Patenturkunde

Gemäß dem Patentgesetz ist für die in der angefügten Patentschrift beschriebene Erfindung ein Patent unter der

Nummer 517 366 erteilt worden.

Die Jahresgebühren werden bei alljährlicher Zahlung am letzten des Anmeldemonats fällig.

Wien, am 15. Juli 2017

Mag. Mariana Karepova
Präsidentin des Österreichischen Patentamts
Verfahren und Vorrichtung zur Bestimmung einer Materialeigenschaft eines Bitumenmaterials

Verfahren und Vorrichtung (1) zur Bestimmung einer Materialeigenschaft, insbesondere des Alterungszustands bzw. der Alterungsresistenz, eines Bitumenmaterials (2), mit den Schritten:

- Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen ersten Anregungsstrahlung (4) einer ersten Anregungswellenlänge (λ1);
- Messen der Intensität (I1) einer durch die erste Anregungsstrahlung (4) angeregten ersten Fluoreszenzstrahlung bei einer Messwellenlänge;
- Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen zweiten Anregungsstrahlung (6) einer ersten Anregungswellenlänge (λ2);
- Messen der Intensität (I2) einer durch die zweite Anregungsstrahlung (6) angeregten zweiten Fluoreszenzstrahlung bei der Messwellenlänge;

- Ermittlung einer ersten Kennzahl (K1) für die Materialeigenschaft des Bitumenmaterials (2) aus dem Verhältnis zwischen der Intensität (I2) der zweiten Fluoreszenzstrahlung zu der Intensität (I1) der ersten Fluoreszenzstrahlung.
Beschreibung

[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Bestimmung einer Materialeigenschaft eines Bitumenmaterials, die insbesondere mit dem Alterungszustand bzw. der Alterungsresistenz zusammenhängt.

[0005] Im Stand der Technik wurden hierzu verschiedene Ansätze präsentiert.

[0013] Das erfindungsgemäße Verfahren weist daher zumindest die folgenden Schritte auf:

- Beaufschlagen des Bitumenmaterials mit einer im Wesentlichen monochromatischen ersten Anregungsstrahlung einer ersten Anregungswellenlänge;
- Messen der Intensität einer durch die erste Anregungsstrahlung angeregten ersten Fluoreszenzstrahlung in einem Messwellenlängenbereich;
- Beaufschlagen des Bitumenmaterials mit einer im Wesentlichen monochromatischen zweiten Anregungsstrahlung einer zweiten Anregungswellenlänge;
- Messen der Intensität einer durch die zweite Anregungsstrahlung angeregten zweiten Fluoreszenzstrahlung in dem Messwellenlängenbereich;
- Ermittlung einer ersten Kennzahl für die Materialeigenschaft des Bitumenmaterials aus dem Verhältnis zwischen der Intensität der zweiten Fluoreszenzstrahlung zu der Intensität der ersten Fluoreszenzstrahlung.

[0020] Das erfindungsgemäße Verfahren eignet sich besonders für die Implementierung auf einem tragbaren Handgerät, bei dem nur diejenigen Wellenlängen angeregt werden, die auch wesentlich für die Beurteilung des Alterungszustands sind. Damit kann erstmals eine Methode geschaffen werden, mit der flexibel im Labor, auf der Baustelle und selbst im eingebauten Zustand die Alterungsbeständigkeit des eingesetzten Bitumens einfach, rasch und günstig bewertet werden kann.

[0022] Bei den Untersuchungen hat sich herausgestellt, dass die Alterung auf Basis der ersten Kennzahl allein nicht bei allen Bitumenproben zuverlässig festgestellt werden konnte. Es hat sich gezeigt, dass die erste Kennzahl bei manchen Bitumenproben untauglich ist, obwohl die Materialeigenschaften durch komplexe Prozesse, wie beispielsweise Alterung bei Vorverwendung oder thermische Schädigung bei der Lagerung etc., bereits beeinträchtigt sind. Um diese Klasse von Bitumenmaterialien dem Verfahren zur Feststellung der Alterung zugänglich zu machen, werden bei einer bevorzugten Ausführung des Verfahrens die weiteren Schritte

[0023] - Beaufschlagen des Bitumenmaterials mit einer im Wesentlichen monochromatischen dritten Anregungsstrahlung einer dritten Wellenlänge;
[0024] - Messen der Intensität einer durch die dritte Anregungsstrahlung angeregten dritten Fluoreszenzfrequenz in dem Messwellenlängenbereich;
[0025] - Ermittlung einer zweiten Kennzahl für die Materialeigenschaft des Bitumens aus dem Verhältnis zwischen der Intensität der dritten Fluoreszenzfrequenz zur Intensität der ersten Fluoreszenzfrequenz

[0026] durchgeführt.

[0028] Um die Qualität des untersuchten Bitumenmaterials auf einfache Weise feststellen zu können, ist es von Vorteil, wenn die zweite Kennzahl mit einem zweiten Referenzwert verglichen wird. Bei dieser Ausführung kann daher die Erst- oder Wiederverwendung des Bitumen-
materials davon abhängig gemacht werden, dass die erste Kennzahl den ersten Referenzwert und die zweite Kennzahl den zweiten Referenzwert überschreitet.

[0032] In manchen Fällen kann es günstig sein, wenn die Intensität einer vierten Fluoreszenzstrahlung erfasst wird, welche mit einer im Wesentlichen monochromatischen vierten Anregungsstrahlung einer vierten Anregungswellenlänge zwischen 440 und 460 nm angeregt wird. In diesem Bereich liegt eine weitere spektrale Schulte des Fluoreszenzspektrums, welche für die Auswertung der Materialeigenschaft verwendet werden kann. Allerdings ist dieses lokale Maximum vergleichsweise schwach ausgeprägt und daher fehleranfällig als die zuvor beschriebenen lokalen Maxima der Fluoreszenzstrahlung.

Die erfindungsgemäße Vorrichtung zur Bestimmung einer Materialeigenschaft, insbesondere des Alterungszustands und/oder der Alterungsresistenz, eines Bitumenmaterials weist zumindest die folgenden Komponenten auf:

- eine erste Strahlungseinrichtung zum Beaufschlagen des Bitumenmaterials mit einer im Wesentlichen monochromatischen ersten Anregungsstrahlung einer ersten Anregungswellenlänge;

- eine zweite Strahlungseinrichtung zum Beaufschlagen des Bitumenmaterials mit einer im Wesentlichen monochromatischen zweiten Anregungsstrahlung einer zweiten Anregungswellenlänge;

- eine Messeinrichtung zum Messen der Intensität einer durch die erste Anregungsstrahlung angeregten ersten Fluoreszenzstrahlung in einem vorgegebenen Messwellenlängenbereich und zum Messen der Intensität einer durch die zweite Anregungsstrahlung angeregten zweiten Fluoreszenzstrahlung in dem vorgegebenen Messwellenlängenbereich;

- eine Recheneinrichtung mit einem ersten Verhältnisbildern zur Ermittlung einer ersten Kennzahl für die Materialeigenschaft des Bitumenmaterials aus dem Verhältnis zwischen der Intensität der zweiten Fluoreszenzstrahlung zu der Intensität der ersten Fluoreszenzstrahlung.

Um die für eine Erst- oder Wiederverwendung ungeeigneten Bitumenproben zu identifizieren, weist die Vorrichtung zur Bestimmung der Materialeigenschaft des Bitumenmaterials vorzugsweise zudem die folgenden Komponenten auf:

- eine dritte Strahlungseinrichtung zum Beaufschlagen des Bitumenmaterials mit einer im Wesentlichen monochromatischen dritten Anregungsstrahlung einer dritten Anregungswellenlänge, wobei die Messeinrichtung zum Messen der Intensität einer durch die dritte Anregungsstrahlung angeregten dritten Fluoreszenzstrahlung in dem vorgegebenen Messwellenlängenbereich eingerichtet ist;

- einen zweiten Verhältnisbildern zur Ermittlung einer zweiten Kennzahl für die Materialeigenschaft des Bitumenmaterials aus dem Verhältnis zwischen der Intensität der dritten Fluoreszenzstrahlung zu der Intensität der ersten Fluoreszenzstrahlung.

Um die Verwendbarkeit des Bitumenmaterials auf einfache Weise festzustellen, ist es vorteilhaft, wenn die Recheneinrichtung eine erste Datenbank mit einem ersten Referenzwert für die Materialeigenschaft des Bitumenmaterials und ein erstes Vergleichsmodul zum Vergleich der ersten Kennzahl mit dem ersten Referenzwert aufweist, wobei die Recheneinrichtung vorzugsweise eine zweite Datenbank mit einem zweiten Referenzwert für die Materialeigenschaft des Bitumenmaterials und ein zweites Vergleichsmodul zum Vergleich der zweiten Kennzahl mit dem zweiten Referenzwert aufweist. Wenn die erste Kennzahl den ersten Referenzwert unterschreitet, kann das Bitumenmaterial gemäß einer bevorzugten Anwendung des Verfahrens von einer Erst- oder Wiederverwendung bzw. Rezyklierung ausgeschlossen werden. Darüber hin-
aus wird eine Verwendung des Bitumenmaterials dann nicht ohne weitere Maßnahmen vorgenommen, wenn zwar die erste Kennzahl über dem ersten Referenzwert liegt, aber die zweite Kennzahl den zweiten Referenzwert unterschreitet. Nur wenn die erste Kennzahl den ersten Referenzwert und die zweite Kennzahl den zweiten Referenzwert überschreitet, weist das gebrauchte Bitumenmaterial die für die Verwendung gewünschten Materialeigenschaften auf, so dass der Auswahlprozess wesentlich verbessert werden kann.

[0045] Gemäß einer besonders bevorzugten Ausführung sind die erste und zweite Strahlungseinrichtung voneinander verschieden, wobei die erste Strahlungseinrichtung zum Aussenden der im Wesentlichen monochromatischen ersten Anregungsstrahlung der ersten Anregungswellenlänge und die zweite Strahlungseinrichtung zum Aussenden der im Wesentlichen monochromatischen Anregungsstrahlung der zweiten Anregungswellenlänge eingerichtet ist.

[0047] Gemäß einer weiteren bevorzugten Ausführung sind die erste und zweite Strahlungseinrichtung, gegebenenfalls auch die dritte Strahlungseinrichtung, durch eine gemeinsame Strahlungseinrichtung gebildet, welche eine Strahlungsquelle zum Aussenden einer breitbandigen Anregungsstrahlung aufweist. Bei dieser Ausführung ist zwischen der Strahlungsquelle für die breitbandige Anregungsstrahlung und dem Bitumenmaterial eine Einrichtung zur Auswahl der ersten, zweiten bzw. dritten Anregungswellenlänge vorgesehen, welche beispielsweise durch einen Filter oder einen Monochromator gebildet ist.

[0048] Um den Benutzer der Vorrichtung über die Materialeigenschaft, insbesondere den Alterungsgrad, des Bitumenmaterials zu informieren, ist es günstig, wenn die Vorrichtung zudem eine Anzeigeinheit zur Anzeige der ersten und/oder der zweiten Kennzahl und/oder des ersten Referenzwertes und/oder des zweiten Referenzwertes für die Materialeigenschaft des Bitumenmaterials aufweist. Im Stand der Technik sind solche Anzeigeinheiten, wie Displays, hinlänglich bekannt, so dass sich nähere Ausführungen hierzu erübrigen können.

[0049] Die Erfindung wird nachstehend anhand eines bevorzugten Ausführungsbeispiels, auf das sie jedoch nicht beschränkt sein soll, weiter erläutert. In der Zeichnung zeigen:

[0050] Fig. 1 schematisch eine Vorrichtung zur Bestimmung des Alterungszustands eines Bitumenmaterials;

[0051] Fig. 2 ein Ablaufdiagramm zur Veranschaulichung einer Ausführungsvariante des erfindungsgemäßen Verfahrens zur Bestimmung des Alterungszustands des Bitumenmaterials; und

[0052] Fig. 3 die Anregungsspektren je einer alterungsbeständigen und einer nichtalterungsbeständigen Bitumenprobe.

[0053] In Fig. 1 ist schematisch eine Vorrichtung 1 zur Bestimmung des Alterungszustands eines Bitumenmaterials 2, d.h. eines des Bindemittel Bitumen enthaltenden Materials, gezeigt. Das Bitumenmaterial 2 liegt insbesondere als Ausbauasphalt vor, dessen Alterungsbeständigkeit im Hinblick auf eine Rezyklierung untersucht werden soll.

[0054] Die Vorrichtung 1 weist eine erste Strahlungseinrichtung 3 zum Aussenden einer im Wesentlichen monochromatischen ersten Anregungsstrahlung 4 einer ersten Anregungswellenlänge 11 auf. Darüber hinaus weist die Vorrichtung 1 eine zweite Strahlungseinrichtung 5 zum Aussenden einer im Wesentlichen monochromatischen zweiten Anregungsstrahlung 6 einer zweiten Anregungswellenlänge 2 auf. Schließlich weist die Vorrichtung 1 eine dritte Strahlungseinrichtung 7 zum Aussenden einer im Wesentlichen monochromatischen dritten Anre-
gungsstrahlung 8 einer dritten Anregungswellenlänge λ3 auf. Die Vorrichtung 1 weist ferner eine herkömmliche, im Stand der Technik an sich bekannte Messertechnik auf, welche dazu eingerichtet ist, die Intensität I₁ einer durch die erste Anregungsstrahlung 4 im Bitumenmaterial 2 angeregten ersten Fluoreszenzstrahlung, die Intensität I₂ einer durch die zweite Anregungsstrahlung 6 angeregten zweiten Fluoreszenzstrahlung und die Intensität I₃ einer durch die dritte Anregungsstrahlung 8 angeregten zweiten Fluoreszenzstrahlung zu messen. Die Fluoreszenz wird jeweils bei der selben, vorgegebenen Mess- bzw. Emissionswellenlänge von beispielsweise 515 Nanometer gemessen. Zu diesem Zweck werden die erste Strahlungseinrichtung 3, die zweite Strahlungseinrichtung 5 und die dritte Strahlungseinrichtung 7 in der gezeigten Ausführung zeitlich nacheinander aktiviert, wobei die Messeinrichtung 9 jeweils die vom Bitumenmaterial ausgehende erste Fluoreszenzstrahlung 4, zweite Fluoreszenzstrahlung 8 bzw. dritte Fluoreszenzstrahlung 10 erfasst. Alternativ zur Aktivierung der ersten 3, zweiten 5 und dritten Strahlungseinrichtung 7 in zeitlichem Abstand zueinander können wechselnde Filtersätze bzw. Blenden verwendet werden. Als erste Strahlungseinrichtung 3 ist in der gezeigten Ausführung eine erste Leuchtduode 3', als zweite Strahlungseinrichtung 5 eine zweite Leuchtduode 5' und als dritte Strahlungseinrichtung 7 eine dritte Leuchtduode 7' vorgesehen.

[0056] Wie aus Fig. 1 weiter ersichtlich, weist die Vorrichtung 1 zudem eine Recheneinrichtung 10 mit einem ersten Verhältnisbild 11 zur Ermittlung einer ersten Kennzahl K₁ für den Alterungszustand des Bitumenmaterials aus dem Verhältnis zwischen der Intensität I₂ der zweiten Fluoreszenzstrahlung zu der Intensität I₁ der ersten Fluoreszenzstrahlung auf. Darüber hinaus weist die Recheneinrichtung 10 einen zweiten Verhältnisbild 12 zur Ermittlung einer zweiten Kennzahl K₂ für den Alterungszustand des Bitumenmaterials aus dem Verhältnis zwischen der Intensität I₃ der dritten Fluoreszenzstrahlung zu der Intensität I₁ der ersten Fluoreszenzstrahlung auf.

[0058] Wie aus Fig. 1 weithers ersichtlich, weist die Vorrichtung 1 zudem eine Anzeigeeinheit 17 zur Anzeige der ersten K₁ und/oder der zweiten Kennzahl K₂ und/oder des ersten Referenzwertes R₁ und/oder des zweiten Referenzwertes R₁ für den Alterungszustand des Bitumenmaterials 2 auf.

[0059] Das erfindungsgemäße Verfahren geht aus dem Ablaufschema der Fig. 2 hervor. Nach dem Start 18 des Verfahrens wird nacheinander die Intensität I₁ der ersten Fluoreszenzstrahlung, die Intensität I₂ der zweiten Fluoreszenzstrahlung und die Intensität I₃ der dritten Fluoreszenzstrahlung erfasst (Feld 19). Danach wird gemessen, ob die Intensität I₁ der ersten Fluoreszenzstrahlung, die Intensität I₂ der zweiten Fluoreszenzstrahlung und die Intensität I₃ der dritten Fluoreszenzstrahlung einen Schwellwert immin überschreitet (Feld 20). Sollte dies nicht der Fall sein, wird die Messung der Fluoreszenz wiederholt (Pfeil 21). Andernfalls wird die erste Kennzahl K₁ als Verhältnis zwischen der Intensität I₂ der zweiten Fluoreszenzstrahlung und der Intensität I₁ der ersten Fluoreszenzstrahlung ermittelt (Feld 22). Danach wird die erste Kennzahl K₁ mit dem ersten Referenzwert R₁ verglichen (Feld 23). Ist die erste Kennzahl K₁ kleiner als der erste Referenzwert R₁, kann das Bitumenmaterial 2 als für die Rezyklierung ungeeignet erfasst werden (Feld 24). Wenn die erste Kennzahl K₁ größer als der erste Refe-

[0060] In Fig. 3 ist ein Diagramm mit den Anregungsspektren 29, 30 von zwei Bitumenproben 2 gezeigt, wobei sich das Anregungsspektrum 29 auf eine alterungsbeständige Bitumenprobe und das Anregungsspektrum 30 auf eine nicht alterungsbeständige Bitumenprobe bezieht. Auf der x-Achse ist die Wellenlänge \(\lambda \) der Anregungsstrahlung, auf der y-Achse die Intensität I der Fluoreszenz bei einer Messwellenlänge von 515 Nanometern (nm) aufgetragen. Daraus ist ersichtlich, dass die Fluoreszenz der gealterten Bitumenprobe bei Anregungswellenlängen \(\lambda \) oberhalb des Maximums bei ca. 270 nm gegenüber der alterungsbeständigen Bitumenprobe vermindert ist. Darüber hinaus weisen die Spektren charakteristische lokale Maxima bei ca. 370 nm und 480 nm auf.

[0061] Auf Basis dieser Erkenntnisse ist bevorzugt vorgesehen, dass die erste Anregungswellenlänge \(\lambda_1 \) der ersten Anregungsstrahlung 4 aus einem Wellenlängenbereich zwischen 260 und 280 nm, insbesondere im Wesentlichen 270 nm, die zweite Anregungswellenlänge \(\lambda_2 \) der zweiten Anregungsstrahlung 6 aus einem Wellenlängenbereich zwischen 350 und 380 nm, insbesondere im Wesentlichen 370 nm, und die dritte Anregungswellenlänge \(\lambda_3 \) der dritten Anregungsstrahlung 8 aus einem Wellenlängenbereich zwischen 470 und 500 nm, insbesondere im Wesentlichen 480 nm, ausgewählt ist. Dadurch kann die erste Anregungswellenlänge \(\lambda_1 \) als Referenz für den Intensitätsabfall bei größeren Anregungswellenlängen \(\lambda \) herangezogen werden. Die Anregung im Bereich der lokalen Maxima des Anregungsspektrums ist aus messtechnischen Gründen besonders vorteilhaft.
Patentansprüche

1. Verfahren zur Bestimmung einer Materialeigenschaft, insbesondere des Alterungszustands bzw. der Alterungsresistenz, eines Bitumenmaterials (2), mit den Schritten:
 - Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen ersten Anregungsstrahlung (4) einer ersten Anregungswellenlänge (λ1);
 - Messen der Intensität (I1) einer durch die erste Anregungsstrahlung (4) angeregten ersten Fluoreszenzstrahlung in einem Messwellenlängenbereich;
 - Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen zweiten Anregungsstrahlung (6) einer zweiten Anregungswellenlänge (λ2);
 - Messen der Intensität (I2) einer durch die zweite Anregungsstrahlung (6) angeregten zweiten Fluoreszenzstrahlung in dem Messwellenlängenbereich;
 - Ermittlung einer ersten Kennzahl (K1) für die Materialeigenschaft des Bitumenmaterials (2) aus dem Verhältnis zwischen der Intensität (I2) der zweiten Fluoreszenzstrahlung zu der Intensität (I1) der ersten Fluoreszenzstrahlung.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Kennzahl (K1) mit einem ersten Referenzwert (R1) für die Materialeigenschaft des Bitumenmaterials (2) verglichen wird.

3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch die weiteren Schritte
 - Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen dritten Anregungsstrahlung (8) einer dritten Anregungswellenlänge (λ3);
 - Messen der Intensität (I3) einer durch die dritte Anregungsstrahlung (8) angeregten dritten Fluoreszenzstrahlung in dem Messwellenlängenbereich;
 - Ermittlung einer zweiten Kennzahl (K2) für die Materialeigenschaft des Bitumenmaterials (2) aus dem Verhältnis zwischen der Intensität (I3) der dritten Fluoreszenzstrahlung zu der Intensität (I1) der ersten Fluoreszenzstrahlung.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die zweite Kennzahl (K2) mit einem zweiten Referenzwert (R2) verglichen wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erste Anregungswellenlänge (λ1) der ersten Anregungsstrahlung (4) aus einem Wellenlängenbereich zwischen 260 und 280 Nanometer ausgewählt ist.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zweite Anregungswellenlänge (λ2) der zweiten Anregungsstrahlung (6) aus einem Wellenlängenbereich zwischen 350 und 380 Nanometer ausgewählt ist.

7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die dritte Anregungswellenlänge (λ3) der dritten Anregungsstrahlung (8) aus einem Wellenlängenbereich zwischen 470 und 500 Nanometer ausgewählt ist.

8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Messwellenlängenbereich im Wesentlichen monochromatisch mit einer Messwellenlänge zwischen 390 und 650 Nanometer, insbesondere im Wesentlichen 525 Nanometer, ist.

9. Vorrichtung (1) zur Bestimmung einer Materialeigenschaft, insbesondere des Alterungszustands bzw. der Alterungsresistenz, eines Bitumenmaterials (2), aufweisend:
 - eine erste Strahlungseinrichtung (3) zum Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen ersten Anregungsstrahlung (4) einer ersten Anregungswellenlänge (λ1);
 - eine zweite Strahlungseinrichtung (5) zum Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen zweiten Anregungsstrahlung einer zweiten Anregungswellenlänge (λ2);
- eine Messeinrichtung (9) zum Messen der Intensität (11) einer durch die erste Anregungsstrahlung (4) angeregten ersten Fluoreszenzstrahlung in einem vorgegebenen Messwellenlängenbereich und zum Messen der Intensität (12) einer durch die zweite Anregungsstrahlung (6) angeregten zweiten Fluoreszenzstrahlung in dem vorgegebenen Messwellenlängenbereich;
- eine Recheneinrichtung (10) mit einem ersten Verhältnisbildern (10) zur Ermittlung einer ersten Kennzahl (K1) für die Materialeigenschaft des Bitumenmaterials (2) aus dem Verhältnis zwischen der Intensität (12) der zweiten Fluoreszenzstrahlung zu der Intensität (11) der ersten Fluoreszenzstrahlung.

10. Vorrichtung (1) nach Anspruch 9, **gekennzeichnet durch**
- eine dritte Strahlungseinrichtung (7) zum Beaufschlagen des Bitumenmaterials (2) mit einer im Wesentlichen monochromatischen dritten Anregungsstrahlung (8) einer dritten Anregungswellenlänge (λ3), wobei die Messeinrichtung (9) zum Messen der Intensität (13) einer durch die dritte Anregungsstrahlung (8) angeregten dritten Fluoreszenzstrahlung in dem vorgegebenen Messwellenlängenbereich eingerichtet ist;
- einen zweiten Verhältnisbildern zur Ermittlung einer zweiten Kennzahl (K2) für die Materialeigenschaft des Bitumenmaterials (2) aus dem Verhältnis zwischen der Intensität (13) der dritten Fluoreszenzstrahlung zu der Intensität (11) der ersten Fluoreszenzstrahlung.

11. Vorrichtung (1) nach Anspruch 9 oder 10, **dadurch gekennzeichnet**, dass die Recheneinrichtung (10) eine erste Datenbank (13) mit einem ersten Referenzwert (R1) für die Materialeigenschaft des Bitumenmaterials (2) und ein erstes Vergleichsmodul (14) zum Vergleich der ersten Kennzahl (K1) mit dem ersten Referenzwert (R1) aufweist, wobei die Recheneinrichtung (10) vorzugsweise eine zweite Datenbank (15) mit einem zweiten Referenzwert (R2) für die Materialeigenschaft des Bitumenmaterials (2) und ein zweites Vergleichsmodul (16) zum Vergleich der zweiten Kennzahl (K2) mit dem zweiten Referenzwert (R2) aufweist.

12. Vorrichtung (1) nach einem der Ansprüche 9 bis 11, **dadurch gekennzeichnet**, dass die erste Strahlungseinrichtung (3) eine erste Leuchtdiode (3') zum Aussenden der ersten Anregungsstrahlung (4) mit der ersten Anregungswellenlänge (λ1) und/oder die zweite Strahlungseinrichtung (5) eine zweite Leuchtdiode (5') zum Aussenden der zweiten Anregungsstrahlung (6) mit der zweiten Anregungswellenlänge (λ2) und/oder die dritte Strahlungseinrichtung (7) eine dritte Leuchtdiode (7') zum Aussenden der dritten Anregungsstrahlung (8) mit der dritten Anregungswellenlänge (λ3) aufweist.

13. Vorrichtung (1) nach einem der Ansprüche 9 bis 12, **gekennzeichnet durch** eine Anzeigeinheit (17) zur Anzeige der ersten (K1) und/oder der zweiten Kennzahl (K2) und/oder des ersten Referenzwertes (R1) und/oder des zweiten Referenzwertes (K2) für die Materialeigenschaft des Bitumenmaterials (2).

Hierzu 3 Blatt Zeichnungen