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Abstract—Many industrial applications require to determine
the absolute position of an extended surface without modifying or
touching the target object. This contribution presents a concept
for an optical absolute position sensor based on an off the shelf
camera, operating perpendicular to an extended surface over
long strokes, as necessary e.g. for piston actuators. The proposed
sensor uses a Particle Filter to measure the absolute position
within an once-only learned global feature map with low memory
footprint, which is archived by using an adapted feature detector.
The probabilistic approach allows for certain robustness against
false feature detection and enables fast recovery after power
loss without the need for a referencing movement. The absolute
position is detected with sub-millimeter accuracy over a stroke
of 100mm.

I. I NTRODUCTION

Throughout modern industries piston actuators are widely
used for numerous tasks such as pushing objects, folding, or
as precise tools using feedback for accurate positioning. In
order to control such actuators, as also needed for intermediate
positioning or trajectory planning, the accurate positionmust
be measured over the full range. The challenge is to measure
the absolute position with moderate precision but over long
strokes and in the ideal case without modifying or touching
the measurement target. In addition, since measuring from
the abutting face is problematic or even impossible by con-
struction, the surface has to be measured perpendicular to its
extension as depicted in Fig. 1.

An often used scheme is to measure the position of a mag-
net which is embedded in the piston. While simple detection
of the end position is done by cheap Reed switches, more
accurate position sensing is achieved by laterally resolving
the magnetic field strength. The latter allows to measure
the absolute position, which is a beneficial for increased
system performance after sudden power loss. Nevertheless,
such sensors are restricted by the length of the sensor head,
which is typically on the order of several centimeters only
(Fig. 1A). To detect multiple positions or measure over a wider
range, embedding more magnets is a possibility [1] (Fig. 1B),
but comes at the price of increased costs and likelihood of
mechanical failure. In addition, this cannot be applied to
existing systems without changing the actuator too.

Here, an optical solution offers an alternative for continu-
ous position measurement even over long strokes. One possible
sensing solution are laser Doppler vibrometers [2] which are
extremely accurate and low-cost solutions seem to be in reach
[3]. Nevertheless, the measurement principle of vibrometers
only allows incremental operation and cannot correct for offset
errors or drifts after glitches or abrupt target moves. Another
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Fig. 1: Several absolute position measurement systems for a
piston actuator, showing (A) a magnetic sensor using a single
embedded magnetM but is limited in its measurement range
by the dimension of the sensor head, (B) a magnetic sensor
using a specific magnetic scale over the whole stroke and (C)
an optical sensor using images within its field of viewFoV.

class of sensors is based on camera sensors (Fig. 1C), which
records images from the surface. Today’s camera sensors are
compact, cheap, ubiquitous, and also accurate [4].

A simple approach, which allows to transform a camera
into a an absolute sensor, is to image the surface with a defined
grid and correlate the actual image against this data set [5].
The grid point image with the highest correlation value has
the highest probability of being the actual position. Relaxation
of the grid density can be archived by interpolation between
images and their correlation peak values [6], which leads toa
lateral resolution of1µm with camera images taken only every
10µm [6]. Nevertheless, with increasing stroke these methods
can get intense in memory consumption.

This contribution presents a concept for an optical absolute
position sensor based on a Particle Filter (PF), operating
perpendicular to an extended surface. The goal is to archive
an absolute position accuracy of less than100µm over a total
stroke of 100mm. In addition, memory consumption which
grows with the measurable distance is of great concern. The
concept is based on principles from vision-based localization
[7][8] and extended for the specific sensor geometry, leading
to a reduced memory footprint and computational complexity.
The sensor estimates the actual absolute position by inferring
on a once-only learned global feature map. Implementing a
probabilistic approach allows for certain robustness against
false feature detection and enables the sensor to recover from
an unknown state, such as after power loss.

II. PROBABILISTIC LOCALIZATION

Like in vision-based localization, sensor readings are not
taken from the whole image, but from observation of known
landmarks stored in a global map [8]. The actual position
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Fig. 2: Laboratory setup with the target surface mounted onto
an electric slide with a single degree of freedom, and the
camera with its approximate region of interest on the surface,
which is illuminated by white LEDs.

within the map is eventually estimated by means an PF. In the
following the steps necessary for performing this probabilistic
localization is given.

Let the true position of the sensor be described by the state
vectorxt = (x y)T , which refers to the global coordinates at
time t. As depicted in Fig. 1 the actuation direction is assumed
to be along thex axis.

Under theMarkov assumption, stating thatxt is complete
and the best predictor of the future, it only depends on its
previous statext−1 and the actual control inputsut. This
dependence is described by thestate transition probability
p(xt|xt−1,ut). Observationszt of the sensor are modeled
by themeasurement probabilityp(zt|xt,m), taking the actual
state and a global mapm into account.

The belief is defined by the conditional probability
bel(xt) = p(xt|zt,ut) and reflects the knowledge of the sensor
about the state of the environment. A recursive Bayes filter
estimatesbel(xt) from bel(xt−1) by apredictionand anupdate
step, incorporatingut andzt, respectively. The most prominent
possibility to perform recursive Bayes localization is by means
of the well-known Kalman filter [9].

Like in vision-based localization, the sensor readingszt
emerge from the observation of known landmarks stored in a
global mapm. The correspondence between observations and
individual landmarks is typically established by the maximum
likelihood of individual landmark descriptors, meaning that
landmarks should be as unique as possible to prevent erroneous
assignment. This data association problem can be catastrophic
for Kalman filter based localization [10] and is one of the
reasons for alternative approaches, such as PFs.

PFs estimate the actual state by a set of random state
samples. This random set of samples, or particles, is denoted
by Xt := x

[1]
t ,x

[2]
t , ...,x

[N ]
t , with N being the number of

particles used. The key idea is to represent the beliefbel(xt),
also called Bayes filter posterior, by a particle density which
has the same distribution as the belief itself. AsN → ∞
the likelihood for the state hypothesis included inXt goes
asymptotically towards the real posterior. A finite particle
count leads to a different distribution but in practice this
difference can be neglected as long asN is large enough
(N ≥ 100) [10].

PFs recursively estimate the posteriorbel(xt) from
bel(xt−1), meaning they constructXt from the random set
Xt−1. The algorithm consists of three steps:

1) Prediction step:Generate a state hypothesis for each
individual particlex[n]

t based on its former statex[n]
t−1

and the control vectorut by sampling from the state
transition probabilityp(xt|ut,xt−1).

2) Update step:Weight each particle by incorporating
the measurement vectorzt by means of the measure-
ment probabilityw[n]

t = p(zt|x[n]
t ,m), wherewt is

called importance weight.
3) Importance sampling:Approximating bel(xt) by

drawingN particles with replacement from the actual
set based on their weight.

An advantage of PFs over single hypothesis recursive
Bayes filter is their ability to cope with erroneous data associa-
tions. Each particle evaluates observations only with respect to
itself. If an observation is now assigned to the wrong landmark,
only the state of the actual particle will be slightly altered.
This will lead to a decreased importance factor for the altered
particle and as a consequence this particle is less likely tobe
resampled during the importance sampling step and will ”die
out”.

III. PROPOSEDAPPROACH

Similar to a landmark based approach in mobile robotics
[10], a system is proposed which extracts features of interest
from the actual sensor image and uses the above described PF
to localize the sensor.

The state hypothesiswithin the prediction stepis modeled
by xt = xt−1 + u+ ǫ, where the control inputu is generated
from the actual frame-to-frame displacement, and the random
term ǫ is a random displacement based on the variance over
all displacements during map generation (see Sec. IV).

To enable absolute position measurement, an once-only
initial scan of the surface is executed, the coordinates of
selected features are extracted, and a global map is generated.
During operation, the coordinates of all visible featuresz
within the mapm are taken into account within theupdate
step. Feature coordinates extracted from the live image are
set into a 1:1 relation with respect to the global map by a
nearest neighbor search. For calculation of the normalized
importance weightw[n]

t the measurement noise is assumed to
be Normal distributed. This might not reflect the exact noise
generated by the feature detector, but is robust enough to cope
with small modeling errors [10]. It also allows to use the
Mahalanobis distance [11] as weighting base, which enables
a direct incorporation of the covariances extracted duringmap
generation. Since no rotational movement is expected,x and
y variances are assumed to be independent. This finally leads
to a diagonal covariance matrix which further reduces the
calculation to the normalized Euclidean distance

d(m, z
[N ]
t ) =

√√√√ (mx − z
[N ]
t,x )2

s2x
+

(my − z
[N ]
t,y )2

s2y
, (1)

where z
[N ]
t,x and z

[N ]
t,y are the coordinates of the current ob-

servations with respect to the actual particle,mx andmy are
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Fig. 3: Global map generated through stitching feature coordinates from adjacent images

the matched map coordinates, andsx andsy are the standard
deviations of these coordinates. This procedure is executed for
all particles and the resulting weights are normalized.

Finally the sensor position is estimated by taking the
weighted average over all particles before resampling by

xest =

N∑

n=1

w
[n]
t x

[n]
t . (2)

IV. I MPLEMENTATION

A. Laboratory Setup

For the laboratory setup (Fig. 2), a camera (sensor) is
mounted in parallel to a moveable target and focused at its
surface.

As target acts a ruler printed onto a regular white paper.
The pattern has been selected to guarantee reliable feature
detection. The target surface is mounted on a rigid frame and
actuated along itsx-axis by an electric slide (EGSP-33-500-
6P-P, Festo AG, Esslingen, Germany) with a repeatability of
±3µm. As the desired resolution is100µm, the sensor reading
of the electric slide is taken as ground truth.

The camera (DMK22BUC03, The Imaging Source Europe
GmbH, Bremen, Germany) has a gray scale CMOS sensor
(MT9V024, Micron Technology Inc., Boise, Idaho, USA) with
a maximum resolution of744×480 pixel at 76 frames/s, a
square pixel pitch of6µm, and a dynamic range of8bit. The
objective used, limits the field of view to approximately 30
by 19mm. Illumination is done by diffuse white light using
white LEDs and a diffuser. Exposure and gain values of the
camera are fixed and adjusted once-only manually. In addition,
the setup is shielded from stray light by a cardboard box.

The camera is calibrated using the MATLABComputer
Vision Toolkit (The Mathworks Inc., Natick, Massachusetts,
United States) and a standard checkerboard pattern with a
square size of1mm2. To further reduce nonlinear distortions
caused by lens aberrations especially at the boundaries of the
image, a region of interest is chosen in the center of the image
with a size of about a third of the whole camera image.

B. Feature detection

Feature detection for PF based systems is a tradeoff be-
tween feature detection complexity and particles necessary.
The less distinguishable features are, the more particles are
needed to cope with additional erroneous data association.
In order to guarantee a certain uniqueness of features, more
complex detectors are used, which comes again at the price of

increased computational effort. For good performance, feature
detection needs to be adapted for the task given.

One of the most prominent detectors due to its robustness
is Scale Invariant Feature Transform (SIFT) [12], which can
be seen asgold standardfor many fields, such as visual object
tracking [13] or object classification [14]. The major asset
of SIFT is definitely its ability to detect features which are
changing in size and rotation, as often necessary in camera
based applications. Dissecting SIFT allows to develop a robust
feature detection.

For the task given with a fixed sensor-to-surface orientation
the required calculation steps in order to achieve rotation
invariance can be ignored completely. In addition, the distance
between sensor and surface can be regarded constant, meaning
that individual features must not be detected at different scales.
Nevertheless, surfaces naturally exhibit features which differ
in size and shape. Under the assumption that the expected size
of the features is known, as possible for targets with similar
surface structure, the necessary image scaling steps can be
adjusted and reduced to a minimum.

In a final step, SIFT calculates the sub-pixel position of the
detected features. This step can be omitted under the assump-
tion, that quantization errors occur statistically independent. As
long as enough statistically independent features are visible at
the same time, errors are averaged out by the PF itself. This
expected quantization noise can be covered by increasing the
standard deviation used in the Gaussian measurement model.

Summarizing, the object detector stage based on the
Laplace of Gaussian (LoG) operator applied to different scales
of the image, should be sufficient for robust detection of
features for the task given. For the actual implementation only
the coordinates extracted using the LoG detector are used. For
more complex surfaces also intensity or histogram information
at the detected coordinates could be matched.

C. Global feature map

The state is estimated within a global feature map, which
is generated once-only for the setup. As in [6] images are
taken only every10th increment of the desired resolution.
This means that the target is scanned with a step size of
1mm. Second, the scanned images are processed by the feature
detector to extract the localx andy coordinates of each feature
of interest.

To generate a global coordinate system, the local coor-
dinates are corrected by a displacement with respect to the
first image. The displacement is measured with a sub-pixel
accuracy of1/10 pixel by cross-correlation peak detection
between consecutive images, as described in [15]. Third,
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the corrected coordinates are stitched by averaging nearest
neighbors within close proximity. The standard deviation for
each merged coordinate is stored individually. Outliers are
filtered by removing coordinates with high standard deviation.
The coordinates of the resulting map is shown in Fig. 3, clearly
showing the image of the ruler.

The generated map consists of 2254 coordinates plus their
according standard deviation stored as single precision floating
point numbers and consumes only about70 kB. If the same
images are used for a correlation based detection of the
position, about11MB of memory are necessary, which is 165
times more. This significant reduction in required memory is
one of the specific strengths of the proposed approach.

V. RESULTS

For the following experiments, a step size of100µm
over a stroke of100mm is applied to the electric slide. As
mentioned above, the ground truth is given by the internal
sensor of the electric slide. To prevent dynamic effects, the
algorithms are tested in a quasi-static scenario. Note thatthe
images for map generation are recorded in an independent scan
one week before the other experiments to ensure sample set
independence.

To check whether the assumptions made for the LoG
descriptor hold, two PF implementations using 100 particles
are compared to each other in a first experiment. The first im-
plementation computes observations generated by SIFT feature
coordinates, while the second uses the LoG detector. Fig. 4
shows a comparison of the displacement error of the detected
position using SIFT and LoG with respect to the ground
truth. As expected, both detectors show similar performance,
even though LoG is using integer pixel coordinates only and
less computational steps. Therefore, further experimentsare
executed using LoG only. The reasons for the positive offset
will be explained later in detail.

In a second experiment, the recovery behavior of the LoG
implementation is tested, as would be necessary after a sudden
power loss. The state is assumed to be unknown and therefore
initialized by a uniform distribution along thex coordinate.
The physical extension of the map is a-priori knowledge and
is exploited to filter particles based on their location. This is
done by a plausibility check after each control update, which
assigns particles a zero importance weight if they leave the
known boundaries. Since such particles are not selected for
resampling, condensation of the state estimate is improved.
The target surface is again moved in100µm steps starting from
the coordinate origin. As shown in Fig. 5, the system is able
to recover from the unknown state. Within 20 iterations, the
position error reduces drastically and finally reaches a stable
and correct measure. The same behavior can be observed in
the state variance which can be used as direct measure for
measurement uncertainty (not shown). Even though the posi-
tion is a weighted average over the particle positions and their
importance weight, the initial error is half of the maximum
stroke. This is a result of the plurality of possible solutions
given by the periodic ticks of the target. As the additional
cyphers of the ruler break this periodicity, false particles still
can be identified. From that it can be concluded, that a truly
random surface would decrease the cycles necessary for a state
recovery.
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Fig. 4: Performance comparison of two PFs using coordinates
extracted by SIFT and LoG.
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Fig. 5: Position error for the first 50 cycles for an unknown
initial state.

In a third experiment, repeatability under real world con-
ditions is tested. Therefore the target is moved from0mm to
100mm (trace) and back to0mm (retrace). The position error
shown in Fig. 6 has an RMS value of34.9µm and a standard
deviation of14.4µm. It shows a positive position offset and a
strong correlation between trace and retrace, which is alsoob-
served in the former experiments. This effect can be explained
by uncertainties of the displacement estimation within themap
generation, used to model the measurement uncertainty for
each coordinate (see Sec. IV). This displacement estimate is
afflicted with errors causing a mismatch between ground truth
and position estimate. Knowledge of this mismatch allows to
correct each measured position, leading to a more accurate
measurement. To acquire correction values an independent
measurement cycle is executed. For low variance, the posterior
is sampled with 500 particles instead of 100 (see Sec. II). The
position is matched against the ground truth by a polynomial
fit, which acts as look-up table for the measured values of
the last experiment. Fig. 7 shows the corrected position error
which stays below51µm with a significantly reduced RMS
value of12.3µm, and a standard deviation of12.4µm.

Summarizing, the experiments show that PFs allow to

Post-print version (generated on 17.12.2021)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/
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Fig. 6: Position error for a run with 100 particles.
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Fig. 7: Position error after compensating for map mismatch.

implement a vision-based absolute position sensor with a sig-
nificantly reduced memory footprint. They further demonstrate
that the proposed approach is able to track the in-plane motion
of planar surfaces with a resolution better than100µm over a
measurement range of100mm.

VI. CONCLUSION

This contribution presents a concept of an optical absolute
position sensor that is based on camera in combination with
Particle Filtering, and is able to track the in-plane motion
of planar surfaces with a resolution better than100µm over
a measurement range of100mm. Given the fact, that the
initial scan has been performed with1mm steps, the resolution
matches the expected values and is high enough for the targeted
application. In addition, the measurement range is only limited
by the target and can be easily extended without modification
of the algorithms.

Instead of correlating against an image database, the pro-
posed system uses observations of individual features, which
are matched against a global feature map by means of prob-
abilistic localization. It is shown that the careful adaption
of the feature detection steps to the application leads to
comparable results as with more complex detectors, such as
SIFT, even when using coordinates only. Uncertainties of the

used lightweight LoG detector has been successfully countered
by incorporating the measurement uncertainty into each coor-
dinate stored within the once-only generated global feature
map. The system performed well using only 100 particles and
was also able to recover from an unknown initial state, as
necessary for absolute position sensors. A specific strength of
the presented approach is the low memory footprint of the
generated map, which is about 165 times smaller than a purely
correlation based approach using the same data set.

Future work will aim at improved map stitching, operation
on different surfaces without preparation, as well as robustness
against surface changes.
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