
Extracting Nanopublications from IR Papers?

Aldo Lipani �, Florina Piroi, Linda Andersson, and Allan Hanbury

Institute of Software Technology and Interactive Systems (ISIS)
Vienna University of Technology, Austria

{surname}@ifs.tuwien.ac.at

Abstract. The published scientific results should be reproducible, oth-
erwise the scientific findings reported in the publications are less valued
by the community. Several undertakings, like myExperiment, RunMy-
Code, or DIRECT, contribute to the availability of data, experiments,
and algorithms. Some of these experiments and algorithms are even ref-
erenced or mentioned in later publications. Generally, research articles
that present experimental results only summarize the used algorithms
and data. In the better cases, the articles do refer to a web link where
the code can be found. We give here an account of our experience with
extracting the necessary data to possibly reproduce IR experiments. We
also make considerations on automating this information extraction and
storing the data as IR nanopublications which can later be queried and
aggregated by automated processes, as the need arises.

1 Motivation

A core activity of Information Retrieval (IR) research is the experimental work
that consists of testing and tuning software systems to extract and output in-
formation related to a given input. Every year, new results on various retrieval
algorithms are published, articles describing the experimental results in varying
degrees of detail. A large amount of data and corresponding data analysis is gen-
erated for each such experiment. If interested to reproduce an IR experiment,
the necessary details to implement and prepare the experiment are often not
easy to obtain.

Reproducible research and experiment replication is already a known issue
which is specifically addressed in various research areas like statistics [12], life
sciences (e.g. [9]), computational linguistics [10], or programming [14]. In the IR
evaluation community, even though researchers are aware of this issue, the sub-
ject is not being dealt with in a systematic way. A few island solutions to publish
evaluation experiments are available. EvaluatIR is a system where scientists can
upload their experiments on a standard (TREC) test collection to compare them

? This research was partly funded by the Austrian Science Fund (FWF) project num-
ber P25905-N23 (ADmIRE).



with existing experiments [2]. A permanent URL also gives later access to the
details of the uploaded experiment, which could, thus, be used in citations. DI-
RECT [6] has been used to manage the CLEF evaluation campaigns. It evolved
to include a library of CLEF experiments that, in theory, could be citable and
re-used.

Both of the mentioned systems concentrate mostly on the experimental data,
with very little information about the necessary software setup, like the parame-
ters of the indexing components or of the result ranking component, that would
allow a researcher to replicate the experiment. RunMyCode, myExperiment, and
OpenML are examples of environments dedicated to sharing not only data but
also to sharing code and algorithms. RunMyCode is a computational infrastruc-
ture created to give researchers the space where experimental data, code and
other data associated with an article can be published [13]. The open science
platform for machine learning, OpenML, allows users to submit their results,
code, or data, which is then organized such that it can be later searched and
re-used via web APIs [11]. myExperiment, a Virtual Research Environment, uses
a social web approach to the sharing and the collaboration on experiments and
workflows [5], as well as to the publication of citable Research Objects with
executable components [4].

Despite these impressive efforts, collecting results for a larger number of IR
experiments, over a period of time, to establish genuine advances in this research
area, is strenuous. Also, the connection to research publications that describe
the experiments is not evident, and experiment provenance, in absence of an
explicitly stated author or research institution, is often lost. Additionally, at
least for publications in the IR evaluation domain, the experiment definitions
are often incomplete, system definitions are omitted or incomplete as authors
consider them implicit or uninteresting, or due to lack of printed space.

Ideally, publications describing IR systems, data, and experiments are accom-
panied by further data items describing the particular implementation details
relevant to anyone that wishes to reproduce the reported experiments. One pro-
posal to make such details available to the community is via IR nanopublications
[7], which give researchers the possibility to publish additional details about their
experimental data, details which do not have space or would not fit conceptually
in a printed publication. Nanopublications give researchers the opportunity to
share statements about data, code, and experiments, annotated with references,
and to establish authorship, in a citable way. Nanopublications can be, later,
automatically queried and explored to gain further insights into the IR domain.

But plenty of important and valuable research is already published in con-
ference proceedings, workshops, or journals. We would like to make that data
available and machine processable. We explore in this paper ways to extract
data from publications, data that would support reproducing IR experiments,
and store it as IR nanopublications. We describe our efforts in processing a
small set of IR workshop papers to make initial observation sets that can be
later evolved into automatic data extraction from IR papers.



2 Manual Nanopublication Extraction

Our experimental setting is that of a PhD student reading research papers de-
scribing IR systems and experiments, who tries to extract the necessary infor-
mation to reproduce the retrieval experiments reported in the paper.

For this experiment, we chose to manually examine the workshop proceed-
ings of the first mathematical retrieval challenge, NTCIR-10 Math Task [1].
This task is dedicated to exploring the information retrieval solution space for
information access in a corpus with a high level of mathematical content. The
NTCIR-10 Math test collection contains 100.000 documents from mathematics,
physics and computer science. The queries contained not only keywords, but also
mathematical formulae with wildcards as query variables. The retrieval solution
chosen by the participants to this challenge included creating specific indexing
and searching algorithms for the mathematical formulae in the corpus.

The Math pilot task had two subtasks, the Math Retrieval subtask and the
Math Retrieval Understanding subtask. The first one is a question-and-answer
task that has three different search scenarios: Formula Search where the query
is a formula, Full-Text Search where the query is defined as a combination of
keywords and formulae and Open Information Retrieval where a query is a free
text that includes request expressed in natural language and formulae.

There were six groups that submitted experiments to this task, and we took a
close look at their workshop notes1. Our interest was to extract all the reported
details of the retrieval systems so that—should the need or wish arise—we could
reproduce the systems and the experiments.

Since this was a pilot task, i.e. no previous editions of such an evaluation
challenge were organised, there were no previously available relevance assess-
ments, and no training data. Due to the specificities of the corpus data and of
the given tasks, the participating teams addressed the subtasks with conceptu-
ally very different solutions, making the systems a good candidate for an initial
observation set in our experiments. For example, in the Full Text Search subtask,
one team used an extended Boolean retrieval model and then an exact match
model in order to push up the documents that have the formula in the query,
while another team used a non-indexed search model.

Generally, in our view, the architecture of an IR system has the following
components: A document preprocessor, DP, an indexer, I, a search module, or
a scorer, S, a query (pre)processor, QP, a reranker of the search results, R, a
collection (pre)processor, CP, a result merger, M (see also Figure 1). Each IR
system has a set of core components, which are marked on the figure with the
label IRSystemCore. In this example, the core components include a ranker of the
search results. An IR system may make use of several sets of core components,
in which case a result merging component and possibly a re-ranking component
are included in the IR system’s flow.

1 http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/NTCIR/toc_

ntcir.html

http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/NTCIR/toc_ntcir.html
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/NTCIR/toc_ntcir.html


CP DP I S

QPQ

C R M Run

IRSystemCore

R

Fig. 1. Model of a retrieval system

We examine, thus, the selected workshop papers looking specifically for de-
scriptions of the components in Figure 1. While collecting the information sub-
ject to our interest we made use of an IR Ontology designed by us. The ontology
is used to describe the concepts involved in the IR system evaluation research
[7]. From the three ontology categories, EvaluationThing, IRSystemThing, and
IRModelThing, we use the concepts of the IRSystemThing and EvaluationThing

categories to guide our manual information extraction from the workshop pa-
pers. We looked to find instances for the concepts described by the Indexer,
Preprocessing, Reranker, Merger, Scorer, Run, TestCollectionComponent

and Topics classes2. Figure 2 shows only the subset of the ontology that we use
to identify the instances occurring in the papers. Close to the ontology classes,
on their right side, we show the IR System component that we associate with
the respective ontology class. To store the information extracted from the work-
shop papers we use the IR nanopublication format shortly described in [7]. A
nanopublication is stored as one or more RDF named graphs which are RDF
triples with an associated context. Each of the main components of a nanop-
ublication, assertion, provenance, and publication details, is again defined as a
named graph. To store the RDF triples we choose AllegroGraph3 which is an
environment optimized for storing graphs. Using a web interface to our Allegro-
Graph server instance4 we can query the RDF triple storage using the SPARQL
query language.

For the papers in our observation set we set out to extract the information
describing the IR system components and create one nanopublication for each
paper in the set.

This was done by the first author who achieved this in a two phase process.
In the first phase an automated annotation of the IR system components was
done, with the help of preliminary versions of the tools described in Section
3, used as standalone components. The annotation, however, did not detect all
the instances and relationships of interest, therefore further manual work was
required, which was done in the second phase.

2 The ontology is available at: http://ifs.tuwien.ac.at/~admire/ir_ontology/ir
3 http://franz.com/agraph/allegrograph/
4 http://ifs.tuwien.ac.at/~admire/ir_ontology/agwebview/

http://ifs.tuwien.ac.at/~admire/ir_ontology/ir
http://franz.com/agraph/allegrograph/
http://ifs.tuwien.ac.at/~admire/ir_ontology/agwebview/


EvaluationThing

EvaluationCampaign

TestCollectionComponent

Collection C

Topics Q

Run

IRSystemThing

IRSystem

IRSystemComponent

Preprocessing

CollectionLevelPreprocessing CP

DocumentLevelPreprocessing DP

QueryLevelPreprocessing QP

IRSystemCore SC

Indexer I

Scorer S

Reranker R

Merger M

Run

Fig. 2. IR Ontology Subset

In the second phase we defined a protocol that we applied, refined, and re-
applied in our information extraction process, until we were satisfied with the
outcome. The protocol contains three steps: the first one necessitated us to an-
notate all the potentially relevant information about the IR system described
in the paper examined; the second step was dedicated to connecting the IR on-
tology classes correctly to the IR components identified in the paper; the final
step of the protocol was to interconnect the system components identified in the
previous steps, which actually translated to extracting relationships between the
identified components, relationships defined in the IR ontology as class relation-
ships.

We used the protocol described above iteratively, each iteration making use of
the knowledge gained in the previous steps to extract more detailed information.

Extracting the information about the IR experiments (run descriptions) was
straightforward, the test collection, the evaluation measures, the queries, the
participant runs, etc. being clearly described in the task overview paper [1].
Identifying and extracting the IR system component descriptions was, however,
more challenging.

We recall that one of the goals of this manual extraction was to establish
whether a researcher would be able to reproduce the experiments reported in
the papers. Being able to get enough information about the IR systems used
is a prerequisite, and, during the information extraction described above, we
collected availability information on each of the IR system components we looked
for (those shown in Figure 1).



CP
SCformula SCtext

M R
DP QP I S R DP QP I S R

1 � X X X X � � � � � � X �

2 � X X X X � X X X X � � �

3 � � � � � � � � � � � � �

4 X X X X X � � � � � � � �

5 � � � � � � � � � � � � �

6 X X X � � � � � � � � � �

Table 1. Availability of the component description for each IR system

Table 1 shows the result of our analysis. In this table each column repre-
sents an IR system component and each row represents a paper. Most of the
retrieval solutions presented in the examined papers involve two IR system cores
(SC)—one for the textual retrieval, one for the formula retrieval—which are
corespondingly grouped in the table. The markings in each table cell indicate if,
within the paper, there is enough information to reproduce the IR component
(X), if there is not enough information (�) or if the described IR system does
not need that IR component (�). Thereby, an IR system is reproducible if all of
its components are reproducible.

What we notice out of Table 1 is that, for this observation set, the IR sys-
tems involved in the task participation are under-explained, and a researcher
would not be able to re-implement whole systems without further digging into
references, sending e-mails to researchers, etc.

3 Automating the Nanopublication Extraction

Manual extraction from papers of the information necessary to repeat some IR
experiment is feasible when only a few papers are to be studied, like the case
described in the previous section. If we are interested in developments over time,
or comparisons of a large number of experiments, manual information extraction
is tedious.

To avoid such tedious manual work, we devised a workflow that can be used to
automate the extraction of IR related information from IR papers. The ultimate
goal of this automated process is to have all information of interest stored in a
machine processable format, for example as an IR nanopublication.

Figure 3 presents the main phases of the proposed workflow. We assume that
the input to our workflow, the published articles, are stored in PDF format.
First, we need to apply a PDF extractor which will transform the content of the
PDF file into a format that can be handled by the tools that will be applied in
the next steps. Then, a series of simple Natural Language Processing (NLP) tools
are applied in order to identify sentences, parts of speech, tokens and chunks.
The result of this processing forms the input to an Ontology-based Information
Extraction (OBIE) component that iteratively fills the IR ontology with class
instances. The last component of the workflow is a nanopublication extractor



that uses nanopublication templates and the IR ontology. The nanopublications
thus created can be stored on a server that supports querying them.

In the following we describe the details and challenges of these phases:

KB

PDFs PDF

Extractor TSPC OBIE
NP

Extractor NPs

Fig. 3. Flow of the nanopublication extraction system

PDF Extractor: The papers are collected in PDF format are translated
into XML format, following the Journal Article Tag Suite5 (JATS) schema, with
the open source toolkits like PDFBox of the Apache project. Using the JATS
schema, images and tables are also extracted from the PDF files.

Applying NLP Tools, TSPC: The XML files extracted in the previous
step are now passed to a series of NLP tools: Tokeniser, Sentence splitter, Part
of Speech (PoS) Tagger, and a Chunker (TSPC). For this step we use the GATE
Developer integrated environment annotation and NLP analysis framework [3],
which is used also in the next step.

Ontology Based Information Extraction, OBIE: After the standard
NLP annotations of the previous step, an ontology based information extraction
[8] should be applied in order to enrich the existing IR ontology. Automatic
ontology population is related to methods used in Information Extraction (IE)
which extract pre-defined relations (defined in the IR ontology, in our case) from
text. OBIE techniques are used to enhance domain knowledge or customized
ontologies. The techniques involve the identification of different named entity
types, of technical terms or relations. After normalisation of data, tokenisation,
PoS tagging, etc., a recognition step follows where gazetteers can be combined
with rule-based grammars, ontology design patterns, or by identifying pattern
slots such as lexico-syntactic patterns.

In the training phase this is an iterative process where, in the first iteration,
we identify instances and named entities (NE) for the IR ontology classes. In
order to learn new named entities we use coreference resolutions to identify the
attributes of each NE instantiating an IR ontology class and extract further
inter-term relationships such as hyponyms and hypernyms. When new NEs are
discovered, the knowledge base KB (which could be, for example, the IR on-
tology) is updated and the process restarts extracting new NEs. The process
is repeated until a previously agreed on quality standard is reached. Updating

5 http://jats.nlm.nih.gov

http://jats.nlm.nih.gov


the knowledge base can be done with a tool like OwlExport [15] which is devel-
oped as a GATE resource to map existing NLP analysis pipelines into an OWL
ontology.

The development of this workflow component must incorporate our experi-
ences gained during the information extraction described in Section 2, particu-
larly the steps of the protocol used in the second phase.

Nanopublication extractor: The last phase of the process is extracting
nanopublications from either previously created knowledge bases (e.g., IR ontol-
ogy) or from annotations created with GATE. Several nanopublication templates
can be used in the extraction, depending on the information sought.

The nanopublications thus extracted are to be stored, then, into a search-
able repository. For example, in our experiments we can use the query listing
below to extract one nanopublication from our local AllegroGraph installation.
The SPARQL query6 asks to retrieve the anonymous graph of the nanopublica-
tion stored within the context defined by the unnamed prefix, and then, using
its properties (hasAssertion, hasProvenance and hasPublicationInfo) asks to re-
trieve the definition of the three sub graphs and their content.

prefix : <ht tp : // i f s . t uw i e n . a c . a t /˜ admire/nanopubs/LarsonEtAl2013#>
prefix np: <ht tp : //www.nanopub.org/nschema#>
select ?G ?S ?P ?O where {

{graph ?G { : a np:Nanopubl icat ion }} union
{ : np: hasAsse r t i on ?G} union
{ : np:hasProvenance ?G} union
{ : np: hasPub l i c a t i on In f o ?G}
graph ?G {?S ?P ?O}

}

Listing 1.1. SPARQL query

4 Conclusions and Future Work

We have presented in this paper our experience with manually processing a small
set of papers describing IR systems in order to extract information necessary for
experiment replication. This being a tedious work, we also present a methodology
to automate this process, where the final output is to be a large collection of IR
nanopublications, stored in a database.

Our work is currently at an early stage. Extending the, now partial, imple-
mentation of the workflow described in Section 3 has a high priority in our future
work. We plan to use the the manually created nanopublications as ground truth
in the experiments evaluating the workflow and its concrete components, moving
towards quantitative experiments with other available corpora in the IR domain.

One of the most important issues for the scope of this paper is that the IR
systems referred to in IR papers are under-described. There are generally too
few details in the publication to allow a researcher to reproduce the reported
experiments without further digging for system details. We recommend that

6 http://ifs.tuwien.ac.at/~admire/nanopubs/queries/LarsonEtAl2013

http://ifs.tuwien.ac.at/~admire/nanopubs/queries/LarsonEtAl2013


researchers make the ‘boring’, non-publishable details of their work available to
the community. This can be done by publishing their code, or by publishing
additional data attached to the paper. It remains to be experimented with the
type and amount of data attached to a paper such that reproducibility is made
easy for the IR educated researcher. We are convinced that IR nanopublications
can play a strong role in formalizing the description of IR systems and hence
increase the availability and reproducibility of the research results.

References

1. A. Aizawa, M. Kohlhase, and I. Ounis. NTCIR-10 math pilot task overview. In
Proceedings of the 10th NTCIR Conference, Tokyo, Japan, 2013.

2. T.G. Armstrong, A. Moffat, W. Webber, and J. Zobel. EvaluatIR: An Online Tool
for Evaluating and Comparing IR Systems. In Proceedings of the 32Nd Interna-
tional ACM SIGIR Conference, SIGIR ’09, pages 833–833, New York, NY, USA,
2009. ACM.

3. K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham. Evolving GATE to
Meet New Challenges in Language Engineering. Natural Language Engineering,
10(3/4):349–373, 2004.

4. D. De Roure. Towards computational research objects. In Proceedings of the 1st In-
ternational Workshop on Digital Preservation of Research Methods and Artefacts,
DPRMA ’13, pages 16–19. ACM, 2013.

5. D. De Roure, C. Goble, and R. Stevens. The design and realisation of the virtual
research environment for social sharing of workflows. Future Generation Computer
Systems, 25(5):561–567, 2009.

6. M. Dussin and N. Ferro. DIRECT: applying the DIKW hierarchy to large-scale
evaluation campaigns. In R.L. Larsen, A. Paepcke, J.L. Borbinha, and M. Naaman,
editors, Proceedings of JCDL, page 424, 2008.

7. A. Lipani, F. Piroi, L. Andersson, and A. Hanbury. An Information Retrieval
Ontology for Information Retrieval Nanopublications. In Proceedings of the CLEF
2014 Conference. Springer, 2014. to appear.

8. D. Maynard, Y. Li, and W. Peters. NLP techniques for term extraction and on-
tology population. In Proceeding of the 2008 conference on Ontology Learning and
Population: Bridging the Gap between Text and Knowledge, pages 107–127, 2008.

9. A. Nekrutenko and J. Taylor. Next-generation sequencing data interpretation:
enhancing reproducibility and accessibility. Nat Rev Genet, 13(9):667–672, 2012.

10. T. Pedersen. Empiricism is not a matter of faith. Computational Linguistics,
34(3):465–470, 2008.

11. J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer, P. Winter,
B. Wiswedel, M. R. Berthold, and J. Vanschoren. OpenML: A collaborative science
platform. In H. Blockeel, K. Kersting, S. Nijssen, and F. Železný, editors, Machine
Learning and Knowledge Discovery in Databases, number 8190 in Lecture Notes
in Computer Science, pages 645–649. Springer Berlin Heidelberg, 2013.

12. V. Stodden. The reproducible research movement in statistics. Statistical Jour-
nal of the IAOS: Journal of the International Association for Official Statistics,
30(2):91–93, 2014.

13. V. Stodden, C. Hurlin, and C. Perignon. RunMyCode.org: A novel dissemination
and collaboration platform for executing published computational results. Techni-
cal Report ID 2147710, Social Science Research Network, 2012.



14. J. Vitek and T. Kalibera. Repeatability, reproducibility and rigor in systems re-
search. In 2011 Proceedings of the International Conference on Embedded Software
(EMSOFT), pages 33–38, 2011.

15. R. Witte, N. Khamis, and J. Rilling. Flexible ontology population from text: The
OwlExporter. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk,
S. Piperidis, M. Rosner, and D. Tapias, editors, Proceedings of the Seventh Inter-
national Conference on Language Resources and Evaluation (LREC’10). European
Language Resources Association (ELRA), 2010.


