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Abstract—Many industrial applications require to determine meas. B
the absolute position of an extended surface without modifying or i range .
touching the target object. This contribution presents a concep M

FoV
for an optical absolute position sensor based on an off the shelf 1M
camera, operating perpendicular to an extended surface over A | -
long strokes, as necessary e.g. for piston actuators. The proged 1Y NEG). Szl
sensor uses a Particle Filter to measure the absolute position \ x
within an once-only learned global feature map with low memory
footprint, which is archived by using an adapted feature detecto Fig. 1: Several absolute position measurement systems for g
The probabilistic approach allows for certain robustness against  piston actuator, showing (A) a magnetic sensor using aesingl
false feature detection and enables fast recovery after power embedded magnédl but is limited in its measurement range
loss without the need for a referencing movement. The absolute hy the dimension of the sensor head, (B) a magnetic sensol
position is detected with sub-millimeter accuracy over a stroke using a specific magnetic scale over the whole stroke and (C)
of 100 mm. an optical sensor using images within its field of viaV.

I. INTRODUCTION

Throughout modern industries piston actuators are widelglass of sensors is based on camera sensors (Fig. 1C), whic|
used for numerous tasks such as pushing objects, folding, @ecords images from the surface. Today's camera sensors ar
as precise tools using feedback for accurate positioning. Icompact, cheap, ubiquitous, and also accurate [4].
order to control such actuators, as also needed for inteateed . .
positioning or trajectory planning, the accurate positionst A simple approach, which allows to transform a camera
be measured over the full range. The challenge is to measuf@lo & an absolute sensor, is to image the surface with a define
the absolute position with moderate precision but over londgfid and correlate the actual image against this data set [5]
strokes and in the ideal case without modifying or touchingThe grid point image with the highest correlation value has
the measurement target. In addition, since measuring frorf€ highest probability of being the actual position. Retén
the abutting face is problematic or even impossible by conOf the grid density can be archived by interpolation between

struction, the surface has to be measured perpendiculds to images and their correlation peak values [6], which leads to
extension as depicted in Fig. 1. lateral resolution ofl pm with camera images taken only every

10 um [6]. Nevertheless, with increasing stroke these methods
An often used scheme is to measure the position of a magzan get intense in memory consumption.
net which is embedded in the piston. While simple detection . o .
of the end position is done by cheap Reed switches, more Thls contribution presents acon_cept fqr an optical abeoll_Jt
accurate position sensing is achieved by laterally resglvi Position sensor based on a Particle Filter (PF), operating
the magnetic field strength. The latter allows to measurerpendicular to an extended surface. The goal is to archive
the absolute position, which is a beneficial for increasedt absolute position accuracy of less than um over a total
system performance after sudden power loss. Neverthelesdroke of 100mm. In addition, memory consumption which
such sensors are restricted by the length of the sensor hedfOWs With the measurable distance is of great concern. The
which is typically on the order of several centimeters onlyoncept is based on principles from vision-based locatinat
(Fig. 1A). To detect multiple positions or measure over aawid [71[8] and extended for the specific sensor geometry, legdin
range, embedding more magnets is a possibility [1] (Fig, 1B)0 & reduced memory footprint and computational complexity
but comes at the price of increased costs and likelihood of "€ sensor estimates the actual absolute position by iinderr
mechanical failure. In addition, this cannot be applied to®n @ once-only learned global feature map. Implementing a
existing systems without changing the actuator too. probabilistic approach allows for certain robustness regai
false feature detection and enables the sensor to recarer fr
Here, an optical solution offers an alternative for continu an unknown state, such as after power loss.
ous position measurement even over long strokes. One p®ssib
sensing solution are laser Doppler vibrometers [2] whiah ar I
extremely accurate and low-cost solutions seem to be irhreac ’
[3]. Nevertheless, the measurement principle of vibronsete Like in vision-based localization, sensor readings are not
only allows incremental operation and cannot correct fégetf taken from the whole image, but from observation of known
errors or drifts after glitches or abrupt target moves. Aeot landmarks stored in a global map [8]. The actual position
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PFs recursively estimate the posteridel(x;) from
bel(x;—1), meaning they construcX, from the random set
X;—1. The algorithm consists of three steps:

1) Prediction step:Generate a state hypothesis for each
individual particlex£”] based on its former stakiji]l
and the control vecton, by sampling from the state
transition probabilityp(x;|u;, x:—1).

2) Update step:Weight each particle by incorporating
the measurement vectey by means of the measure-
ment probabilityw™ = p(z,[x["), m), wherew, is

Fig. 2: Laboratory setup with the target surface mounted ont calledimportance weight

an electric slide with a single degree of freedom, and the 3) Importance sampling:Approximating bel(x;) by
camera with its approximate region of interest on the sexfac drawing NV particles with replacement from the actual
which is illuminated by white LEDs. set based on their weight.

An advantage of PFs over single hypothesis recursive
Bayes filter is their ability to cope with erroneous data a&s0
within the map is eventually estimated by means an PF. In thdons. Each particle evaluates observations only witheesm
following the steps necessary for performing this prohstidl  itself. If an observation is now assigned to the wrong landtmna
localization is given. only the state of the actual particle will be slightly altére
- . This will lead to a decreased importance factor for the etter
Let the true position of the sensor be described by the Statﬁarticle and as a consequence this particle is less likeheto

vectorx, = (x y)*, which refers to the global coordinates at \esampled during the importance sampling step and will "die
time¢. As depicted in Fig. 1 the actuation direction is assumeq, i»

to be along ther axis.

Under theMarkov assumptignstating thatx; is complete I1l. PROPOSEDAPPROACH
and the best predictor of the future, it only depends on its  gimijar 1o a landmark based approach in mobile robotics

previous statex;—, and the actual control inputa;. This 114 5 system is proposed which extracts features of iatere

dependence is described by thate transition probability - om the actual sensor image and uses the above described P
p(X¢|x¢—1,u;). Observationsz, of the sensor are modeled (. |qcalize the sensor.

by themeasurement probability(z, |x;, m), taking the actual

state and a global mam into account. The state hypothesiwithin the prediction steps modeled
o . . .. byx¢ =x;_1 +u+e¢ where the control input is generated

The belief is defined by the conditional probability from the actual frame-to-frame displacement, and the rando

bel(x¢) = p(x:|z:, u,) and reflects the knowledge of the sensorierm ¢ is a random displacement based on the variance over|
about the state of the environment. A recursive Bayes filteg| gisplacements during map generation (see Sec. IV).

estimatesel(x;) from bel(x;—1) by apredictionand arupdate -
step, incorporatingi; andz, respectively. The most prominent ~ To enable absolute position measurement, an once-only

possibility to perform recursive Bayes localization is bgans ~ initial scan of the surface is executed, the coordinates of
of the well-known Kalman filter [9]. selected features are extracted, and a global map is gederat

S o ) During operation, the coordinates of all visible featutes
Like in vision-based localization, the sensor readimgs within the mapm are taken into account within thepdate
emerge from the observation of known landmarks stored in atep Feature coordinates extracted from the live image are
global mapm. The correspondence between observations anget into a 1:1 relation with respect to the global map by a
individual landmarks is typically established by the maxim  nearest neighbor search. For calculation of the normalized
likelihood of individual Ian_dmark desc_riptors, meaningth importance weightui”] the measurement noise is assumed to
landmarks should be as unique as possible to prevent eusneoye Normal distributed. This might not reflect the exact noise
assignment. This data association problem can be cath8irop generated by the feature detector, but is robust enoughp co
for Kalman filter ba_sed localization [10] and is one of the ywith small modeling errors [10]. It also allows to use the
reasons for alternative approaches, such as PFs. Mahalanobis distance [11] as weighting base, which enables
PFs estimate the actual state by a set of random stafdirect incorporation of the covariances extracted dunitzgp

samples. This random set of samples, or particles, is denoté/€neration. Since no rotational movement is expecteand
M with N being the number of Y variances are assumed to be independent. This finally leads

by X; := x,[f”,x?],...,xt - ) . )

particles used. The key idea is to represent the béatigk; ), to Ia Idlagonal rf:ovarlanclg Eatrlxl_\évhlchdfurther reduces the
also called Bayes filter posterior, by a particle densityolhi calculation to the normalized Euclidean distance
has the same distribution as the belief itself. As — oo
the likelihood for the state hypothesis included X goes d(m,zV) =
asymptotically towards the real posterior. A finite pasicl ' 52 52
count leads to a different distribution but in practice this

difference can be neglected as long &sis large enough where zw and zm are the coordinates of the current ob-
(N > 100) [10]. servations with respect to the actual particle, andm, are

N N
(mg — 232 (my — 24))?2

@
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Fig. 3: Global map generated through stitching feature dioates from adjacent images

the matched map coordinates, andand s, are the standard increased computational effort. For good performanceyfea
deviations of these coordinates. This procedure is exddate detection needs to be adapted for the task given.

all particles and the resulting weights are normalized. One of the most prominent detectors due to its robustness

Finally the sensor position is estimated by taking theis Scale Invariant Feature Transform (SIFT) [12], which can
weighted average over all particles before resampling by  be seen agold standardfor many fields, such as visual object
N tracking [13] or object classification [14]. The major asset

[n][n] of SIFT is definitely its ability to detect features which are

Xest = Zwt X @) changing in size and rotation, as often necessary in camerg

n=1 based applications. Dissecting SIFT allows to develop asbb

feature detection.
IV. |IMPLEMENTATION

For the task given with a fixed sensor-to-surface orientatio
A. Laboratory Setup the required calculation steps in order to achieve rotation

For the laboratory setup (Fig. 2), a camera (sensor) i variance can be ignored completely. In addition, theatise
mounted in parallel to a moveable target and focused at itgetWeen sensor and surface can be regarded constant, meanil
surface. at individual features must not be detected at differeates.

Nevertheless, surfaces naturally exhibit features whidferd
As target acts a ruler printed onto a regular white paperin size and shape. Under the assumption that the expected siz
The pattern has been selected to guarantee reliable featuoéthe features is known, as possible for targets with simila
detection. The target surface is mounted on a rigid frame andurface structure, the necessary image scaling steps can b
actuated along its-axis by an electric slide (EGSP-33-500- adjusted and reduced to a minimum.
6P-P, Festo AG, Esslingen, Germany) with a repeatability of
+3 pum. As the desired resolution 180 um, the sensor reading det
of the electric slide is taken as ground truth.

In a final step, SIFT calculates the sub-pixel position of the
ected features. This step can be omitted under the assumy
tion, that quantization errors occur statistically indegent. As
The camera (DMK22BUCO03, The Imaging Source Europelong as enough statistically independent features arbleisit
GmbH, Bremen, Germany) has a gray scale CMOS sensdhe same time, errors are averaged out by the PF itself. Thig
(MT9V024, Micron Technology Inc., Boise, Idaho, USA) with expected quantization noise can be covered by increasing th
a maximum resolution of744x480 pixel at 76frames/s, a standard deviation used in the Gaussian measurement model
square pixel pitch off um, and a dynamic range &fit. The
objective used, limits the field of view to approximately 30
by 19 mm. lllumination is done by diffuse white light using

Summarizing, the object detector stage based on the
Laplace of Gaussian (LoG) operator applied to differentesca
of the image, should be sufficient for robust detection of
Seatures for the task given. For the actual implementatiug o
the coordinates extracted using the LoG detector are used. F
more complex surfaces also intensity or histogram infoionat

The camera is calibrated using the MATLABomputer at the detected coordinates could be matched.

Vision Toolkit (The Mathworks Inc., Natick, Massachusetts,

United States) and a standard checkerboard pattern with @. Global feature map

square size of mm?. To further reduce nonlinear distortions
caused by lens aberrations especially at the boundaridgeof t
image, a region of interest is chosen in the center of the éma
with a size of about a third of the whole camera image.

camera are fixed and adjusted once-only manually. In addlitio
the setup is shielded from stray light by a cardboard box.

The state is estimated within a global feature map, which
is generated once-only for the setup. As in [6] images are
aken only everyl0®" increment of the desired resolution.
This means that the target is scanned with a step size of
1 mm. Second, the scanned images are processed by the featu
B. Feature detection detector to extract the localandy coordinates of each feature

Feature detection for PF based systems is a tradeoff bg-f nterest.

tween feature detection complexity and particles necgssar To generate a global coordinate system, the local coor-
The less distinguishable features are, the more partigies adinates are corrected by a displacement with respect to the
needed to cope with additional erroneous data associatiofirst image. The displacement is measured with a sub-pixel
In order to guarantee a certain uniqueness of features, moeecuracy of1/10pixel by cross-correlation peak detection

complex detectors are used, which comes again at the price between consecutive images, as described in [15]. Third,
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the corrected coordinates are stitched by averaging rieares
neighbors within close proximity. The standard deviation f
each merged coordinate is stored individually. Outliers ar
filtered by removing coordinates with high standard dewiati
The coordinates of the resulting map is shown in Fig. 3, tfear
showing the image of the ruler.

The generated map consists of 2254 coordinates plus thei
according standard deviation stored as single precisiatitfigp
point numbers and consumes only ab@0kB. If the same
images are used for a correlation based detection of the
position, aboutl1 MB of memory are necessary, which is 165
times more. This significant reduction in required memory is -100 ! ! !
one of the specific strengths of the proposed approach. 0 20 40 60 80 100

Position (mm)

Fig. 4: Performance comparison of two PFs using coordinates|
For the following experiments, a step size ®d0um  extracted by SIFT and LoG.
over a stroke ofl00 mm is applied to the electric slide. As
mentioned above, the ground truth is given by the internal
sensor of the electric slide. To prevent dynamic effects, th 10
algorithms are tested in a quasi-static scenario. Notettieat
images for map generation are recorded in an independant sca
one week before the other experiments to ensure sample set
independence.

Error (um)

V. RESULTS

To check whether the assumptions made for the LoG
descriptor hold, two PF implementations using 100 pasdicle
are compared to each other in a first experiment. The first im-
plementation computes observations generated by SIFiliréeat
coordinates, while the second uses the LoG detector. Fig. 4
shows a comparison of the displacement error of the detected
position using SIFT and LoG with respect to the ground 50 ) ) ) )
truth. As expected, both detectors show similar perforraanc 0 1 2 3 4 5
even though LoG is using integer pixel coordinates only and Position (mm)
less computational steps. Therefore, further experimargs . . .
executed using LoG only. The reasons for the positive Oﬁsefl_g_. 5: Position error for the first 50 cycles for an unknown
will be explained later in detail. initial state.

Error (mm)

In a second experiment, the recovery behavior of the LoG
implementation is tested, as would be necessary after a&sudd
power loss. The state is assumed to be unknown and therefore |n a third experiment, repeatability under real world con-

initialized by a uniform distribution along the coordinate. ditions is tested. Therefore the target is moved fromm to

The physical extension of the map is a-priori knowledge and g9 mm (trace) and back tomm (retrace). The position error

is exploited to filter particles based on their location.sTls  shown in Fig. 6 has an RMS value 1.9 um and a standard
done by a plausibility check after each control update, tvhic deviation of14.4 um. It shows a positive position offset and a
assigns particles a zero importance weight if they leave therong correlation between trace and retrace, which isaso
known boundaries. Since such particles are not selected f@jerved in the former experiments. This effect can be expthin
resampling, condensation of the state estimate is improveghy uncertainties of the displacement estimation withinrtie

The target surface is again movedlib0 pm steps starting from generation, used to model the measurement uncertainty fof
the coordinate origin. As shown in Fig. 5, the system is ablesach coordinate (see Sec. IV). This displacement estinsate i
to recover from the unknown state. Within 20 iterations, theafflicted with errors causing a mismatch between groundhtrut
position error reduces drastically and finally reaches blsta and position estimate. Knowledge of this mismatch allows to
and correct measure. The same behavior can be observed dgrrect each measured position, leading to a more accurate
the state variance which can be used as direct measure fafeasurement. To acquire correction values an independen
measurement uncertainty (not shown). Even though the posineasurement cycle is executed. For low variance, the posster
tion is a weighted average over the particle positions aait th js sampled with 500 particles instead of 100 (see Sec. 1§ Th
importance weight, the initial error is half of the maximum position is matched against the ground truth by a polynomial
stroke. This is a result of the plurality of possible soloio fit which acts as look-up table for the measured values of
given by the periodic ticks of the target. As the additionalthe |ast experiment. Fig. 7 shows the corrected positioor err

cyphers of the ruler break this periodicity, false pariciill  \hich stays belows1 um with a significantly reduced RMS
can be identified. From that it can be concluded, that a trulyajue of12.3 um, and a standard deviation t.4 pm.

random surface would decrease the cycles necessary fdea sta
recovery. Summarizing, the experiments show that PFs allow to
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AIC]IIN

used lightweight LoG detector has been successfully coedite
by incorporating the measurement uncertainty into each-coo
dinate stored within the once-only generated global featur
map. The system performed well using only 100 particles and
was also able to recover from an unknown initial state, as
necessary for absolute position sensors. A specific stierfgt
the presented approach is the low memory footprint of the
generated map, which is about 165 times smaller than a purely
correlation based approach using the same data set.

Future work will aim at improved map stitching, operation
on different surfaces without preparation, as well as roinss
against surface changes.

Error (um)

40 60
Position (mm)
Fig. 6: Position error for a run with 100 particles.
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