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Abstract. We propose a fuzzy logic based model of vague descriptions that refers to a variant of 
Kolmogorov complexity. The model supports the quantification of the decrease of information associated 
with the decrease of precision entailed by the vagueness of (electronically communicated) descriptions.  Our 
results address the challenge to model efficient communication with vague predicates and to connect it to the 
literature on ‘theories of vagueness’, but also to classical concepts of information theory. 
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1. Introduction 
Vagueness is a ubiquitous phenomenon. Models and measures of information that can cope (also) with 

the transmission of vague information are still rare. On the other hand, it is frequently and convincingly 
argued that the transmission of vague descriptions is adequate and expedient in many scenarios, due to the 
decreased amount of spurious information compared to unnecessarily precise descriptions. Many formal 
approaches to reasoning with vague notions and predicates are debated in the literature (for an overview see, 
e.g., [1,7,8,9,14]). However, hardly any of the proposed theories of vagueness seems to assist the 
quantification of the decrease of information induced by a decrease of the level of preciseness imposed on 
descriptions of intrinsically complex objects. We present a simple mathematical model of vague descriptions 
as fuzzy descriptions, based on a variant of Kolmogorov complexity, that addresses this problem and that can 
be linked to various wider frameworks for handling vague information. 

2. The Enigma of Quantifying Vague Information 
The popularity of fuzzy logic demonstrates that in many contexts a direct, formal, and systematic 

treatment of graded predicates and degrees of truth, intended to model vagueness, is possible and useful. An 
often cited reason for tackling vague information head on, instead of trying to eliminate it from the object 
language in question, is that it is deemed less costly to convey imprecise and partial information than to 
replace it by unnecessarily precise information before communication. Indeed, spurious precision may not 
only be wasteful in terms of increased complexity, but is also potentially harmful, since it may invite 
inadequate interpretations of data that should be processed according to their intended level of precision. For 
example, in reply to an inquiry about the general direction to follow in order to reach the inner city of a large 
town, we neither expect nor want to be told a precise numerical value specifying a vector pointing to the 
exact city center from some precisely fixed point of reference. (Neither do we want to learn the precise 
interval of all degrees of vectors that intersect the boundaries of the inner district of the town.) A vague 
gesture from a well informed and truthful responder might well be the most adequate and useful information 
in this context. Similarly, when we ask about John's current height, ‘rather short’ might be a more adequate 
reply than ‘1651 millimeters measured using device X on 08:13am on April 1st, 2008’, even if this is indeed 
the most reliable and precise information about John's height.  

Fuzzy logic suggests to specify the semantics of predicates like ‘short’, ‘tall’, ‘old’, etc. by reference to 
fuzzy sets, i.e., to maps from the universe of discourse into the real closed unit interval [0,1], instead of 
ordinary (‘crisp’) sets. Indeed is not hard to understand that typically used maps like 
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assigning truth values from [0,1] to possible heights (here in meter), result in more refined models of the 

predicate ‘tall’ than any assignment of classical truth values 0 and 1 to the same range of possible heights. 
However, such models seem to sever the link to the above mentioned motivation for using vague language, 
namely, that vague information is usually less costly to generate and to transmit than corresponding precise 
information. Obviously, this is at variance with the trivial observation that more, not less, bits are needed in 
general to communicate truth values or membership degrees drawn from [0,1] rather than from [0,1]. 

Fuzzy logicians might reply that their formal tool box of fuzzy sets and relations, t-norm based logics, 
graded consequence relations, etc., is not intended to model the indicated reduction of information enabled 
by vague language. Rather fuzzy logic is seen as a formal model of reasoning with vague information that 
successfully explains other phenomena and puzzles attributed to vagueness, in particular the sorites paradox, 
see, e.g., [6]. Nevertheless one may ask for a related formalism that straightforwardly models the perceived 
decrease of information connected with the transition from precise to fuzzy descriptions of intrinsically 
complex structures and objects.  Moreover, fuzzy logic is by no means the only formal model of reasoning 
with vague notions and propositions. In fact, there are very prolific debates in contemporary analytic 
philosophy on ‘theories of vagueness’ that frequently oppose the degree based approach exemplified by 
fuzzy logic. We refer to [1,8] for more information on this debate. Here we have to confine ourselves to a 
few remarks in Sections 4 that attempt to show that our proposed model matches insights arising from 
various competing approaches to vagueness. In any case, it is significant that also supervaluation, 
epistemicism, contextualism, as well as pragmatic theories of vagueness do not offer tools that allow to 
quantify the loss of information involved in the transition from more precise to less precise specifications. 

In conclusion to these observations, one may speak of an enigma of quantifying vague information, 
consisting in the antagonism between two facts: (1) The preference for fuzzy descriptions over unnecessarily 
precise ones can be motivated informally by a decrease in complexity induced by an intentional loss of 
irrelevant information. (2) Neither degree based nor alternative formal models of reasoning with vague 
information seem to provide a clear basis for quantifying the corresponding decrease of complexity and 
information. We augment this motivation by listing some desiderata for an adequate model of complexity of 
fuzzy descriptions. We aim at a simple, mathematically elegant model of fuzzy descriptions that captures the 
outlined intuition that reduced levels of precision correspond to decreased amounts of (algorithmic/ 
descriptive) complexity, is robust with respect to the choice of underlying description languages, measures 
information in bits, as usual, and is compatible with existing models of descriptive complexity and infor-
mation: ‘crisp’ descriptions should appear as an obvious limit case of (variously precise) fuzzy descriptions. 

3. Algorithmic Complexity of Crisp Descriptions 
There already exists an elegant theory for quantifying the complexity of precise descriptions, i.e., of 

complete and unambiguous specifications of formal objects: it is variously known as ‘algorithmic 
information theory’, ‘Kolmogorov(-Chaitin) complexity’, ‘program-size complexity’, ‘minimum description 
length’ and some other names. Here we follow the terminology of the well known monograph [10]. The 
Kolmogorov complexity C x( ) of a binary string x intends to capture the complexity inherent in any precise 
description of x. Informally, C x( )  is maximal if there is no way to describe x without explicitly listing all 
bits of which x consists. On the other hand, C x( )  is small, even for a very long string x, if x can be precisely 
specified by a short description. To put this idea to work we fix a universal Turing machine U and define 
CU x( )  as the length of the shortest program p (Turing machine) for U that outputs x. As usual, we identify 
0,1{ }* with the set of natural numbers � using the lexicographical ordering on binary strings. Hence U 

computes a universal partial recursive function. 
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Definition 1  The (conditional) Kolmogorov complexity CU x y( )  of x given y, in reference to a universal 
Turing machine U, is defined by CU x y( ) = min l p( ) :U p, y( ) = x{ }where l p( ) is the length of p and ⋅, ⋅  
is the standard recursive bijective pairing function. We write CU x( )  for CU x ε( ) . 

We drop the index denoting the reference machine U and simply write C x y( ) , whenever we are only 
interested in CU x y( )  up to an additive constant. This is justified by the well known fact that any two 
universal Turing machines can simulate each other. More exactly, for all x and y we have 
CU x y( ) − CV x y( ) ≤ c  for a constant c that depends only on the reference machines U and V. 

Note that in identifying descriptions D with programs we implicitly assume that the described objects are 
effectively specified as certain binary strings. Again, this is justified by the outlined robustness of the 
concept. E.g., in claiming that the Kolmogorov complexity of a random (incompressible) directed graph Gn  
with n vertices is 2 log n( ) +O 1( ) we may refer to any standard format in which the graph is to be presented 
(e.g., as binary n × n-matrix, a list of edges consisting of pointers to vertices, or as a lexicographically sorted 
list of pairs of connected vertices, etc.). We may safely assume that for any two standard formats ξ  and ′ξ  
of presenting graphs there is a program that converts, for any given graph G, the binary presentation 
ξ G( ) into the binary presentation ′ξ G( ) . It follows that C ′ξ G( )( ) = C ξ G( )( ) +O 1( )  and consequently we 
may, by slight abuse of notation, simply write C Gn( ) = 2 log n( ) +O 1( ). 

4. Probabilistic Programs as Dispersive Descriptions 
In speaking about a fuzzy description D  we will assume that there is some (in principle) precisely 

specifiable object x that is imprecisely described by D . Again, we may assume without essential loss of 
generality that x is coded by a binary string. However in contrast to Section 3, above, we cannot assume that 
x can be uniquely reconstructed from D  without further information. In other words, we take vague 
descriptions to convey only partial information about the described object. 

Another feature of vague information, besides its partiality, consists in its dispersiveness. In this analysis 
we follow Robin Giles [2,3,4], who already in the 1970s presented a model for reasoning with fuzzy 
propositions and notions that combines a Lorenzen style dialogue game with a scheme for evaluating atomic 
sentences that refers to results of dispersive binary (yes/no) experiments. I.e., these semantic tests may show 
different results upon repetition; only a certain probability of yielding a positive answer is known. In our 
context, where descriptions of an object x are identified with programs that compute (a binary presentation of) 
x, this motivates the generalization from deterministic Turing machines, that compute a single binary string 
as output, to probabilistic Turing machines (PTMs) that produce dispersive output. The same PTM T  may, 
for the same input y, produce different output strings, every time T  is invoked. We only care about the case 
where some state transitions may randomly lead to one of two alternative states with equal probability. Such 
PTMs may be represented as deterministic Turing machines that have access to an additional random tape 
filled with random, uniformly distributed 0s and 1s. (Alternatively, one may add an additional instruction for 
random branching. Details of the representation will not matter here.) For any PTM T , Pr T x( ) = y⎡⎣ ⎤⎦ 
denotes the probability that T outputs y on input x. Note that a terminating deterministic Turing machine T 
can be viewed as a PTM where for any input x there exists a y such that Pr T x( ) = y⎡⎣ ⎤⎦=1 (and consequently 
Pr T x( ) = z⎡⎣ ⎤⎦= 0  for all z ≠ 0 ). 

In analogy to the classical case of Section 3, the intended version of algorithmic complexity theory relies 
on the following invariance theorem: 

Theorem 2  Let T1,T2,...be an effective enumeration of all PTMs, understood as programs with binary input 
and (probabilistic) output. Then there exists a universal PTM TU =U  among them, such that for all i >1 
and all x and y we have Pr U i, y( ) = x⎡⎣ ⎤⎦= Pr Ti(y) = x⎡⎣ ⎤⎦. 

Of course it were inappropriate to define CU x y( )  simply as the length of the smallest PTM that 
computes x given y with some positive probability: it is easy to specify a fixed, small PTM that outputs all x 
on any input with some positive probability. Indeed, we still have to argue that the ‘dispersive output’ of a 
PTM T  can be usefully interpreted as the set of possible, but vague descriptions of a single object. To this 
aim, note that we can view T ’s output as a fuzzy singleton set, i.e., a set with σ-count 1 (see, e.g., 11). More 
precisely, remember that a fuzzy set F is a function from some universe X into 0,1[ ]; where in our case 
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X = 0,1{ }* . The cardinality or σ-count of F is defined as # F( ) = F x( )x∈X∑ , where F(x)  denotes the 
membership degree of x in F. By interpreting the probability Pr T (y) = x⎡⎣ ⎤⎦  of obtaining x on input y as a 
membership degree for x, we identify the output T (y)with a fuzzy set where # T y( )( ) =1. 

Viewing the output of a PTM T  as a fuzzy singleton set fits the idea of identifying T  with a fuzzy 
description, in the sense of a mechanism that provides ‘dispersive presentations’ of some finite object. 
However it does not determine which object is actually described in this way. Whereas in the special case of 
deterministic programs a unique object is presented for any given input, T  (given input y) can in general be 
read as vague description of different objects. If we want to interpret the output x' of T  as fuzzy description 
of a specific object x at some level of precision, we need to assess how much information about x is 
contained in x'. Fortunately, Kolmogorov complexity provides a good candidate for a corresponding measure: 
we will identify the information about x contained in x' with the length of the smallest program that converts 
x into x', i.e., we use CU x x '( )  for this purpose.  This leads to the following definition of the overall  
closeness of the (dispersive) output of a PTM to a given x as the expected number of bits needed to convert 
the output into x. 

Definition 3  Let U  be a universal PTM and let p be a program for U ,i.e., a standard representation of an 
arbitrary PTM. Moreover let U be a deterministic universal TM. Then the computational closeness to x of 
the output of p on input y is given by cclU,U x p, y( ) = Pr U p, y( ) = z⎡⎣ ⎤⎦z∈ 0,1{ }*∑ ⋅CU x z( ) .   

Note that two universal reference machines are involved in the above definition: a probabilistic one to fix 
the semantics of p, and a deterministic one that fixes the number of bits needed to convert any given output 
of p on y to x. Since deterministic TMs are special cases of PTMs one may use the same universal PTM in 
both instances. More importantly, invariance - as implied for PTMs by Theorem 2 - entails that the reference 
to the underlying universal machines can be dropped, as long as we are only interested in this quantity up to 
an additive constant. We may assume reference machine U to respect the principle that for any given x no 
string y contains less information about x than the empty string, i.e., CU x z( ) ≤ CU x( ) . Consequently we 
obtain that =1− cclU,U x p, y( ) CU x y( ) is a value in 0,1[ ] . We will call  the precision level of the ‘fuzzy 
description’ p of x given y. If =1then cclU,U x p, y( ) = 0, implying that no additional information is needed 
to obtain x from p and y. In other words: p (given y) can be considered a fully precise description of x. On the 
other extreme, if = 0  then cclU,U x p, y( ) = CU x y( ) , which implies hat p does not contain any information 
about x that is not already contained in y. In that case we call p completely vague with respect to x, by which 
we mean that it is as useless for reconstructing x as is the empty program.  

The just introduced concept finally allows us to present a definition of the algorithmic information 
Cπ x y( ) contained in a binary string x at a certain precision level π , given y. 

Definition 4  For 0 ≤ π ≤1 the probabilistic Kolmogorov complexity at precision level π of x given y is 
defined by CU,U

π x y( ) = min l(p) :1− cclU,U x p, y( ) CU x y( ) ≥ π{ } .  We write CU,U
π x( )  for CU,U

π x ε( ) . 

5. Basic Properties of Cπ  
It remains to check whether the proposed model satisfies the desiderata listed at the end of Section 2. 

Note that it follows immediately from Definition 4 that the probabilistic Kolmogorov complexity of any 
object increases monotonically with the imposed precision level: π ≥ ′π implies CU,U

π x y( ) ≥ CU,U
′π x y( ) . In 

consequence, the intuition that higher levels of vagueness allow for less complex descriptions is indeed 
respected in our model. 

The following theorem expresses the robustness of CU,U
π ⋅ ⋅( ): 

Theorem 5  For all universal PTMs U , ′U , and deterministic TMs U, U' there exists a constant d such that 
for all precision levels π ∈ 0,1[ ]  and all x, y ∈ 0,1{ }*: CU,U

π x y( ) ≤ C ′U , ′U
π x y( ) + d,  where d only depends on 

U , ′U , U, U'. 
Again this justifies dropping the reference to underlying universal machines. The most fundamental 

property of our notion of probabilistic Kolmogorov complexity can succinctly be expressed as follows: 

Theorem 6  For all precision levels π and all x, y ∈ 0,1{ }*: Cπ x y( ) = π ⋅C x y( ) +O 1( ) . 
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As immediate consequences we obtain some facts confirming that Cπ ⋅( ) , viewed as a measure of 
information contained in fuzzy descriptions, matches further basic intuitions: 

• C1 x y( ) = C x y( ) +O 1( ) , which confirms that for precision level 1 probabilistic Kolmogorov 
complexity coincides with ordinary  Kolmogorov complexity up to an additive constant. If the same 
universal reference machine is used for Cπ  and C, respectively, and if C x x( ) = 0 (i.e., copying 
input into output is discounted) then one gets rid of the additive constant. 

• C0 x y( ) = O 1( ) , which means that at precision level 0 all specific information is lost. 
• C0.5 x( ) = log2 x( ) 2 +O 1( )  for incompressible x, implying that (up to an additive constant) half of 

the relevant information lost at precision level 0.5, or, to put it differently: half of its bits are needed 
to describe an incompressible string at precision level 0.5. 

6. Conclusion 
We have illustrated that a straightforward generalization of Kolmogorov complexity to probabilistic 

programs leads to a model of vague descriptions of (binary coded) objects supporting the quantification of 
information contained in such descriptions. This provides a solution to a conceptual problem regarding the 
transmission of vague information, referred to as the enigma of quantifying vague information: the perceived 
intended loss of information due to vagueness cannot easily be represented in standard models of vague 
expressions. However the offered solution is at best partial and preliminary, as long as it is not properly 
placed in the context of the ongoing discourse on appropriate `theories of vagueness'. Further research is 
needed to assess whether our concept indeed usefully augments standard models and techniques in 
approximative reasoning and information processing. 
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