig. 3 the total densities for the most ordered and
fully disordered phases around the Fermi energy. Although
the general trend is similar due to similar compositions, the
differences are seen, in particular for minority bands. These
differences are a precursor of different transport behavior as
we shall see below.

The dependence of total and local Fe- and Pd-magnetic
moments as a function of antisite concentrations are shown
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FIG. 3. The relativistic spin-resolved ferromagnetic total densities of states for most ordered (full lines) and fully disordered (dashed lines)
phases of Pd3Fe and Pd70Fe30 alloys in the energy window around the Fermi energy. The Fermi energy is set to zero.

in Figs. 4 and 5 for Pd3Fe and Pd70Fe30 alloys, respectively.
The local Fe moment around 3 μB depends only weakly on
varying environment in all cases. The local Pd moment around
0.45 μB is almost constant on its own sublattice, but it drops
almost to zero on the Fe sublattice, where it is surrounded
mainly by Pd atoms. These results are in a good agreement
with experiment.22 It should be noted that Fe atoms are on the
simple cubic sublattice, which is rather unusual as compared
to bcc-like Fe (moment about 2.2 μB), or to fcc-like Fe
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FIG. 4. The total and component-resolved magnetic moments for
partly ordered Pd3Fe alloys. The amount of possible antisite disorder
in the system is measured by concentration xFe[Pd] of Fe atoms on Pd
sublattices. The cases xFe[Pd] = 0 and xFe[Pd] = 0.25 correspond to a
fully ordered Pd3Fe alloy and to a completely disordered fcc-Pd75Fe25

alloy, respectively.

in Heusler- or D03-based alloys. For example, Fe moments
around 1.85–2.3 μB are found in Fe3Al alloy23 while Fe2VAl
Heusler alloy is nonmagnetic.23 A strong dependence on
chemical order is found in FeAl alloy: its ordered CsCl phase
is paramagnetic, but its disordered phase is ferromagnetic.24

This is due to the occurrence of bcc-like coupling among Fe
atoms on disordered lattice as contrasted with sc-like coupling
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FIG. 5. The same as in Fig. 3 but for the nonstoichiometric
Pd70Fe30 alloy. In this case we measure the amount of disorder via
the concentration xPd[Fe] of Pd atoms on the Fe sublattice. This choice
assumes that the most ordered case represents the model with fully
occupied Fe sublattice, while the surplus Fe atoms are distributed
randomly on three Pd sublattices. The completely disordered alloy
corresponds to xPd[Fe] = 0.7 on each of four sublattices. The total and
local magnetic moments for xPd[Fe] = 0.4, 0.55, and 0.7 (not shown)
are almost identical to those corresponding to xPd[Fe] = 0.25.
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with enlarged distance in ordered CsCl phase. On the contrary,
in ordered FeRh alloy with CsCl structure Fe moments are also
on the simple cubic lattice, but Rh atoms carry a large induced
moment and strong Fe-Rh coupling is responsible for a large
Fe moment around 3 μB.25,26 However, the magnetism in this
system is very complex and we refer the reader to a recent
study.27 All this illustrates is the sensitivity of the Fe moment
to the structural and chemical environment.

In addition to a relativistic study, we have performed
scalar-relativistic calculations for a few samples. In general,
very good agreement between both relativistic and scalar-
relativistic calculations was obtained for spin moments. The
total orbital moment was almost the same for all systems
varying between 0.15 and 0.17 μB per formula unit.

B. Residual resistivity and AMR ratio

The resistivities of Pd3Fe and Pd70Fe30 alloys as functions
of antisite concentrations are shown in Fig. 6. Calculations
correspond to the temperature T = 0 K and should be
compared to experimental results for T = 4.2 K.6 In the case
of Pd3Fe alloy we interpolate between perfectly ordered and
disordered phases. It should be noted that the completely
disordered Pd70Fe30 alloy corresponds to xPd[Fe] = 0.7. We
found a maximum of the resistivity around xFe[Pd] = 0.1 for
Pd3Fe.

We found a monotonic increase of the resistivity with
Pd-antisite disorder on the Fe-lattice for Pd70Fe30 in the
concentration range shown in Fig. 6. Resitivities for higher
concentrations (xPd[Fe] = 0.4, 0.55, and 0.7) are similar and
exhibits only a very shallow maximum (not shown, cf. Fig. 8).
The calculated resistivities are found in the range observed in
the experiment which is between 5 and 15 μ� cm for differ-
ently annealed samples.6 The differences in behavior of both
alloy systems result from different electron concentrations and
different behavior of electron states at the Fermi energy as
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FIG. 6. Resistivity as a function of possible disorder character-
ized by antisite Fe concentration on Pd sublattices (stoichiometric
Pd3Fe alloy) and by antisite Pd concentration on the Fe sublattice
(nonstoichiometric Pd70Fe30 alloy). Scalar-relativistic (sr) resistivity
without spin-orbit coupling is also shown for Pd3Fe alloy.

indicated by Fig. 3. It should be noted that the effect of vertex
corrections is nonnegligible due to dominating d scatterings
(cf. Fig. 9 below).

For Pd3Fe alloy we also show corresponding resitivities
obtained by the scalar-relativistic counterpart of Eq. (1). The
following conclusions can be made: (i) in the scalar-relativistic
case the current is conducted by majority and minority states
independently (two-current model). The minority states are
influenced by disorder more strongly as compared to majority
ones (see Fig. 2). As a result, the conductivity is dominated
by the majority channel (an order of magnitude larger as
compared to the minority channel). (ii) The spin-orbit coupling
mixes up both channels and increases the total resistivity. (iii)
The effect of vertex corrections is nonnegligible. They reduce
the total resistivity by about 20%.

A more detailed comparison with the experiment can be
obtained by plotting the AMR vs resistivity, which is done
in Fig. 7 for Pd3Fe and in Fig. 8 for Pd70Fe30. Two branches
found for the Pd3Fe system are due to the maximum of the
resistivity as a function of disorder. The lower branch exhibits
a weak dependence of AMR vs resistivity with values of the
AMR around 4.5% which seems to agree reasonably well
with experiment. On the other hand, at least the AMR values
corresponding to almost completely disordered samples have
higher AMR than those found in the experiment although
covering similar resistivity range. One can therefore speculate
that the measured samples are not completely disordered.
Even better agreement between theory and experiment6 is
obtained for the nonstoichiometric Pd70Fe30 case. The AMR
decreases with increasing resistivity (disorder) in agreement
with experiment and also quantitative agreement for both the
AMR and resistivity is satisfactory. The resistivities and AMR
for disordered samples (xPd[Fe] = 0.4, 0.55, and 0.7) shown in
Fig. 8 with half-filled symbols are similar to each other. This
seems to indicate, similarly to the case of Pd3Fe, that samples
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theoretical simulation are marked by the maximum of the resistivity
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KUDRNOVSKÝ, DRCHAL, KHMELEVSKYI, AND TUREK PHYSICAL REVIEW B 84, 214436 (2011)

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20

A
M

R
 (

%
)

Resistivity (μΩ cm)

th

exp

Pd70Fe30 alloy
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Pd70Fe30 case. See Fig. 6 for resistivities and corresponding values
of antisite disorder. Half-filled symbols correspond to disordered
samples with xPd[Fe] = 0.4, 0.55, and 0.7.

with a smaller amount of disorder correspond to annealed
samples used in the experiment.

We can conclude that in agreement with experiment we have
obtained different behavior of Pd3Fe and Pd70Fe30 samples,
namely weak dependence on the disorder in the former and
pronounced dependence in the latter cases. Such behavior
can be traced down to a different number of carriers and
different behavior of electronic states at the Fermi energy
(transport relaxation time and velocities) which both influence
the transport properties.

It should be noted that even better agreement with exper-
iment for both systems can be obtained assuming a small
residual resistivity of order 1–2 μ� cm. It is most probably
due to some amount of antisite Fe atoms on Pd sublattice,
although the presence of foreign impurities as well as some
amount of the short-range order which is not captured by
the present CPA treatment are also possible. To verify this
assumption we have calculated the Pd3Fe alloy containing
very small concentration of Fe antisites. We found that the
residual resistivity of order 2 μ� cm is obtained for the antisite
concentration xFe[Pd] = 0.005.

C. Temperature dependence of AMR

The temperature in general enhances resistivities of metallic
systems. In magnetic alloys are two relevant mechanisms:
(i) scattering on phonons which leads to a linear increase
of the resistivity with temperature T (with exception of
very low T ), and (ii) scattering on magnons (spin disorder
resistivity) which leads in typical magnetic metals to an
increase of the resistivity ∝ (T/Tc)2 below magnetic Curie
temperature Tc and to a saturated constant value for higher
T , where the magnetic short-range effect has vanished.8 More
precisely, the resistivity due to spin disorder is constant in the
thermodynamic limit in which spin-spin correlations vanish.
This state of thermodynamic spin disorder can be simulated
by the DLM approach9. We have verified that the DLM

resistivity of bcc Fe indeed agrees quite well with both the
experiment and existing theory, thus indicating a dominating
character of spin disorder over contribution from phonons with
the exception of very low temperatures.28 The DLM model
can be straightforwardly incorporated into the transport CPA
formalism. In this model the spin disorder is simulated by
a concentrated alloy of collinear spins pointing in opposite
directions and treated self-consistently in the framework of
the CPA.9 We note that the situation is less clear for smaller T

below the thermodynamical limit (below Curie temperature)
in which still exists a global magnetization although with a
reduced magnitude as compared to the case with T = 0 K. The
simplest picture which simulates this situation, at least qual-
itatively, is the uncompensated DLM (uDLM) state in which
“concentrations” of oppositely oriented spins are different.
We will characterize this spin disorder by the ratio r = x[−] :
x[+], where x[−] is the concentration of oppositely oriented
moments. In the limit when r = 0 we recover the ferromagnet
at T = 0 K while r = 1 corresponds to the DLM state. In
general it is impossible to relate reliably concentrations of
spins in the uDLM state with a specific temperature, although
it is tempting to correlate them with theoretical (experimental)
temperature dependence of sample magnetization.29 Although
a simple procedure of mapping of spin concentrations in
the partial DLM state to the reduced temperature T/Tc was
described in the literature,30 in particular for Fe-Pt Invar
alloys, they are essentially phenomenological and may be
regarded only as a semiquantitative way to trace continuous
changes of some physical properties. We mention that a simple
model theory of spin disorder resistivity for dilute PdFe alloys
(Fe concentrations less than 1%, the giant-magnetic moment
regime) was developed in Ref. 31.

Our task in this section is merely to understand a fast in-
crease/decrease of the resistivity/AMR ratio with temperature
and thus make at least qualitative conclusions based on first-
principle uDLM calculations. Since the room temperature,
where AMR ratio has been measured, is much smaller
than experimental Curie temperatures of Pd-Fe alloys (about
540 K), one could expect that the spin disorder in the region
of interest can be represented with relatively small number of
atoms with down moments in the uDLM state. Indeed, as it
will be seen below, already r = 1 : 19 ratio of down moments
to up moments leads to the experimentally observed reduction
of the AMR ratio and enhanced resistivity.6 This fact and the
above discussed bcc-Fe case allow us to speculate that the main
mechanism leading to decrease of the AMR ratio and increase
of resistivity at room temperatures are thermal spin disorder
effects. This conclusion is in an agreement with a proposal
made by authors of the experimental study of the electrical
resisitivity of PdFe alloys.32

We have chosen as a case study Pd70Fe30 with 10% of
Pd[Fe] antisites (xPd[Fe] = 0.1). The uDLM was applied to Fe
spins both on Fe and Pd sublattices (small local moments on
Pd atoms collapse in the DLM state).

The results are summarized in Table I in which the
effect of temperature corresponds to an increasing amount
of oppositely oriented spins: the ferromagnet, or the T = 0 K
limit corresponds to the case without oppositely oriented spins,
the equiconcentration case corresponds to the DLM, or T

above the Curie temperature (about 540 K for Pd3Fe). Results
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TABLE I. The electronic (total magnetization Mtot) and transport
(resistivity ρ and AMR properties of Pd70 Fe30 alloy with 10%
of Pd[Fe] antisites as a function of spin disorder characterized
by the ratio r = x[−] : x[+] of oppositely oriented spins in the
framework of uncompensated DLM model). The amount of spin
disorder increases from r = 0 (ferromagnetic state, FM, no disorder)
to r = 1 (DLM state, full disorder).

Pd70Fe30 with 10% of Pd[Fe] antisites

r = x[−] : x[+] Mtot (μB) ρ (μ� cm) AMR (%)

0 (FM) 4.73 9.47 4.47
1:39 4.49 29.85 0.97
1:19 4.26 44.59 0.47
1:9 3.79 65.56 0.26
2:5 1.99 100.81 0.06
1:1 (DLM) 0.0 109.26 0.0

for T = 4.2 and 77 K are rather similar6 indicating thus a
negligible spin disorder. Our resistivity for r = 0 (9.47 μ� cm)
roughly corresponds to the experimental value of 8.24 μ� cm
for T = 4.2 K which rises to value around 50 μ� cm for
T = 295 K. This corresponds roughly to our case r = 1 : 19
in Table I and the reduction of the AMR from 4.47% to 0.47%
agrees fairly well with experimental data (AMR drops from
6% to 0.45%). It should be noted that reduction of the total
magnetization is small for this case, which is in agreement
with the fact that we are still far from the Curie point. We
can conclude that the spin disorder is mostly responsible for
a strong increase/reduction of the resistivity/AMR observed
in the experiment with increasing T . Also the order of these
changes falls within the experimental range.

D. Anomalous Hall effect

Here we present results for the AHE as a function of order in
the system. To this end we show in Fig. 9 the AHE vs resistivity
for both studied systems. We also show results for the coherent
part of the AHE which can be roughly identified with the
intrinsic part of the AHE (see discussion at the end of Sec. II).
The following conclusions can be made: (i) The effect of vertex
corrections on the total resistivity is nonnegligible and leads
to its reduction. (ii) We observe only a weak dependence
of the intrinsic part of the AHE on the resistivity (i.e., on
impurity disorder). This is consistent with the assumption
that the coherent part of the AHE is dominated by intrinsic
contribution. (iii) A noticeable feature is the change of the
sign of the AHE when the disorder in the system increases,
indicating increasing role of the skew scattering. This result
is in a qualitative agreement with experiment for fcc-PdFe,
PdNi, and PdCo alloys,33 although in the present case it
corresponds to a various amount of disorder due to thermal
annealing and not to the change of alloy composition. The
direct comparison of calculated AHE with the most disordered
phases of Pd3Fe and Pd70Fe30 alloys is complicated by the fact
that in this concentration region is experimentally observed
the sign change.33 Our AHE = −7.5 kS/m is inbetween the
experiment33 and recent relativistic KKR-CPA theory16 for the
most disordered phase of Pd70Fe30. A reasonable agreement
between the present and KKR theory16 is also obtained for
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FIG. 9. The calculated AHE vs resistivity for the stoichiometric
(Pd3Fe) and for the nonstoichiometric (Pd70Fe30) alloys. Full/empty
symbols denote full calculations/coherent part only in which the ver-
tex corrections are neglected. Numbers indicate the smallest/largest
values of corresponding impurity concentraions. For a detailed
relation between concentrations and resistivities see Fig. 6.

pure bcc Fe: −55 and 64 kS/m, respectively, while experiment
gives 105 kS/m. It should be noted that due to different
definitions the present values of the AHE for bcc-Fe and
fcc-PdFe alloys have consistently opposite signs as compared
to Ref. 16. Finally, assuming that the dominating temperature
effect on the AHE is again the spin disorder like for the AMR,
and assuming the same model as in Table I, we have found
a strong reduction of the AHE value by the spin disorder.
We have obtained AHE = −16 kS/m for T = 0 (r = 0) to
AHE = −5.6 kS/m for r = 1 : 19 and AHE is zero in the
paramagnetic state (r = 1 : 1).

IV. CONCLUSIONS

We have presented first-principles study of magnetotrans-
port properties of Pd-rich PdFe alloys as a function of the
order in the system which is due to different temperature
treatments of studied samples. Our calculations are based
on the relativistic generalization of the linear-response theory
(Kubo-Greenwood formula) as implemented in the framework
of the TB-LMTO-CPA approach and they allowed us to
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relate the amount of order in the system with the resistivity.
This relation can be employed as a complementary tool to
conventional x-ray and neutron-scattering experiments used to
determine the amount of order in the system. The results agree
reasonably well with experimental data for both stoichiometric
Pd3Fe and for nonstoichiometric Pd70Fe30 alloys.6 In particu-
lar, not only the trends but also magnitudes of the resistivity
and the AMR agree reasonably well. Small differences in
electron concentrations are origin of different experimentally
observed trends in AMR vs resistivity curves, namely the
AMR is essentially constant with respect to increased disorder
for Pd3Fe alloys and it markedly decreases with disorder
for Pd70Fe30 alloys. We have also predicted behavior of the
AHE as a function of the order in the system. A detailed
comparison with experiment and theory16 in the limit of the
completely disordered fcc-Pd75Fe25 alloy is complicated by
an experimentally observed crossover between positive and
negative AHE which occurs in this concentration region.

Finally, we have also discussed the effect of temperature
on magnetotransport properties using the uncompensated
DLM approach. Present calculations do not allow us to
relate magnetotransport properties with a specific temperature
reliably, nevertheless a qualitative and to some extent also
quantitative agreement with trends observed in the experiment
was obtained. Results of calculations allow us to make the
conclusion that the spin disorder is mostly responsible for
strong increase (reduction) of the resistivity (AMR ratio) with
temperature found in experiment.
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