
ar
X

iv
:1

50
3.

08
55

1v
1

 [
cs

.L
O

]
 3

0
M

ar
 2

01
5

Analysis of Clause set Schema Aided by

Automated Theorem Proving: A Case Study

[Extended Paper]

David Cerna1 and Alexander Leitsch2

1 Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

dcerna@risc.uni-linz.ac.at
2 Logic and Theory Group

Technical University of Vienna
leitsch@logic.at

Abstract. The schematic CERES method [?] is a recently developed
method of cut elimination for proof schemata, that is a sequence of proofs
with a recursive construction. Proof schemata can be thought of as a way
to circumvent adding an induction rule to the LK-calculus. In this work,
we formalize a schematic version of the infinitary pigeonhole principle,
which we call the Non-injectivity Assertion schema (NiA-schema), in
the LKS-calculus [?], and analyse the clause set schema extracted from
the NiA-schema using some of the structure provided by the schematic
CERES method. To the best of our knowledge, this is the first appli-
cation of the constructs built for proof analysis of proof schemata to
a mathematical argument since its publication. We discuss the role of
Automated Theorem Proving (ATP) in schematic proof analysis, as well
as the shortcomings of the schematic CERES method concerning the
formalization of the NiA-schema, namely, the expressive power of the
schematic resolution calculus. We conclude with a discussion concerning
the usage of ATP in schematic proof analysis.

1 Introduction

In Gentzen’s Hauptsatz [?], a sequent calculus for first order logic was introduced,
namely, the LK-calculus. He then went on to show that the cut inference rule
is redundant and in doing so, was able to show consistency of the calculus. The
method he developed for eliminating cuts from LK-derivations works by induc-
tively reducing the cuts in a given LK-derivation to cuts which either have a
reduced formula complexity and/or reduced rank [?]. This method of cut elimina-
tion is known as reductive cut elimination. A useful result of cut elimination for
the LK-calculus is that cut-free LK-derivations have the subformula property,
i.e. every formula occurring in the derivation is a subformula of some formula in
the end sequent. This property allows for the construction of Herbrand sequents
and other objects which are essential in proof analysis.

http://arxiv.org/abs/1503.08551v1
mailto:dcerna@risc.uni-linz.ac.at
mailto: leitsch@logic.at

However, eliminating cuts from LK-derivations does have its disadvantages,
mainly concerning the number of computations steps needed and the size of
the final cut-free proof. As pointed out by George Boolos in “Don’t eliminate
cut” [?], sometimes the elimination of cut inference rules from an LK-proof can
result in an non-elementary explosion in the size of the proof. Though using cut
elimination, it is also possible to gain mathematical knowledge concerning the
connection between different proofs of the same theorem. For example, Jean-Yves
Girard’s application of reductive cut elimination to a variation of Fürstenberg-
Weiss’ proof of Van der Waerden’s theorem [?] resulted in the analytic proof
of Van der Waerden’s theorem as found by Van der Waerden himself. From
the work of Girard, it is apparent that interesting results can be derived from
eliminating cuts in “mathematical” proofs.

A more recently developed method of cut elimination, the CERES method
[?], provides the theoretic framework to directly study the cut structure of LK-
derivations, and in the process reduces the computational complexity of deriving
a cut-free proof. The cut structure is transformed into a clause set allowing for
clausal analysis of the resulting clause form. Methods of reducing clause set
complexity, such as subsumption and tautology elimination can be applied to
the characteristic clause set to reduce its complexity. It was shown by Baaz &
Leitsch in “Methods of cut Elimination” [?] that this method of cut elimination
has a non-elementary speed up over reductive cut elimination.

In the same spirit of Girard’s work, Baaz et al. [?] applied the CERES
method to a formalized mathematical proof. At the time of applying the method
to Fürstenberg’s proof of the infinitude of primes, the CERES method had been
generalized to higher-order logic [?] and an attempt was made to apply this
generalized method to to the formal version of Fürstenberg’s proof. However,
the tremendous complexity of the higher-order clause set 3 suggested the use of
an alternative method. Instead of formalizing the proof as a single higher-order
proof, formalize it as a sequence of first-order proofs enumerated by a single nu-
meric parameter, of which indexes the number of primes assumed to exists. The
resulting schema of clause sets was refuted by a resolution schema resulting in
Euclid’s argument for prime construction. The resulting specification was pro-
duced on the mathematical meta-level. At that time no object-level construction
of the refutation schema existed.

A mathematical formalizations of Fürstenberg’s proof requires induction. In
the higher-order formalization, induction is easily formalized as part of the for-
mula language. However in first-order, an induction rule needs to be added to the
LK-calculus. As it was shown in [?], Reductive cut elimination does not work
in the presence of an induction rule in the LK-calculus. Also, other systems [?]
which provided cut elimination in the presence of an induction rule do so at the
loss of some essential properties, for example the subformula property.

3 The individual clauses of the clause set were very large, some containing over 12
literals, and contained both higher order and first order free variables. Interactive
theorem provers could not handle these clause sets, nor could a human adequately
parse the clause set.

2

In “Cut-Elimination and Proof Schemata” [?], a version of the LK-calculus
was introduced (LKS-calculus) allowing for the formalization of sequences of
proofs as a single object level construction, i.e. the proof schema, as well as a
framework for performing cut elimination on proof schemata. Cut elimination
performed within the framework of [?] results in cut-free proof schemata with
the subformula property. Essentially, the concepts found in [?] were generalized
to handle recursively defined proofs. It was shown in [?] that schematic charac-
teristic clause sets are always unsatisfiable, but it is not known whether a given
schematic characteristic clause set will have a refutation expressible within the
language provided for the resolution refutation schema. This gap distinguishes
the schematic version of the CERES method from the previously developed ver-
sions.

In this work, we continue the tradition outlined above of providing a case
study of an application of a “new” method of cut elimination to a mathematical
proof. Though our example is relatively less grand than the previously chosen
proof it gives an example of a particularly hard single parameter induction. We
chose the tape proof, found in [?,?,?], and generalize it by considering a codomain
of size n rather than of size two. A well known variation of our generalization
has been heavily studied in literature under the guise of the Pigeonhole Principle
(PHP). Our generalization will be referred to as the Non-injectivity Assertion
(NiA). Though such a proof seems straight forward to formalize within the LKS-
calculus, without a change to the construction used in [?], there was a forced
eigenvariable violation.

After formalizing the NiA as a proof schema (the NiA-schema) we apply the
schematic CERES method. In our attempt to construct an ACNF schema [?]
we heavily use Automated Theorem Provers (ATP), specifically SPASS [?], to
develop the understanding needed for construction of such a schema. SPASS was
used over other theorem provers mainly due to familiarity. How theorem provers
were used in our attempt to construct an ACNF schema will be an emphasis of
this work. As an end result, we were able to “mathematically” express an ACNF
schema of the NiA-schema to a great enough extent to produce instances of the
ACNF in the LK-calculus; in a similar way as in the Fürstenberg’s proof analy-
sis [?]. Though, in our case we have a refutation for every instance (only the first
few where found in [?]) . It remains an open problem whether a more expressive
language is needed to express the ACNF of the NiA-schema in the framework
of [?] . We conjecture that ATP will play an important role in resolving this
question as well as in future proof analysis using the schematic CERES method.

The paper is structured as follows: In Sec. 2, we introduce the LKS-calculus
and the essential concepts from [?] concerning the schematic clause set analy-
sis. In Sec. 3 & 4, we formalize the NiA-schema in the LKS-calculus. In Sec.
5, we extract the characteristic clause set from the NiA-schema and perform
normalization and tautology elimination. In Sec. 6, we analysis the extracted
characteristic clause set with the aid of SPASS. In Sec. 7, we provide a (“math-
ematically defined”) ACNF schema of the extracted characteristic clause set. In
Sec. 8, we conclude the paper and discuss future work.

3

2 The LKS-calculus and Clause set Schema

In this section we introduce the LKS-calculus which will be used to formalize
the NiA-schema, and the parts of the schematic CERES method concerned with
characteristic clause set extraction. We refrain from introducing the resolution
refutation calculus provided in [?] because it does not particularly concern the
work of this paper. Though we provide a resolution refutation of the characteris-
tic clause set of the NiA-schema, there is a good reason to believe the constructed
resolution refutation is outside the expressive power of the current schematic res-
olution refutation calculus. More specifically, the provided resolution refutation
grows as a function of the free parameter n with respect to a constant change
in depth, i.e. grows wider faster than it grows deep. For more detail concerning
the schematic CERES method, see [?].

2.1 Schematic language, proofs, and the LKS-calculus

The LKS-calculus is based on the LK-calculus constructed by Gentzen [?].
When one grounds the parameter indexing an LKS-derivation, the result is
an LK-derivation [?]. The term language used is extended to accommodate
the schematic constructs of LKS-derivations. We work in a two-sorted setting
containing a schematic sort ω and an individual sort ι. The schematic sort only
contains numerals constructed from the constant 0 : ω, a monadic function
s(·) : ω → ω and a single free variable, the free parameter indexing LKS-
derivations, of which we represent using n.

The individual sort is constructed in a similar fashion to the standard first
order language [?] with the addition of schematic functions. Thus, ι contains
countably many constant symbols, countably many constant function symbols,
and defined function symbols. The constant function symbols are part of the
standard first order language and the defined function symbols are used for
schematic terms. Though, defined function symbols can also unroll to numerals
and thus can be of type ωn → ω. The ι sort also has free and bound variables
and an additional concept, extra variables [?]. These are variables introduced
during the unrolling of defined function (predicate) symbols. We do not use
extra variables in the formalization of the NiA-schema, but they are essential for
the refutation of the characteristic clause set. Also important are the schematic
variable symbols which are variables of type ω → ι. Essentially second order
variables, though, when evaluated with a ground term from the ω sort we treat
them as first order variables. Our terms are built inductively using constants
and variables as a base.

Formulae are constructed inductively using countably many constant predi-
cate symbols (atomic formulae), logical operators ∨,∧,→,¬,∀, and ∃, as well as
defined predicate symbols which are used to construct schematic formulae. In this
work iterated

∨

is the only defined predicate symbol used, and of which has the

4

following term algebra:

ε∨ =

s(y)
∨

i=0

P (i) ≡

s(y)
∨

i=0

P (i)⇒

y
∨

i=0

P (i) ∨ P (s(y))

0
∨

i=0

P (i)⇒ P (0)

(1)

From the above described term and formulae language we can provide the in-
ference rules of the LKE-calculus, essentially the LK-calculus [?] plus an equa-
tional theory ε (in our case ε∨ Eq. 1). This theory, concerning our particular
usage, is a primitive recursive term algebra describing the structure of the de-
fined function(predicate) symbols. The LKE-calculus is the base calculus for the
LKS-calculus which also includes proof links which will be described shortly.

Definition 1 (ε-inference rule).

S [t]
(ε)

S [t′]

In the ε inference rule, the term t in the sequent S is replaced by a term t′ such
that, given the equational theory ε, ε |= t = t′.

To extend the LKE-calculus with proof links we need a countably infinite set
of proof symbols denoted by ϕ, ψ, ϕi, ψj Let S(x̄) by a sequent with schematic
variables x̄, then by the sequent S(t̄) we use to denote the sequent S(x̄) where
each of the variables in x̄ is replaced by the terms in the vector t̄ respectively,
assuming that they have the appropriate type. Let ϕ be a proof symbol and S(x̄)

a sequent, then the expression
(ϕ(t̄))

S(t̄)
is called a proof link . For a variable n : ω,

proof links such that the only arithmetic variable is n are called n-proof links .

Definition 2 (LKE-calculus [?]). The sequent calculus LKS consists of the
rules of LKE, where proof links may appear at the leaves of a proof.

Definition 3 (Proof schemata [?]). Let ψ be a proof symbol and S(n, x̄) be
a sequent such that n : ω. Then a proof schema pair for ψ is a pair of LKS-
proofs (π, ν(k)) with end-sequents S(0, x̄) and S(k + 1, x̄) respectively such that
π may not contain proof links and ν(k) may contain only proof links of the form
(ψ(k, ā))

S(k, ā)
and we say that it is a proof link to ψ. We call S(n, x̄) the end sequent

of ψ and assume an identification between the formula occurrences in the end
sequents of π and ν(k) so that we can speak of occurrences in the end sequent
of ψ. Finally a proof schema Ψ is a tuple of proof schema pairs for ψ1, · · ·ψα
written as 〈ψ1, · · ·ψα〉, such that the LKS-proofs for ψβ may also contain n-
proof links to ψγ for 1 ≤ β < γ ≤ α. We also say that the end sequent of ψ1 is
a the end sequent of Ψ .

We will not dive further into the structure of proof schemata and instead
refer the reader to [?]. We now introduce the characteristic clause set schema.

5

2.2 Characteristic Clause set Schema

The construction of the characteristic clause set as described for the CERES
method [?] required inductively following the formula occurrences of cut for-
mula ancestors up the proof tree to the leaves. However, in the case of proof
schemata, the concept of ancestors and formula occurrence is more complex. A
formula occurrence might be an ancestor of a cut formula in one recursive call
and in another it might not. Additional machinery is necessary to extract the
characteristic clause term from proof schemata. A set Ω of formula occurrences
from the end-sequent of an LKS-proof π is called a configuration for π. A con-
figuration Ω for π is called relevant w.r.t. a proof schema Ψ if π is a proof in
Ψ and there is a γ ∈ N such that π induces a subproof π of Ψ ↓ γ such that
the occurrences in Ω correspond to cut-ancestors below π [?]. Note that the
set of relevant cut-configurations can be computed given a proof schema Ψ . To
represent a proof symbol ϕ and configuration Ω pairing in a clause set we assign
them a clause set symbol clϕ,Ω(a, x̄), where a is an arithmetic term.

Definition 4 (Characteristic clause term [?]). Let π be an LKS-proof and
Ω a configuration. In the following, by ΓΩ , ∆Ω and ΓC , ∆C we will denote
multisets of formulas of Ω- and cut-ancestors respectively. Let r be an inference
in π. We define the clause-set term Θπ,Ωr inductively:

– if r is an axiom of the form ΓΩ, ΓC , Γ ⊢ ∆Ω, ∆C , ∆, then
Θπ,Ωr = {ΓΩ, ΓC ⊢ ∆Ω, ∆C}

– if r is a proof link of the form
ψ(a, ū)

ΓΩ, ΓC , Γ ⊢ ∆Ω, ∆C , ∆
then define Ω′ as the

set of formula occurrences from ΓΩ , ΓC ⊢ ∆Ω , ∆C and Θπ,Ωr = clψ,Ω(a, ū)

– if r is a unary rule with immediate predecessor r′ , then Θπ,Ωr = Θ
π,Ω
r′

– if r is a binary rule with immediate predecessors r1, r2, then
• if the auxiliary formulas of r are Ω- or cut-ancestors, then Θπ,Ωr =
Θπ,Ωr1 ⊕Θπ,Ωr2
• otherwise, Θπ,Ωr = Θπ,Ωr1 ⊗Θπ,Ωr2

Finally, define Θπ,Ω = Θπ,Ωr0 where r0 is the last inference in π and Θπ = Θπ,∅.
We call Θπ the characteristic term of π.

Clause terms evaluate to sets of clauses by |Θ| = Θ for clause sets Θ, |Θ1⊕Θ2| =
|Θ1| ∪ |Θ2, |Θ1 ⊗Θ2| = {C ◦D | C ∈ |Θ1|, D ∈ |Θ2|}.

The characteristic clause term is extracted for each proof symbol in a given
proof schema Ψ , and together they make the characteristic clause set schema for
Ψ , CL(Ψ).

3 “Mathematical” proof of the NiA Statement

In this section we provide a mathematical proof of the NiA statement (Thm.
1). The proof is very close in structure to the formal proof written in the LKS-
calculus, which can be found in Sec. 4. We skip the basic structure of the proof

6

and outline the structure emphasising the cuts. We will refer to the interval
{0, · · · , n− 1} as Nn. Let rrf (n) be the following sentence, for n ≥ 2: There
exists p, q ∈ N such that p < q and f(p) = f(q), or for all x ∈ N there exists a
y ∈ N such that x ≤ y and f(y) ∈ Nn−1.

Lemma 1. Let f : N → Nn, where n ∈ N, be total, then rrf (n) or there exists
p, q ∈ N such that p < q and f(p) = f(q).

Proof. We can split the codomain into Nn−1 and {n}, or the codomain is {0}.

Lemma 2. Let f be a function as defined in Lem. 1 and 2 < m ≤ n, then if
rrf (m) holds so does rrf (m− 1).

Proof. Apply the steps of Lem. 1 to the right side of the or in rrf (m).

Theorem 1. Let f be a function as defined in Lem. 1 , then there exists i, j ∈ N

such that i < j and f(i) = f(j).

Proof. Chain together the implications of Lem. 2 and derive rrf (2), the rest is
trivial by Lem. 1.

This proof makes clear that the number of cuts needed to prove the statement
is parametrized by the size of the codomain of the function f . The formal proof
of the next section outlines more of the basic assumptions being that they are
needed for constructing the characteristic clause set.

4 NiA formalized in the LKS-calculus

In this section we provide a formalization of the NiA-schema whose proof schema
representation is 〈(ω(0), ω(n+ 1)), (ψ(0), ψ(n+ 1))〉. Cut-ancestors will be marked
with a ∗ and Ω-ancestors with ∗∗. Numerals (terms of the ω sort) will be marked
with ·. We will make the following abbreviations: EQf ≡ ∃p∃q(p < q ∧ f(p) =

f(q)), I(n) ≡ ∀x∃y(x ≤ y∧
∨n
i=0 f(y) = i), Is(n) ≡ ∀x∃y(x ≤ y∧ f(y) = n) and

AXeq(n) ≡ f(β) = n∗, f(α) = n∗ ⊢ f(β) = f(α) (the parts of AXeq(n) marked
as cut ancestors are always cut ancestors in the NiA-schema).

⊢ α ≤ α∗ f(α) = 0 ⊢ f(α) = 0∗

∧ : r

.

.

.

∀xf(x) = 0 ⊢ I(0)∗

s(β) ≤ α∗ ⊢ β < α AXeq(0)
∧ : r

.

.

.

I(0)∗ ⊢ EQf
cut

∀xf(x) = 0 ⊢ EQf

Fig. 1. Proof symbol ω(0)

7

ϕ(n + 1)
.

I(n + 1)∗ ⊢ EQf

⊢ α ≤ α∗ ∨n+1
i=0

f(α) = i ⊢
∨n+1
i=0

f(α) = i∗

∧ : r

.

.

.

∀x
∨n+1

i=0
f(x) = i ⊢ I(n + 1)∗

cut

∀x
∨n+1

i=0
f(x) = i ⊢ EQf

Fig. 2. Proof symbol ω(n+ 1)

s(β) ≤ α∗ ⊢ β < α AXeq(0)
∧ : r

.

.

.

Is(0)
∗ ⊢ EQf

Fig. 3. Proof symbol ψ(0)

max(α, β) ≤ γ∗∗ ⊢
α ≤ γ∗

f(γ) = 0∗∗ ⊢

f(γ) = 0∗,

.

.

.

f(γ) = n + 1∗∗ ⊢
f(γ) = n + 1∗,

.

.

.
∧ : r

.

.

.

max(α, β) ≤ γ∗∗ ⊢
β ≤ γ∗

∧ : r
I(n + 1)∗∗ ⊢ I(n)∗, Is(n + 1)∗

.

.

.

.

.

.

I(n + 1)∗∗ ⊢ I(n)∗, Is(n + 1)∗

ϕ(n)
.

I(n)∗ ⊢ EQf

cut
I(n + 1)∗∗ ⊢ EQf , Is(n + 1)∗

.

.

.

.

.

.

I(n + 1)∗∗ ⊢ EQf , Is(n + 1)∗

s(β) ≤ α∗ ⊢ β < α AXeq(n + 1)
∧ : r

.

.

.

Is(n + 1)∗ ⊢ EQf
cut

I(n + 1)∗∗ ⊢ EQf , EQf
c : r

I(n + 1)∗∗ ⊢ EQf

Fig. 4. Proof symbol ψ(n+ 1)

8

5 Characteristic Clause set Schema Extraction

The outline of the formal proof provided above highlights the inference rules
which directly influence the characteristic clause set schema of the NiA-schema.
Also to note are the configurations of the NiA-schema which are relevant, namely,
the empty configuration ∅ and a schema of configurations Ω(n) ≡ ∀x∃y(x ≤

y ∧
∨n
i=0 f(y) = i). Thus, we have the following:

CLNiA(0) ≡ Θ
ω,∅(0) ≡

{(

clψ,Ω(0)(0)⊕ ⊢ α ≤ α
)

⊕ ⊢ f(α) = 0
}

(2a)

clψ,Ω(0)(0) ≡ Θψ,Ω(0)(0) ≡
{

s(β) ≤ α ⊢ ⊗f(α) = 0, f(β) = 0 ⊢
}

(2b)

CLNiA(n+1)≡Θω,∅(n+1)≡
{(

clψ,Ω(n+1)(n+1)⊕⊢α≤α
)

⊕⊢
∨n+1

i=0
f(α)=i

}

(2c)

clψ,Ω(n+1)(n+1)≡Θψ,Ω(n+1)(n+1)≡{(clψ,Ω(n)(n)⊕(s(β)≤α⊢⊗f(α)=n+1,f(β)=n+1⊢))
⊕(max(α,β)≤γ⊢α≤γ)⊕(max(α,β)≤γ⊢β≤γ)}

(2d)
In the characteristic clause set schema CLNiA(n+ 1) presented in Eq.2 tau-

tologies are already eliminated. Evaluation of CLNiA(n+ 1) yields the following
clause set C(n):

(C1) ⊢ α ≤ α, (C2) max(α, β) ≤ γ ⊢ α ≤ γ, (C3) max(α, β) ≤ γ ⊢ β ≤ γ
(C40) f(β) = 0, f(α) = 0, s(β) ≤ α ⊢
.

.

(C4n) f(β) = n, f(α) = n, s(β) ≤ α ⊢
(C5) ⊢ f(α) = 0, · · · , f(α) = n

6 Clausal Analysis Aided by ATP

The result of characteristic clause set extraction for proof schemata is a se-
quence of clause sets representing the cut structure (See Sec. 5), rather than a
single clause set representing the cut structure. Thus, unlike applications of the
first-order CERES method to formal proofs [?], where a theorem prover is used
exclusively to find a refutation, we can only rely on theorem provers for sug-
gestions. Essentially, we need the theorem provers to help with the construction
of two elements of the schematic resolution refutation: the induction invariants
and the term language.

For this clause set analysis, we exclusively used SPASS [?] in the “out of the
box mode”. We did not see a point to working with the configurations of SPASS
being that for sufficiently small instances of C(n) it found a refutation, and
our goal was not to find an elegant proof using the theorem prover, but rather
a refutation with the aid of the theorem prover; the “out of the box mode”
was enough for this goal4. Though as a side note, refutations found by SPASS

4 Also, using “out of the box mode” allows for ease of reproducibility of our results
when using the same version of SPASS.

9

were not the smallest, the resolution refutation that SPASS gave as output for
C(4)5 used (C5) in the refutation tree 1806 times. The resolution refutation we
provide used (C5) only 65 times. Though, it is not that our final refutation is
wildly different, SPASS ended up deriving clauses using derived clauses which
could easily be derived from the initial clause set.

An essential feature we were looking for in the refutations found by SPASS
were sequences of clauses which mimic the stepcase construction of the induction
axiom, i.e. ∀x(ϕ(x) → ϕ(x + 1)). An example of such a sequence from the
refutation of C(4), of which will be the basis of Thm. 2, is as follows:

1[0 : Inp] ‖‖ ⇒ eq(f(U), 3) , eq(f(U), 2) , eq(f(U), 1) , eq(f(U), 0)∗
2795[0 :MRR : 1.3, 2764.0] ‖‖ ⇒ eq(f(U), 3) , eq(f(U), 2) , eq(f(U), 1)
3015[0 :MRR : 2795.2, 2984.0] ‖‖ ⇒ eq(f(U), 3) , eq(f(U), 2)
3096[0 :MRR : 3015.1, 3065.0] ‖‖ ⇒ eq(f(U), 3)

Fig. 5. Recursive sequence found in the refutation of C(4).

Essentially, if we where to interpret the initial clause as defining a function
(a function whose domain is the natural numbers and whose codomain is the
set [0, n]) we see that at first we assume the function has a codomain of size n,
and than we derive that it cannot have a codomain of size n, but rather of size
n − 1, and so on, until we derive that its codomain is empty, contradicting the
original assumption, that is that the codomain is non-empty (i.e. clause (C5)).
This pattern can be found in other instances of the refutation of C(n).

This sequences seems to be an essential part, even the only part, needed to
define a recursive refutation of C(n), though if and only if, C(n) is refutable with
a total induction, of which such a refutation has not been found and is unlikely
to exists. Something which is not completely apparent in SPASS refutation for
C(n), n < 4, is the gap (in numbering) between clause 1 and clause 2795 in
Fig. 5. To derive clause 2795 for clause 1 in one step we need to first derive the
following clause:

2764[0 : MRR : 2714.1, 2749.1] ‖‖ eq(f(U), 0)∗ ⇒

of which deriving is almost as difficult as deriving the sequence of Fig. 5. Essen-
tially to derive clause 2764, the SPASS refutation eludes to the need of an inner
recursion bounded by the outer recursion. Essentially, we start from a clause of
the following form:
2272[0 : Res : 955.3, 159.1] ‖‖ eq(f(U), 0)∗ , eq(f(V), 1)∗ , eq(f(W), 2)∗ ,
eq(f(X), 3)∗ ⇒
stating that the codomain is empty and derive that this implies some element
k is not in the codomain. Clause 2272 is essential for Lem. 7 and is one of the
clauses of Lem. 4.

5 See Sec. 9.6

10

Up to this point we have an idea of the overall structure of the refutation,
but so far, we have not discussed the term structure and unifiers used by SPASS.
Essentially, how was the recursive max term construction of Def. 5 found? Look-
ing at the following two derived clauses from C(3) and C(4) we see that the
nesting of the max term grows with respect to the free parameter:
20[0 : Res : 15.0, 4.0] ‖‖ ⇒ le(U,max(max(max(V, U),W), X))
54[0 : Res : 19.0, 4.0] ‖‖ ⇒ le(U,max(max(max(max(V, U),W), X), Y))
However, in clause 20 and 54 the associativity is the opposite of Def. 5. We found
that the refutation of Sec. 7 is easier when we switch the association of the max
term construction. Also, both clause 20 and 54 do not contain successor function
(s(·)) encapsulation of the variables while Def. 5 does. The s(·) terms were added
because of the clauses C4i. The literal s(α) ≤ β enforces the addition of an s(·)
term anyway during the unification. This can be see in Lem. 3 and Cor. 1, 2, &
3. However, we have not been able to prove the necessity of these max function
constructions, nor find a refutation without them.

The result of all these observations was Lem. 4. After proving that the Lem.
4 clause set is indeed derivable from C(n) using resolution, we constructed it
to see what the SPASS refutation looked like for C(4). We abbreviate the term
max(max(max(s(x0), s(x1)), s(x2)), s(x3)) by m(x̄4):

1 : eq(f(m(x̄4)), 2) ∨ eq(f(m(x̄4)), 1) ∨ eq(f(m(x̄4)), 0)
2 : ¬eq(f(x2), 2) ∨ eq(f(m(x̄4)), 1) ∨ eq(f(m(x̄4)), 0)
3 : ¬eq(f(x1), 1) ∨ eq(f(m(x̄4)), 2) ∨ eq(f(m(x̄4)), 0)
4 : ¬eq(f(x0), 0) ∨ eq(f(m(x̄4)), 2) ∨ eq(f(m(x̄4)), 1)
5 : ¬eq(f(x2), 2) ∨ ¬eq(f(x1), 1) ∨ eq(f(m(x̄4)), 0)
6 : ¬eq(f(x2), 2) ∨ ¬eq(f(x0), 0) ∨ eq(f(m(x̄4)), 1)
7 : ¬eq(f(x1), 1) ∨ ¬eq(f(x0), 0) ∨ eq(f(m(x̄4)), 2)
8 : ¬eq(f(x1), 1) ∨ ¬eq(f(x0), 0) ∨ ¬eq(f(x2), 2)

Fig. 6. Clause set of Lem. 4 for C(3).

Feeding this derived clause set to SPASS for several instances aided the
construction of the well ordering of Def. 9 and the structure of the resolution
refutation found in Lem. 7.

7 Refutation of the NiA-schema’s Characteristic Clause
Set Schema

In this section we provide a refutation of C(n) for every value of n. We prove this
result by first deriving a set of clauses which we will consider the least elements
of a well ordering. Then we show how resolution can be applied to this least
elements to derive clauses of the form f(α) = i ⊢ for 0 ≤ i ≤ n. The last step is
simply to take the clause (C5) from the clause set C(n) and resolve it with each
of the f(α) = i ⊢ clauses.

11

Definition 5. We define the primitive recursive term m(k, x, t), where x is a
schematic variable and t a term, as follows: {m(k + 1, x, t)⇒
m(k, x,max(s(xk+1), t)) ; m(0, t)⇒ t}

Definition 6. We define the resolution rule res(σ, P) where σ is a unifier and
P is a predicate as follows:

Π ⊢ P ∗, ∆ Π ′, P ∗∗ ⊢ ∆′

res(σ, P)
Πσ,Π ′σ ⊢ ∆σ,∆′σ

The predicates P ∗ and P ∗∗ are defined such that P ∗∗σ = P ∗σ = P . Also, there
are no occurrences of P in Π ′σ and P in ∆σ.

This version of the resolution rule is not complete for unsatisfiable clause sets,
but simplifies the outline of the refutation.

Lemma 3. Given 0 ≤ k and 0 ≤ n, the clause ⊢ t ≤ m(k, x, t) is derivable by
resolution from C(n).

Proof. Let us consider the case when k = 0, the clause we would like to show
derivability of is ⊢ t ≤ m(0, t), which is equivalent to the clause ⊢ t ≤ t,
an instance of (C1). Assuming the lemma holds for all m < k + 1, we show
that the lemma holds for k + 1. By the induction hypothesis, the instance
⊢ max(s(xk+1), t

′) ≤ m(k, x,max(s(xk+1), t
′)) is derivable. Thus, the follow-

ing derivation proves that the clause ⊢ t′ ≤ m(k + 1, xk+1, t
′), where t =

max(s(xk+1), t
′) for some term t′ is derivable:

(IH)
⊢ P

(C3)
max(β, δ) ≤ γ ⊢ δ ≤ γ

res(σ, P)
⊢ t ≤ m(k, x,max(s(xk+1), t))

ε
⊢ t ≤ m(k + 1, x, t)

P = max(s(xk+1), t) ≤ m(k, x,max(s(xk+1), t))

σ = {β ← s(xk+1), γ ← m(k, x,max(s(xk+1), t)), δ ← t}

�

See Sec. 9 for proofs of the following three corollaries.

Corollary 1. Given 0 ≤ k, n, the clause ⊢ s(xk+1) ≤ m(k, x,max(s(xk+1), t))
is derivable by resolution from C(n).

Corollary 2. Given 0 ≤ k and 0 ≤ n, the clause f(xk+1) = i,

f(m(k, x,max(s(xk+1), t))) = i ⊢ for 0 ≤ i ≤ n is derivable by resolution from
C(n).

12

Corollary 3. Given 0 ≤ k and 0 ≤ n, the clause f(xk+1) = i, f(m(k, xk, s(xk+1))) =
i ⊢ for 0 ≤ i ≤ n is derivable by resolution from C(n).

Definition 7. Given 0 ≤ n, −1 ≤ k ≤ j ≤ n,a variable z, and a bijective
function b : Nn → Nn we define the following formulae:

cb(k, j, z) ≡
k
∧

i=0

f(xb(i)) = b(i) ⊢

j
∨

i=k+1

f(m(n, x, z)) = b(i).

The formulae cb(−1,−1, z) ≡ ⊢, and cb(−1, n, z) ≡ ⊢
∨n
i=0 f(z) = i for all

values of n .

Lemma 4. Given 0 ≤ n, −1 ≤ k ≤ n and for all bijective functions b : Nn →
Nn. the formula cb(k, n, z) is derivable by resolution from C(n).

Proof. See Sec. 9.4. Greatest lower bounds of Def. 9.

Definition 8. Given 0 ≤ n, 0 ≤ k ≤ j ≤ n, and a bijective function b : Nn →
Nn we define the following formulae:

c′b(k, j) ≡
k
∧

i=0

f(xi+1) = b(i) ⊢

j
∨

i=k+1

f(m(k, xk, s(xk+1)) = b(i).

Lemma 5. Given 0 ≤ n, 0 ≤ k ≤ n and for all bijective functions b : Nn → Nn.
the formula c′b(k, n) is derivable by resolution from C(n).

Proof. See Sec. 9.5.

Definition 9. Given 0 ≤ n we define the ordering relation ⋖n over An =
{(i, j)|i ≤ j ∧0 ≤ i, j ≤ n ∧ i, j ∈ N} s.t. for (i, j), (l, k) ∈ An, (i, j) ⋖n (l, k)
iff i, k, l ≤ n, j < n, l ≤ i, k ≤ j, and i = l ↔ j 6= k and j = k ↔ i 6= l.

Lemma 6. The ordering ⋖n over An for 0 ≤ n is a complete well ordering.

Proof. Every chain has a greatest lower bound, namely, one of the members of
An, (i, n) where 0 ≤ i ≤ n, and it is transitive, anti-reflexive, and anti-symmetric.

The clauses proved derivable by Lem. 5 can be paired with members of An
as follows, c′b(k, n) is paired with (k, n). Thus, each c′b(k, n) is essentially the
greatest lower bound of some chain in the ordering ⋖n over An.

Lemma 7. Given 0 ≤ k ≤ j ≤ n, for all bijective functions b : Nn → Nn the
clause c′b(k, j) is derivable from C(n).

Proof. We will prove this lemma by induction over An. The base cases are the
clauses c′b(k, n) from Lem. 5. Now let us assume that the lemma holds for all
clauses c′b(k, i) pairs such that, 0 ≤ k ≤ j < i ≤ n and for all clauses c′b(w, j)
such that 0 ≤ k < w ≤ j ≤ n, then we want to show that the lemma holds for
the clause c′b(k, j). We have not made any restrictions on the bijections used, we
will need two different bijections to prove the theorem. The following derivation
provides proof:

13

(IH [k, j + 1])
Πb(k),⊢ ∆b(k, j), Pb(j + 1)

(IH [k + 1, k + 1])
Πb′(k), f(xb′(k+1)) = b′(k + 1) ⊢

res(σ, P)
Πb(k), Πb′(k) ⊢ ∆b(k, j)

c : l
Πb(k) ⊢ ∆b(k, j)

c′b(k, j)

Pb(k + 1) = f(m(k, xk, s(xk+1))) = b(k + 1), Πb(k) ≡
∧k
i=0 f(xb(i)) = b(i),

∆b(k, j) ≡

j
∨

i=k+1

f(m(k, xk, s(xk+1))) = b(i),

σ =
{

xb′(k+1) ← m(k, xk, s(xk+1))
}

We assume that b′(k + 1) = b(j + 1) and that b′(x) = b(x) for 0 ≤ x ≤ k.

Theorem 2. Given n ≥ 0, C(n) derives ⊢.

Proof. By Lem. 7, The clauses f(x) = 0 ⊢ , · · · , f(x) = n ⊢ are derivable. Thus,
we can prove the statement by induction on the instantiation of the clause set.
When n = 0, the clause (C5) is ⊢ f(x) = 0 which resolves with f(x) = 0 ⊢
to derive ⊢. Assuming that for all n′ ≤ n the theorem holds we now show
that it holds for n + 1. The clause (C5) from the clause set C(n + 1) is the
clause (C5) from the clause set C(n) with the addition of a positive instance of
⊢ f(α) = (n + 1). Thus, by the induction hypothesis we can derive the clause
⊢ f(α) = (n+1). By Lem. 7 we can derive f(x) = (n+1) ⊢, and thus, resolving
the two derived clauses results in ⊢.

8 Conclusion

At the end of the introduction, we outlined some essential points to be addressed
in future work, i.e. finding a refutation which fits the framework of [?] or showing
that it is not possible and constructing a more expressive language. Concerning
the compression (see Sec. 9.7), knowing the growth rate of the ACNF can help
in the construction of a more expressive language for the refutations, and will
be part of the future investigation. However, there is an interesting points which
was not addressed, namely extraction of a Herbrand system. The extraction of
Herbrand system is the theoretical advantage this framework has over the pre-
viously investigated system [?]6 for cut elimination in the presence of induction,
but without a refutation within the expressive power of the resolution calcu-
lus, the method of [?] cannot be used to extract a Herbrand system from our
refutation. We plan to investigate the extraction of a Herbrand system for the
NiA-schema given the current state of the proof analysis. Development of such a
method can help find Herbrand systems in other cases when the ACNF-schema
cannot be expressed in the calculus provided in [?].

6 The schematic CERES method has the subformula property.

14

9 Appendix

9.1 Proof of Lem. 1

(Lem.3)
⊢ P

(C2)
max(β, δ) ≤ γ ⊢ β ≤ γ

res(σ, P)
⊢ s(xk+1) ≤ m(k, x,max(s(xk+1), t))

P = max(s(xk+1), t) ≤ m(k, x,max(s(xk+1), t))

σ = {β ← s(xk+1), γ ← m(k, x,max(s(xk+1), t)), δ ← t}

�

9.2 Proof of Cor. 2

(Cor.1)
⊢ P

(C4i)
f(α) = i, f(β) = i, s(α) ≤ β ⊢

res(σ, P)
f(xk+1) = i, f(m(k, xk,max(s(xk+1), t))) = i ⊢

P = s(xk+1) ≤ m(k, xk,max(s(xk+1), t))

σ = {α← xk+1, β ← m(k, xk,max(s(xk+1), t))}

�

9.3 Proof of Cor. 3

(Lem.3)
⊢ P

(C4i)
f(α) = i, f(β) = i, s(α) ≤ β ⊢

res(σ, P)
f(xk+1) = i, f(m(k, x, s(xk+1))) = i ⊢

P = s(xk+1) ≤ m(k, xk, s(xk+1))

σ = {α← xk+1, β ← m(k, xk, s(xk+1)))}

�

15

9.4 Proof of Cor. 4

We prove this lemma by induction on k and a case distinction on n. When n = 0
there are two possible values for k, k = 0 or k = −1. When k = −1 the clause is
an instance of (C5). When k = 0 we have the following derivation:

(C5)
cb(−1, 1, y)

(Cor.2[i← b(0), k← 0])
f(x1) = b(0), f(max(s(x1), z)) = b(0) ⊢

res(σ, P)
cb(0, 1, z)

P = f(max(s(x1), z)) = b(0)

σ = {y ← max(s(x1), z)}

By (Cor.2[i← b(0), k ← 0]) we mean take the clause that is proven derivable
by Cor. 2 and instantiate the free parameters of Cor. 2, i.e. i and k, with the
given terms, i.e. b(0) and 0. Remember that b(0) can be either 0 or 1. We will
use this syntax through out the dissertion. When n > 0 and k = −1 we again
trivially have (C5). When n > 0 and k = 0, the following derivation suffices:

(C5)
cb(−1, n, y)

(Cor.2[i← b(0), k← 0])
f(x1) = b(0), f(max(s(x1), z)) = b(0) ⊢

res(σ, P)
cb(0, n, z)

P = f(max(s(x1), z)) = b(0)

σ = {y ← max(s(x1), z)}

The main difference between the case for n = 1 and n > 1 is the possible
instantiations of the bijection at 0. In the case of n > 1, b(0) = 0 ∨· · ·∨ b(0) = n.
Now we assume that for all w < k + 1 < n and n > 0 the theorem holds, we
proceed to show that the theorem holds for k + 1. The following derivation will
suffice:

(IH)
cb(k, n, y)

(Cor.2[i← b(k + 1)])
f(xk+1) = b(k + 1), P ⊢

res(σ, P)
cb(k + 1, n, z)

P = f(m(k, xk,max(s(xk+1), t))) = b(k + 1)

σ = {y ← max(s(xk+1), z)}

�

16

9.5 Proof of Lem. 5

We prove this lemma by induction on k and a case distinction on n. When n = 0
it must be the case that k = 0. When k = 0 we have the following derivation :

(C5)
cb(−1, 0, y)

(Cor.3[i← 0, k← 0])
f(x1) = 0, f(s(x1)) = 0 ⊢

res(σ, P)
c′b(0, 0)

P = f(s(x1)) = 0

σ = {y ← s(x1)}

Remember that b(0) can only be mapped to 0. When n > 0 and k = 0, the
following derivation suffices:

(C5)
cb(−1, n, y)

(Cor.3[i← b(0), k← 0])
f(x1) = b(0), f(s(x1)) = b(0) ⊢

res(σ, P)
c′b(0, n)

P = f(s(x1)) = b(0)

σ = {y ← s(x1)}

The main difference between the case for n = 0 and n > 0 is the possible
instantiations of the bijection at 0. In the case of n > 0, b(0) = 0 ∨· · ·∨ b(0) = n.
Now we assume that for all w ≤ k the theorem holds, we proceed to show that
the theorem holds for k + 1. The following derivation will suffice:

(IH)
cb(k, n, y)

(Cor.2[i← b(k + 1)])
f(xk+1) = b(k + 1), P ⊢

res(σ, P)
cb(k + 1, n, z)

P = f(m(k, xk,max(s(xk+1), t))) = b(k + 1)

σ = {y ← max(s(xk+1), z)}

�

9.6 SPASS Refutation of C(n): Instance Four

The refutation provided in this section is almost identical to the output from
SPASS except for a few minor changes to the syntax to aid reading.

1[0 : Inp] ‖‖ ⇒ eq(f(U), 3) , eq(f(U), 2) , eq(f(U), 1) , eq(f(U), 0)∗

2[0 : Inp] ‖‖ ⇒ le(U,U)∗

17

3[0 : Inp] ‖‖ le(max(U, V),W)∗ ⇒ le(U,W)

4[0 : Inp] ‖‖ le(max(U, V),W)∗ ⇒ le(V,W)

5[0 : Inp] ‖‖ le(s(U), V) ∗+ , eq(f(U), 0)∗ , eq(f(V), 0)∗ ⇒

6[0 : Inp] ‖‖ le(s(U), V) ∗+ , eq(f(U), 1)∗ , eq(f(V), 1)∗ ⇒

7[0 : Inp] ‖‖ le(s(U), V) ∗+ , eq(f(U), 2)∗ , eq(f(V), 2)∗ ⇒

8[0 : Inp] ‖‖ le(s(U), V) ∗+ , eq(f(U), 3)∗ , eq(f(V), 3)∗ ⇒

9[0 : Res : 2.0, 4.0] ‖‖ ⇒ le(U,max(V, U))

10[0 : Res : 9.0, 4.0] ‖‖ ⇒ le(U,max(V,max(W,U)))

12[0 : Res : 2.0, 3.0] ‖‖ ⇒ le(U,max(U, V))

13[0 : Res : 9.0, 3.0] ‖‖ ⇒ le(U,max(V,max(U,W)))

15[0 : Res : 12.0, 3.0] ‖‖ ⇒ le(U,max(max(U, V),W))

16[0 : Res : 12.0, 4.0] ‖‖ ⇒ le(U,max(max(V, U),W))

19[0 : Res : 15.0, 3.0] ‖‖ ⇒ le(U,max(max(max(U, V),W), X))

20[0 : Res : 15.0, 4.0] ‖‖ ⇒ le(U,max(max(max(V, U),W), X))

23[0 : Res : 2.0, 8.0] ‖‖ eq(f(U), 3) , eq(f(s(U)), 3)∗ ⇒

25[0 : Res : 10.0, 8.0] ‖‖ eq(f(U), 3) , eq(f(max(V,max(W, s(U)))), 3)∗ ⇒

27[0 : Res : 12.0, 8.0] ‖‖ eq(f(U), 3) , eq(f(max(s(U), V)), 3)∗ ⇒

28[0 : Res : 15.0, 8.0] ‖‖ eq(f(U), 3) , eq(f(max(max(s(U), V),W)), 3)∗ ⇒

42[0 : Res : 2.0, 7.0] ‖‖ eq(f(U), 2) , eq(f(s(U)), 2)∗ ⇒

43[0 : Res : 9.0, 7.0] ‖‖ eq(f(U), 2) , eq(f(max(V, s(U))), 2)∗ ⇒

44[0 : Res : 10.0, 7.0] ‖‖ eq(f(U), 2) , eq(f(max(V,max(W, s(U)))), 2)∗ ⇒

50[0 : Res : 12.0, 7.0] ‖‖ eq(f(U), 2) , eq(f(max(s(U), V)), 2)∗ ⇒

52[0 : Res : 16.0, 7.0] ‖‖ eq(f(U), 2) , eq(f(max(max(V, s(U)),W)), 2)∗ ⇒

18

54[0 : Res : 19.0, 4.0] ‖‖ ⇒ le(U,max(max(max(max(V, U),W), X), Y))

59[0 : Res : 20.0, 7.0] ‖‖ eq(f(U), 2) , eq(f(max(max(max(V, s(U)),W), X)), 2)∗ ⇒

69[0 : Res : 2.0, 6.0] ‖‖ eq(f(U), 1) , eq(f(s(U)), 1)∗ ⇒

70[0 : Res : 9.0, 6.0] ‖‖ eq(f(U), 1) , eq(f(max(V, s(U))), 1)∗ ⇒

74[0 : Res : 13.0, 6.0] ‖‖ eq(f(U), 1) , eq(f(max(V,max(s(U),W))), 1)∗ ⇒

79[0 : Res : 16.0, 6.0] ‖‖ eq(f(U), 1) , eq(f(max(max(V, s(U)),W)), 1)∗ ⇒

89[0 : Res : 2.0, 5.0] ‖‖ eq(f(U), 0) , eq(f(s(U)), 0)∗ ⇒

90[0 : Res : 9.0, 5.0] ‖‖ eq(f(U), 0) , eq(f(max(V, s(U))), 0)∗ ⇒

98[0 : Res : 12.0, 5.0] ‖‖ eq(f(U), 0) , eq(f(max(s(U), V)), 0)∗ ⇒

123[0 : Res : 1.3, 89.1] ‖‖ eq(f(U), 0) ⇒ eq(f(s(U)), 3) , eq(f(s(U)), 2) , eq(f(s(U)), 1)

159[0 : Res : 54.0, 8.0] ‖‖ eq(f(U), 3) , eq(f(max(max(max(max(V, s(U)),W), X), Y)), 3)∗ ⇒

196[0 : Res : 1.3, 90.1] ‖‖ eq(f(U), 0) ⇒ eq(f(max(V, s(U))), 3)

eq(f(max(V, s(U))), 2) , eq(f(max(V, s(U))), 1)

197[0 : Res : 1.3, 98.1] ‖‖ eq(f(U), 0) ⇒ eq(f(max(s(U), V)), 3)

eq(f(max(s(U), V)), 2) , eq(f(max(s(U), V)), 1)

423[0 : Res : 196.3, 79.1] ‖‖ eq(f(U), 0) , eq(f(V), 1) ⇒

eq(f(max(max(W, s(V)), s(U))), 3) , eq(f(max(max(W, s(V)), s(U))), 2)

450[0 : Res : 197.3, 74.1] ‖‖ eq(f(U), 0) , eq(f(V), 1) ⇒

eq(f(max(s(U),max(s(V),W))), 3) , eq(f(max(s(U),max(s(V),W))), 2)

955[0 : Res : 423.3, 59.1] ‖‖ eq(f(U), 0) , eq(f(V), 1) , eq(f(W), 2)

⇒ eq(f(max(max(max(X, s(W)), s(V)), s(U))), 3)

1009[0 : Res : 450.3, 44.1] ‖‖ eq(f(U), 0) , eq(f(V), 1) , eq(f(W), 2)

19

⇒ eq(f(max(s(U),max(s(V), s(W)))), 3)

2272[0 : Res : 955.3, 159.1] ‖‖ eq(f(U), 0)∗ , eq(f(V), 1)∗ , eq(f(W), 2) ∗

eq(f(X), 3)∗ ⇒

2273[0 :MRR : 1009.3, 2272.3] ‖‖ eq(f(U), 0) ∗+ , eq(f(V), 1) ∗

eq(f(W), 2)∗ ⇒

2301[0 :MRR : 450.3, 2273.2] ‖‖ eq(f(U), 0) , eq(f(V), 1)

⇒ eq(f(max(s(U),max(s(V),W))), 3)

2450[0 : Res : 2301.2, 25.1] ‖‖ eq(f(U), 0)∗ , eq(f(V), 1) ∗

eq(f(W), 3)∗ ⇒

2459[0 :MRR : 2301.2, 2450.2] ‖‖ eq(f(U), 0) ∗+ , eq(f(V), 1)∗ ⇒

2577[0 :MRR : 123.3, 2459.1] ‖‖ eq(f(U), 0) ⇒ eq(f(s(U)), 3)

eq(f(s(U)), 2)

2578[0 :MRR : 196.3, 2459.1] ‖‖ eq(f(U), 0) ⇒
eq(f(max(V, s(U))), 3) , eq(f(max(V, s(U))), 2)

2613[0 : Res : 2578.2, 50.1] ‖‖ eq(f(U), 0) , eq(f(V), 2) ⇒ eq(f(max(s(V), s(U))), 3)

2615[0 : Res : 2578.2, 52.1] ‖‖ eq(f(U), 0) , eq(f(V), 2)
⇒ eq(f(max(max(W, s(V)), s(U))), 3)

2676[0 : Res : 2615.2, 28.1] ‖‖ eq(f(U), 0)∗ , eq(f(V), 2)∗ , eq(f(W), 3)∗ ⇒

2684[0 :MRR : 2613.2, 2676.2] ‖‖ eq(f(U), 0) ∗+ , eq(f(V), 2)∗ ⇒

2714[0 :MRR : 2577.2, 2684.1] ‖‖ eq(f(U), 0) ⇒ eq(f(s(U)), 3)

2715[0 :MRR : 2578.2, 2684.1] ‖‖ eq(f(U), 0) ⇒ eq(f(max(V, s(U))), 3)

2749[0 : Res : 2715.1, 27.1] ‖‖ eq(f(U), 0)∗ , eq(f(V), 3)∗ ⇒

2764[0 :MRR : 2714.1, 2749.1] ‖‖ eq(f(U), 0)∗ ⇒

2795[0 :MRR : 1.3, 2764.0] ‖‖ ⇒ eq(f(U), 3) , eq(f(U), 2) , eq(f(U), 1)

20

2796[0 : Res : 2795.2, 69.1] ‖‖ eq(f(U), 1) ⇒ eq(f(s(U)), 3) , eq(f(s(U)), 2)

2797[0 : Res : 2795.2, 70.1] ‖‖ eq(f(U), 1) ⇒ eq(f(max(V, s(U))), 3)
eq(f(max(V, s(U))), 2)

2831[0 : Res : 2797.2, 50.1] ‖‖ eq(f(U), 1) , eq(f(V), 2)
⇒ eq(f(max(s(V), s(U))), 3)

2833[0 : Res : 2797.2, 52.1] ‖‖ eq(f(U), 1) , eq(f(V), 2)
⇒ eq(f(max(max(W, s(V)), s(U))), 3)

2896[0 : Res : 2833.2, 28.1] ‖‖ eq(f(U), 1)∗ , eq(f(V), 2)∗ , eq(f(W), 3)∗ ⇒

2904[0 :MRR : 2831.2, 2896.2] ‖‖ eq(f(U), 1) ∗+ , eq(f(V), 2)∗ ⇒

2934[0 :MRR : 2796.2, 2904.1] ‖‖ eq(f(U), 1) ⇒ eq(f(s(U)), 3)

2935[0 :MRR : 2797.2, 2904.1] ‖‖ eq(f(U), 1) ⇒ eq(f(max(V, s(U))), 3)

2969[0 : Res : 2935.1, 27.1] ‖‖ eq(f(U), 1)∗ , eq(f(V), 3)∗ ⇒

2984[0 :MRR : 2934.1, 2969.1] ‖‖ eq(f(U), 1)∗ ⇒

3015[0 :MRR : 2795.2, 2984.0] ‖‖ ⇒ eq(f(U), 3) , eq(f(U), 2)

3016[0 : Res : 3015.1, 42.1] ‖‖ eq(f(U), 2) ⇒ eq(f(s(U)), 3)

3017[0 : Res : 3015.1, 43.1] ‖‖ eq(f(U), 2) ⇒ eq(f(max(V, s(U))), 3)

3050[0 : Res : 3017.1, 27.1] ‖‖ eq(f(U), 2)∗ , eq(f(V), 3)∗ ⇒

3065[0 :MRR : 3016.1, 3050.1] ‖‖ eq(f(U), 2)∗ ⇒

3096[0 :MRR : 3015.1, 3065.0] ‖‖ ⇒ eq(f(U), 3)

3098[0 :MRR : 23.1, 23.0, 3096.0] ‖‖ ⇒

9.7 Growth Rate of Refutation

Definition 10. Let Occ(x, r) be defined as the number of times the clause x is
used in the refutation r.

21

Theorem 3. Let r be the resolution refutation of Thm. 2 for the clause set
C(n), then Occ(C5, r) is the result of the following recurrence relation a(n+1) =
(n+ 1) ∗ a(n) + 1 and a(0) = 1.

Proof. Let us consider the case for the clause set C(0). This is the case when we
have only one symbol in the function’s range. If we compute the recurrence we
get a(1) = a(0)+1 = 2 Now let us assume it holds for all m ≤ n and show it hold
for n+ 1. In the proof of Lem. 7, when deriving c′b(0, 0) the literal f(α) = b(0)
is in the antecedent for every clause higher in the resolution derivation and it is
never used in a resolution step . If we remove this clause from the antecedent
then we have a resolution refutation for the clause C(n), only if we rename the
schematic sort terms accordingly. To refute C(n + 1) we need to derive n + 1
distinct c′b(0, 0) clauses and resolve them with a single instance of (C5). Thus,
we have the equation, Occ(C5n+1, rn+1) = (n+1)∗Occ(C5n, rn)+1 where rn+1

is the resolution refutation of Thm. 2 for the clause set C(n + 1) and rn is the
resolution refutation of Thm. 2 for the clause set C(n). Thus, the theorem holds
by induction.
�

Corollary 4. The recurrence relation a(n) = n · a(n − 1) + 1 and a(0) = 1 is
equivalent to the equation:

f(n) = n! ·
n
∑

i=0

1

i!

Proof. If we unroll the relation one we get,

a(n) = n · (n− 1) · a(n− 2) + n+ 1 = n · (n− 1) · a(n− 2) +
n!

(n− 1)!
+
n!

n!

Thus, unrolling the function k times results in the following:

a(n) =

(

n
∏

i=n−k+1

i

)

· a(n− k) +
n
∑

i=n−k+1

n!

i!

Now when we set k = n we get,

a(n) = n! +

n
∑

i=1

n!

i!
=
n!

0!
+

n
∑

i=1

n!

i!
=

n
∑

i=0

n!

i!

�

22

	Analysis of Clause set Schema Aided by Automated Theorem Proving: A Case Study

