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Abstract. Justification logics were introduced by Artemov in 1995 to
provide intuitionistic logic with a classical provability semantics, a prob-
lem originally posed by Godel. Justification logics are refinements of
modal logics and formally connected to them by so-called realization
theorems. A constructive proof of a realization theorem typically relies
on a cut-free sequent-style proof system for the corresponding modal
logic. A uniform realization theorem for all the modal logics of the so-
called modal cube, i.e., for the extensions of the basic modal logic K with
any subset of the axioms d, t, b, 4, and 5, has been proven using nested
sequents. However, the proof was not modular in that some realization
theorems required postprocessing in the form of translation on the jus-
tification logic side. This translation relied on additional restrictions on
the language of the justification logic in question, thus, narrowing the
scope of realization theorems. We present a fully modular proof of the
realization theorems for the modal cube that is based on modular nested
sequents introduced by Marin and Strafburger.

1 Introduction

Justification logics can be seen as explicit counterparts of modal logics that
replace one modality [, understood as provable or known, etc., by a family
of justification terms representing the underlying reason for the provability or
knowledge, etc. respectively. The formal connection between a modal logic and a
justification logic is provided by a realization theorem, showing that each occur-
rence of modality in a valid modal formula can be realized by some justification
term in such a way that the resulting justification formula is valid, and vice versa.

The first justification logic, the Logic of Proofs LP, was introduced by Arte-
mov [Art01] as a solution to Gddel’s problem of providing intuitionistic logic
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Fig. 1. Modal cube

with classical provability semantics. Artemov proved a realization theorem con-
necting LP with the modal logic of informal provability S4 by means of a cut-free
sequent system for S4.

Justification language enables one to study whether self-referential proofs of
the type t: A(t) are implicitly present in a particular kind of modality [Kuz10]
or in intuitionistic reasoning [Yul4]. Justification logic has also been used in
the epistemic setting to provide the missing formal treatment of justified in
Plato’s celebrated definition of knowledge as justified true belief. In particular,
justification language enables one to analyze in the object language, i.e., on
the logical rather than metalogical level, famous epistemic paradoxes such as
Gettier examples showing the deficiencies of Plato’s definition of knowledge (see
an extended discussion of this and other examples [AF12]).

For logics lacking a cut-free sequent calculus, constructive proofs of realiza-
tion theorems can be achieved by using more complex sequent-style formalisms,
e.g., hypersequents and nested sequents. In this paper, we focus on realizations
of the 15 modal logics from the modal cube, visualized in Fig. 1 (see [Garl4]
for a detailed explanation of this diagram), i.e., for all extensions of the basic
normal modal logic K with any subset of the axioms d, t, b, 4, and 5. Re-
alization theorems for several logics weaker than S4, including the realization
of K into the basic justification logic J, was achieved by Brezhnev [Bre00] us-
ing appropriate sequent calculi. The strongest logic in the cube, S5, which lacks
a cut-free sequent representation, was realized by Artemov et al. [AKS99] us-
ing Mints’s cut-free hypersequent calculus from [Min92]. However, several logics
from the cube lack even a cut-free hypersequent representation, which prompted
Goetschi and Kuznets [GK12] to use cut-free nested sequent calculi introduced
by Briinnler [Brii09] to prove realization for all these 15 modal logics in a uniform
way.



Unfortunately, this uniform realization method did not provide a way of re-
alizing individual modal principles independently of each other. While for each
of the modal axioms d, t, b, 4, and 5, there is the corresponding justification
axiom and the corresponding nested sequent rule, there are subsets X of these
axioms such that Briinnler’s nested calculus formed from the rules corresponding
to the axioms from X is not complete for the logic K 4+ X and, hence, cannot
be used to prove the realization theorem for K+ X. These remaining realization
theorems were proved by Goetschi and Kuznets by using additional “postpro-
cessing”: namely, by translating operations between justification logics [GK12].
Thus, their realization method lacks the desired modularity and also requires
to partition the set of justification constants into countably many strata, an
additional level of complexity one might wish to avoid.

In this paper, we provide a modular and uniform proof of the realization the-
orem for all axiomatizations occurring in the modal cube. Our proof makes a cru-
cial use of the modular nested sequent calculi by Marin and Strafiburger [MS14],
which are complete for each subset X of the five modal axioms. Thereby, no
additional restrictions on the justification language are necessary.

The paper is structured as follows. Section 2 recalls the modal logics of the
modal cube and justification logics realizing them. Section 3 gives a formal def-
inition of realization. Section 4 introduces the modular nested sequent calculi
from [MS14]. Section 5 supplies notions and auxiliary lemmas used in the proof
of the modular realization theorem, which is presented in Sect. 6.

2 Modal Logic and Justification Logic

2.1 Modal Logic

Modal logic extends propositional logic by modal operators called modalities. Let
Prop be a countable set of propositional variables. We use the modal language in
the negation normal form, with negation is restricted to propositional variables:

Au=p|P|L|T|(AVA)|(ANA)|OA|OA

where p € Prop.! The negation operation A is extended from propositional
variables to all formulas by using De Morgan dualities and double negation
elimination. A D B is defined as AV B and, by default, is right-associative, as
far as the usual omission of parentheses is concerned.

Definition 1 (Axiom systems for modal logics). The axiom system for
the basic modal logic K is obtained from that for classical propositional logic by

! The use of negation normal form here is inherited from [MS14]. Such calculi can be
easily modified to work with not-atomic negations, see, e.g., [FK15], but there is a
price to pay. Either one loses (the naive formulation of) the subformula property or
the underlying sequents need to be two-sided as, e.g., in [Fit14].



adding the normality axiom k and the necessitation rule nec:

HA
FOA4 -
The axiom systems for modal logics of the modal cube are obtained by adding
to the axiom system for K a subset of the following axioms:

d: OL>1, t: OADA, b: -AD>0O-0A4 ,
4: OADOOA , 5: -0A4A>0O-04 .

k: OA>B)>(HAD>OB) , nec : 2

All the 15 modal logics of the modal cube are depicted in Fig. 1, see also [Gar14].
Since 5 axioms produce 32 possible axiomatizations, some axiomatizations define
the same logic. The name of the logic is typically derived from one of its axiom-
atizations, with the exception of the logic S4, axiomatized, e.g., by t and 4, and
the logic S5, obtained from S4 by adding the axiom 5. We denote an arbitrary
logic from the modal cube by ML.

2.2 Justification Logic

Instead of the modality O, justification logic employs a family of justifica-
tion terms built from justification constants dg, d1, ... and justification variables
Zg, X1, ... by means of several operations according to the following grammar:

tu=a; | di | (t-t) | (E+t) |1t 2¢] 7t .
The language of justification logic is defined by the following grammar
Auw=p| LI (A>A)[t: 4,
where p € Prop. Formulas ¢ : A are read “term ¢ justifies formula A.”

Definition 2 (Axiom systems for justification logics). The axiom system
for the basic justification logic J is obtained from that for classical propositional
logic by adding the axioms app and sum and the axiom necessitation rule AN:

sum: s:AD(s+t): A4, t:AD(s+t): A,
A .
app: s:(ADB)D(t:AD(s-t):B), AN ; 21540 aTiom
Cpi...:c1: A
The axiom systems for justification logics realizing modal logics of the modal
cube are formed by adding to the axiom system for J a subset of the following
azrioms:

d: t:LD>L jt: t:ADA jb: AD?t:—t:-A
b t:ADIt:it: A, j5: At:AD7t:—t: A .

2 Note that such a rule may not be sound if applied to derivations with local assump-
tions, i.e., with assumptions contingently true rather than universally true. Since
our setting does not require distinguishing global and local assumptions (see [FM98,
Sect. 3.3] for details), we restrict the necessitation rule to derivations without
assumptions. In particular, this guarantees the validity of the Deduction Theo-
rem [HN12].



The intended meaning of the operations -, +, !, 7, and 7 can be read off these
axioms. For instance, - is the application known from A-calculus and combinatory
logic and + can be viewed as the monotone concatenation of proofs.

For each combination of axioms added to the axiom system for J, the name of
the corresponding justification logic is formed by writing the capitalized axiom
names and dropping all letters J except for the first one, e.g., the axiom system
for JT4 is that of J with the addition of the axioms jt and j4 (this logic is better
known as the Logic of Proofs LP). Note that the axiom jt subsumes the axiom jd,
meaning that there are only 24 instead of 32 logics obtained this way. We denote
any of these 24 logics by JL.

3 Realization Theorems

In this section, we define the formal connection between modal and justifica-
tion logics by means of realization theorems. Intuitively, a realization theorem
states that, for a given modal logic ML and justification logic JL, each valid fact
about justifications in JL corresponds to a valid fact about modalities in ML
and vice versa. In other words, JL describes the same kind of validity as ML but
in the language refined with justification terms. Formally, the correspondence is
formulated in terms of the forgetful projection.

o

Definition 3 (Forgetful projection). The forgetful projection (-)° is a func-
tion from the justification language to the modal language defined as follows:

pPi=p, 1°:=1, (BiD>B):=B{>By, (t:B)°=0B°.

The forgetful projection is extended to sets of justification formulas in the stan-
dard way, i.e., X°:={A°| A€ X}.

Definition 4 (Justification counterparts). For a justification logic JL and
a modal logic ML, we say that JL is a justification counterpart of ML if

JL° =ML .

We also say that ML is the forgetful projection of JL, or that JL realizes ML,
or that JL s a realization of ML.

The first realization theorem was proved by Artemov [Art01]. He established
that the Logic of Proofs LP is a justification counterpart of the modal logic S4,
known to be the modal description of intuitionistic provability.

Theorem 5 (Realization of S4). LP° = S4.

Ezample 6 ([Art01]). The theorem Op Vv Og D O(Op Vv Og) of S4 can be realized,
for instance, by the theorem z:pVy:q¢ D (a-lz+b-ly): (z:pVy:q) of LP.
Note that this realization has an additional normality property: all negative
occurrences of [ are realized by distinct justification variables. It is customary to
prove realization theorems in the stronger formulation requiring that every modal



theorem possess a normal realization derivable in the justification counterpart in
question. In particular, Artemov proved Theorem 5 in this stronger formulation.
All the realization results in this paper presuppose this stronger formulation,
unless stated otherwise.

There are three main methods of proving realization theorems:

— syntactically by induction on a cut-free sequent-style derivation, see [Art01],
[Bre00], and [Fit09] for sequents, [AKS99] for hypersequents, and [GK12] for
nested sequents;

— semantically using the so-called Model Existence Property [Fit05], [Rub06],
[Fit13];

— by embedding a modal logic into another logic with a known realization
theorem and bringing the obtained realization to the requisite form by jus-
tification transformations [GK12], [BKS14].

The semantic method is slightly less preferable because it does not ordinarily
provide a constructive realization procedure. Goetschi and Kuznets in [GK12]
have proved the realization for the whole modal cube by combining the syntactic
and embedding methods. Our goal in this paper is to achieve the same result by
the syntactic method only and in a modular manner.

It should come as no surprise that a justification counterpart JL of a given
modal logic ML is often built by justification axioms similar to the modal axioms
of ML. Indeed, S4 = K+t + 4 and LP = J + jt + j4. This can, however, lead to a
situation where different axiomatizations of the same modal logic correspond to
axiomatizations of different justification logics: there are 24 justification logics
corresponding to only 15 modal logics of the modal cube. Thus, while the for-
getful projection of a justification logic is unique, a modal logic may have more
than one justification counterpart. In the modal cube, the logic with the most
axiomatizations and, hence, the most justification counterparts is S5 = S4 + 5:
its justification counterparts include JT45, JT5, JTB5, JTB45, JDB5, JDB45,
JDB4, and JTB4 (see [GK12]).

4 Modular Nested Sequent Calculi

To achieve a fully modular realization theorem, we are using slightly modified
(see Remark 12) modular nested sequents by Marin and Strafiburger from [MS14].
In this section, we give all the necessary definitions for and modifications of their
formalism.

Definition 7 (Nested sequents). A nested sequent is a sequence of formulas
and brackets defined by the following grammar:

I'e=¢|LA|L,
where € is the empty sequence, and A is a modal formula.

The comma denotes sequence concatenation and plays the role of structural
disjunction, whereas the brackets [] are called structural boz. From now on, by



. I'{A, B} I{A} I'{B}
r'{p,p} I'{Av B} T'{ANB}
I{A, A} . r{a, %} A I'{[A]} I'{[A, Al}
Ay Y Tz Ay &¢ r{0A} T{0A, [A]}

Fig. 2. Nested sequent calculus NK for the modal logic K

sequent we mean a nested sequent. Sequents are denoted by uppercase Greek
letters. Nested sequent calculi are an internal formalism, meaning that every
sequent has a formula interpretation.

Definition 8 (Formula interpretation). The corresponding formula of a se-
quent I', denoted by I' is defined as follows:

g:=1; F,A::{F\/A yr#e, I, [4]:

I'vOA ifI'#e¢,
YAY otherwise.

A otherwise;

To describe the application of nested rules deeply inside a nested structure,
the concept of context is used.

Definition 9 (Context). A context is a sequent with the symbol hole { } in
place of one of the formulas. Formally,

M{ya=ALH NI (LA,

where A is a sequent. A sequent II can be inserted into a context I'{} by replacing

the hole { } in I'{ } with II. The result of such an insertion is denoted I'{II}.
Ezample 10. Let I'{} = [{ },[D]] and IT = [F], B. Then I'{II} = [[F], B, [D]].

Definition 11 (Nested sequent calculi for the modal cube, [MS14]).
The rules of Marin—Strafiburger’s modular nested sequent calculi are divided
into three groups. The rules of the calculus NK for the basic modal logic K can
be found in Fig. 2. Additional rules used to obtain calculi for the remaining
14 logics of the modal cube are divided into logical rules in Fig. 8 and structural
rules in Fig. 4.

Remark 12. In [MS14], the calculus NK and its extensions are based on multisets.
However, since sequence-based nested sequents are necessary to use the realiza-
tion method from [GK12], we modify the system in the same way as Goetschi
and Kuznets did in [GK12] with Briinnler’s nested sequent calculi from [Brii09]:
namely, we add the exchange rule exch. The only other modification compared
to [MS14] is the use of the rules 5a°, 5b°, 5c°, 5all, 5bl, and 5cll instead of two
more compact but non-local two-hole rules. The possibility to replace such a two-
hole rule with three single-hole rules was first observed by Briinnler [Brii09].



r{ay . I{A) o r{anay , r{loA A} A
r{oA} I'{0A} I'{[A, 0A]} I'{0A, [Al}

i

r{AL04y o TUALIOAL o T{A L 0A))
r{{A, 04y > {4, 04], 1]} T{[A, 0A, [}

5¢°

Fig. 3. Additional logical rules corresponding to the axioms d, t, b, 4, and 5

M) o LAy o rEAn o My
I{e} r{ay {4 r{[a], =)}
C{UL (A} D{UL (AL [S]) r{(m, (4], [£])}

LAy 2 TmaLsy ' Tm Lo o

Fig. 4. Additional structural rules corresponding to the axioms d, t, b, 4, and 5

Marin and StraBburger [MS14] showed that these calculi are complete with
respect to the corresponding modal logics in a modular way:

Theorem 13 (Modular completeness of nested calculi). For a set of az-
ioms X C {d,t,b,4,5}, we denote by X° the set of corresponding nested rules:
X :={r°|re X}, where 5° abbreviates the set of three rules 5a®, 5b°, and 5¢c°.
The definition of XU is analogous. For any modal formula A,

K+XHA — NK+ X+ XUF4 .

5 Auxiliary Definitions and Lemmas

Unlike the realization method applied by Artemov to a sequent calculus for S4,
the method developed for nested sequents in [GK12] requires complex manip-
ulations with the realizing terms, which necessitates careful bookkeeping and,
hence, additional notation. In particular, all modalities, structural or otherwise,
are annotated with integers, so that it becomes possible to refer to particular
occurrences of modality and to record the realizing term for each occurrence.

5.1 Annotations

Definition 14 (Annotation, proper annotation). Annotated modal formu-
las are defined in the same way as modal formulas, except that each occurrence
of O () must be annotated with an odd (even) natural number.



pi=p ()" =-p (Oak—1A)":=7r(2k — 1) : A”
17:=1 Tr:=T (<>2ZA)T = ﬁT(Ql) : A"
(AvB) :=A"V B" (ANB)":=A" AB"

Fig. 5. Realization of modal formulas

Annotated sequents (contexts) are defined in the same way as sequents (con-
texts), except that annotated modal formulas are used instead of modal formulas
and that each occurrence of the structural box must be annotated by an odd natu-
ral number. The corresponding formula of an annotated sequent is an annotated
formula defined as in Definition 8, except for the last case, which now reads:

Z, [A]k =

IVORA  if D #e,
O A otherwise.
A formula, sequent, or context is called properly annotated if no index occurs
twice in 4t.
If all indices are erased in an annotated formula A (sequent A, context I'{}),

the result A" (A, I'"{ }) is called its unannotated version and, vice versa, we
call A (A, I'{ }) an annotated version of A" (A", I''{ }).

The translation from modal to justification formulas is defined by means of
realization functions that assign realizations to each occurrence of modalities.
Proper realizations have to respect the skolemized structure of modal formulas.

Definition 15 (Pre-realization and realization functions). A pre-realiza-
tion function r is a partial function from natural numbers to justification terms.
A pre-realization function r is called a realization function if r(21) = z; whenever
r(21) is defined. If r is defined on all indices occurring in a given annotated
formula A, then r is called a (pre-)realization function on A.

Definition 16. The translation of an annotated formula A under a given pre-
realization function r on A is defined by induction on the construction of A, as

shown in Fig. 5.

In our realization proof, we will use some additional notation:

Definition 17. Let A be an annotated formula and r be a pre-realization func-
tion on A. We define

varsg (A) := {xy | Oar occurs in A} and r [ A:=nr[{i]|i occursin A} .

Here f | S denotes the restriction of f to the set S N dom(f).



5.2 Substitutions

It is easy to see that, due to the schematic nature of their axioms, justification
logics enjoy the Substitution Property: if I'(z,p) Fj. B(x,p) for some justi-
fication variable x and propositional variable p, then for any term ¢ and any
formula F' we have I'(x/t,p/F) by B(z/t,p/F). The realization method, how-
ever, requires a more precise notation for substitutions of terms for justification
variables and uses some additional standard definitions from term rewriting.

Definition 18 (Substitution). A term substitution, or simply a substitution,
1s a total mapping from justification variables to justification terms. It is extended
to all terms in the standard way. For a justification formula A, we denote by Ac
the result of simultaneous replacement of each term t in A with to. The domain
dom(o) and the variable range vrange(o) of o are defined by

dom(0) i= {x | o(x) £ &} .
vrange(o) := {y | (3z € dom(0)) (y occurs in o(x))}

Definition 19 (Compositions). A substitution o can be composed with an-
other substitution o’ or with a pre-realization function r:

/

(0’ 00)(x) :=0(x)o and (cgor)(n) =r(n)o .

Definition 20 (Substitution Residence). A substitution o is said to
— live on an annotated modal formula A if dom(c) C varsy(A),
— live away from A if dom(o) Nvarsy(A) = @.

The following lemma is an easy corollary of the given definitions (see also [GK12]):

Lemma 21. If r is a realization function on an annotated formula A and if a
substitution o lives away from A, then oo (r | A) is a realization function on A.

5.3 Internalization

Since in justification logics the modal necessitation rule is replaced with the zero-
premise axiom necessitation rule, which can be treated as an axiom, justification
logics clearly enjoy the Deduction Theorem. One of the fundamental properties
peculiar to justification logics is their ability to internalize their own proofs.
Various aspects of this property are referred to as the Lifting Lemma, the Con-
structive Necessitation, or the Internalization Property. They are easily proved
by induction on the derivation. We use the following form of this property.

Lemma 22 (Internalization). If JLF Ay D --- D A, D B, then there is a
term t(z1,...,2Ty) such that

JLFEs1: A1 D - Dsp:i Ay Dt(s1,...,8,): B

for any terms s1,. .., S,. In particular, for n =0, if JLF B, then there exists a
ground® term t such that JL -t : B.

3 Containing no justification variables.

10



5.4 Realizable Rules

We now lay the foundation for the realization method: we define what it means
to realize one rule in a given cut-free nested derivation. The complexity of this
definition is due mainly to the necessity to reconcile realizations of the premises
of two-premise rules. The reconciliation mechanism is based on Fitting’s merging
technique from [Fit09]. However, most of the details are described in [GK12] and
will not be repeated here.

Since realization relies on indices, we first need to define what it means to
annotate nested sequent rules. In defining this, we exploit the fact that all the
rules from Figs. 2-4 are context-preserving, i.e., all changes happen within the
hole while the context, which can be arbitrary, remains unchanged.

Definition 23 (Annotated rules). Consider an instance of a context-preseru-
ing nested rule with common context I''{ }:
r{Ayy oo r{aL} 1)
A’} '

Its annotated version has the form

D{A} ... D{AL)
{4} ’ @

where
— the sequents I'{A1},...,I'{A,}, and I'{A} are properly annotated;
- I'{},Ay,..., Ay, and A are annotated versions of I'{ }, Ay,..., AL, and A’
respectively; and
— no index occurs in both A; and A; for arbitrary 1 <i < j < n.

Realization functions on annotated formulas were defined in Definition 16. A
realization function on an annotated nested sequent, as well as the properties of
living on/away from an annotated nested sequent, are understood with respect
to its corresponding formula from Definition 14. We are now ready to define
what it means to realize one rule instance in a nested sequent derivation.

Definition 24 (Realizable rule). An instance (1) of a context-preserving rule
with common context I''{ } is called realizable in a justification logic JL if there
exists such an annotated version (2) of it that, for arbitrary realization functions
T1,...,Tn on the premises I'{A1}, ..., I'{A,} respectively, there exists a realiza-
tion function r on the conclusion I'{A} and a substitution o that lives on I'{A;}
for eachi=1,...,n, such that

JLEI{A e D ... DT {A,} "0 D I'{A}" .

In particular, for n = 0 it is sufficient that there be a realization function r
on I'{A} such that JLF IT'{A}".

A rule is called realizable in a justification logic JL if all its instances are
realizable in JL.

11



Goetschi and Kuznets in [GK12] showed that, in order to prove the realizabil-
ity of a rule, it is sufficient to show the realizability of all its shallow instances.

Definition 25 (Shallow rule instance). The shallow version of an instance (1)
of a context-preserving rule is obtained by making the context empty:

A LA
St

The method of constructive realization based on nested sequents hinges on
the following theorem:

Theorem 26 (Realization method, [GK12]). If a modal logic ML is de-
scribed by a cut-free nested sequent calculus NML, such that all rules of NML
are context-preserving and all shallow instances of these rules are realizable in a
justification logic JL, then there is a constructive realization of ML into JL.

5.5 Auxiliary Lemmas

We use the following lemmas to shorten the proofs of realizability for several
shallow rules.

Lemma 27 (Internalized Positive Introspection, [GK12]). There exist
Justification terms t(x) and pint(x) such that for any term s and any justification

formula A: J5 - pint(s) : (s: A D ti(s) : s: A).

Lemma 28. There is a term qm(z) such that for any justification formula A
and any term s: JBEF -4 D>agm(s):—s: A.

Proof. Consider the following derivation in JB:

0.p DO —-p propositional tautology
L.z:p D ti(x):—p from 0. by Lemma 22
2. —ty(z):——p D —x:p from 1. by prop. reasoning
3. 7ti(z): ~ta(x) i mmp D ta(Pti(x)):i—xip from 2. by Lemma 22
4. =p D Tty(x):—ty(x): = instance of jb
5. -p D to(?t(x)):-xip from 3. and 4. by prop. reasoning

Let gm(x) := to(?t1(x)). Note that gm(x) depends neither on s nor on A. By
substitution, it follows that JB - —=A D gm(s):—s: A. O

6 Modular Realization Theorem for the Modal Cube

In order to use the realization method from Theorem 26, we need to show that all
shallow instances of all rules from Figs. 2—4 are realizable. For rules in Figs. 2-3,
this has been proved in [GK12]. Thus, the main contribution of this paper, which
makes the modular realization theorem possible is the proof of realizability for
the rules in Fig. 4. Due to space limitations, we only provide the proofs for select
representative cases.

12



Lemma 29 (Main lemma).

1. Each shallow instance of p € {id, V, A, ctr,exch, 0, k} is realizable in J.

2. For each p € {d,t,b,4,5a,5b,5c} each shallow instance of p° and of pll is
realizable in JP, where J5A = J5B = J5C := J5.

Proof. For each rule p, we consider its arbitrary shallow instance. Statement 2
for p® and Statement 1 have been proved in [GK12]. Statement 2 for pll with
p € {d,4,5a,5b} is left for the reader. We give proofs for the remaining 3 rules:

!/
Case p = tll: Let [27/} be an arbitrary shallow instance of tl. Let [A], be a

properly annotated version of [A’]. Then A properly annotates A’ and S

an annotated version of this instance. Let 71 be a realization function on [A].
For r := r1 and the identity substitution o, we have

(Ao D A" = (k) A7 DA™

which is derivable in JT as an instance of jt.

27, [AT]
ase p = bl: Let W be an arbitrary shallow instance of bll. Let
(X, [Ali]x and [X];, A be prol;erly annotated versions of the premise and conclu-
(2, [Alilk

sion respectively. Then is an annotated version of this instance. Let

[Z]lv A
r1 be a realization function on [X, [A];]x. The following is a derivation in JB:

0. =A™ > gm(ri(3)):—ri(i) : A™ by Lemma 28
1. Xmvr(d): A D —rg(i): A > Xm propositional tautology
2. ri(k): (D V(i) A™) D am(ri(i)) i o (i) 1 AT D

t(r1(k), am(ry(3))) : X from 1. by Lemma 22
3. ri(k): (Zvr(i): A™) D from 2. by prop. reasoning
t(ri(k),am(r1(i))) : ™ v —am(ri(i)) 1 (i) - A™
4. —qm(ry(d)) : —ri(i) : A DA™ from 0. by prop reasoning
5. ry(k): (X7 V(i) A™) D from 3. and 4. by prop. reasoning

t(ri(k),am(r (i) : 2 v AT
Thus, for s := t(r1(k), gm(r1(7))),
JBF ri(k): (27 V(i) A™) D s XV AT (3)
The index [ occurs neither in X nor in A because [X];, A is properly annotated.

Hence, r := (r | X, A) U {l — s} is a realization on [X];, A. For the identity
substitution o and this r, it follows from (3) that

BE (24" 5 ((Z4) .

13



17", (A7 (2]
(', [[A], 21]
Let [11,[A];, [, ] and [I1,[[A];, Xk ]l be properly annotated versions of the
[Ha [A]’L'a [E]]]h

[T, [[A)i, k],
sion of this instance. Let r be a realization function on [II, [A];, [£];],. The

following is a derivation in J5:

Case p = 5cl: Let be an arbitrary shallow instance of 5cll.

premise and conclusion respectively. Then is an annotated ver-

0. X" D r(i): A v Em propositional tautology
Lor(j): X D ti(ri(h)): (ri(@): Am v Xm) from 0. by Lemma 22
2. pint(r1(7)) : (r1 (3) : A™ D ty(r1(3)) s re (i) - A”) by Lemma 27
3 7’1( ) AT D (i) AT v T propositional tautology
4. t(r1(i)) s ri(z) - A™ from 3. by Lemma 22

D
ta(ty(r1(i)) = (ri(i) : A™ v X)
5. (ri(0): A 5 t(n(@)
(i)t A" D ta(ti(r1(i)) : (r() : A" v X))
6. pint(r1(7)) : ( 1(8) 2 A™ D t(r1(4)) 1 m1(4) - A”) D from 5. by Lem. 22

pint(r ())):(rl(i):A” S ta(ti(ri (i) : (ra(i) : AT vzn))

r1(i))) : ( L(i) 1 AT S t(t(r1 (i) ¢ (ra(i) : AT vxn))
from 2. and 6. by MP
8. (r (i) : AT D ty(ti(r1 (i) : (r (i) : A v zn)) >
O V(i) : A" V() : X7 D ™ Vst (r(i) : A™ v X))
where s 1= t4(t1(r1(2))) + t1(r1(j)) from 1. by prop. reasoning and sum

1(7) A”) D from 4. by prop. reasoning

ts

9. t5(pint(r1(2))) : (rl(i) S AT Dty (4 (r1(2))) 2 (ri(i) : ATV 27"1)) >
te(ts(pint(ri(i)))): (H“\/rl( )i ATV (5): X D H“\/s:(rﬂi):A“\/E”))
from 8. by Lemma 22
10. tﬁ(t5(pint(r1(i)))):(H“\/rl(i):A“\/rl(j):E“ 5 Hﬁvs:(rl(i);mwzﬁ))
from 7. and 9. by MP
11. r1(h): (H” Vri(i): A" V(4 ):E”) Dt (H” Vs:(ry(i): A™ \/2”)),
where ¢ := t(t5(pint(r1(i)))) - r1(h) from 10. by app and MP

The indices k and [ do not occur in any of I, [A];, or X because [I1, [[A];, Z}k]l is
properly annotated. Thus, r := (r | I, [4];, X) U{k — s,l — t} is a realization
on [II, [[A];, X],. For the identity substitution o and this r, from 11. it follows

r

J5 1 ([n,m]i,[z]ﬂh)”a 5 ([H,[[A]i,z]kh)

This concludes the proof that all shallow instances of each rule used for a
modular nested sequent calculus for the logics of the modal cube are realizable
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into the justification logic containing the justification axiom corresponding to
this rule. ad

It now follows from Theorem 13, Theorem 26, and Lemma 29 that

Theorem 30 (Modular realization theorem). For each possible axiomati-
zation K+ X of a modal logic ML from the modal cube, there is a constructive
realization of ML into J + jX using the nested sequent calculus NK U X U X1
for ML, where jX :={jp|p € X}.

Proof. Let K+X be an axiomatization of ML. By Theorem 13, NKUX°UX - 4
for each theorem A of ML. It was shown in Lemma 29 that all shallow instances
of each rule from NKU X° U XU are realizable in a sublogic of J 4 jX and, thus,
also in J + jX itself. By Theorem 26, there is a constructive realization of ML
into J 4+ jX. a

7 Conclusion

This paper completes the project of finding a uniform, modular, and constructive
realization method for a wide range of modal logics. In this paper, we applied it
to all the logics of the modal cube and all the justification counterparts based
on their various axiomatizations. We are now confident that this method can
be easily extended to other classical modal logics captured by nested sequent
calculi. The natural challenge is to extend this method to the nested sequent
calculi for intuitionistic modal logics from [MS14] and for constructive modal
logics from [ADS15]. The size of LP-terms constructed for realizing S4 by using
sequent calculi was analyzed in [BK06]. It would be interesting to compare the
size of terms produced by using nested sequent calculi.

Acknowledgments. The authors would like to thank the anonymous reviewers
for the valuable comments and suggestions on clarifying issues of potential in-
terest to the readers. The authors are indebted to Agata Ciabattoni for making
this research possible.
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A Remaining Proofs Lemma 29

Proof. Case p = dl: Let [%] be an arbitrary shallow instance of dll. Let [¢]; be

a properly annotated version of the premise. Then @ is an annotated version
€

of this instance. Let 7, be a realization function on [¢]z. Note that &7 = L

for any realization r*. For r := r; and the identity substitution o, we have
JDF ([e]x)™ 0 D (¢)" as an instance of jd.
[A], [X] . ,
Case p = 4l: Let ] be an arbitrary shallow instance of 4U. Let [Al;, [X]
and [[A];, X]; be properly annotated versions of the premise and conclusion re-
[A;, [Z]x

spectively. Then is an annotated version of this instance. Let r; be a

Al Xy
realization functicE[n j)n [A]“ [X]x. The following is a derivation in J4:
0. r1(i): A™ D ry(i): A v X Propositional tautology
1o trp(@) i (4) : A™ Dt (Yrp(d)) = (r1(2) : A" v X™)  From 0. by Lemma 22
2. r1(i) : A™ D ey (d) sy (3) - A™ Instance of j4
3. 7m1(8) : A" D ty(1r1(4)) = (r1(é) : A™ v X)) From 1. and 2. by prop. reason.
4. X" Drq(i): AT vV XM Propositional tautology
5. r1(k) : X7 D ta(re(k)) : (r1(i) : A™ v X From 4. by Lemma 22
6. Tl(i) ATV 7“1(]{3) 2" D (tl(!Tl (’L)) + t2(’l"1(k)>) : (Tl(i) ATV 27"1)

From 3. and 5., using sum and prop. reasoning
Thus, for t := (t1(1r1(i)) + ta(r1(k))),
JAE () ATV (k): X" Dt (re(i) : ATV X,

The indices ¢ and ! do not occur in either [A]; or X since [[A];, X]; is properly
annotated. Hence: r := (r1 | [A];, ¥)U{l — t} is a realization on the conclusion
[[A};i, X];. For the identity substitution ¢ and r, we have

Ja+ ([AL [Te) o 2 ([[A]; 2T)"

I, A
Case p = 5all: Let M be an arbitrary shallow instance of 5all, let [IT, [A];]x
and [IT];,[A]; be properly annotated versions of the premise and conclusion
LT, [Ali]w

respectively. Then is an annotated version of this instance. Let r; be

(1], [A];
a realization function on [II, [A];]x. The following is a derivation in J5:

0. (IT"™ Vri(i): A™) D (=rqe(d) : A™ D IT™) Propositional tautology
1ory(k): (™ V(@) : A™) D 2r(3) : = (3) : A™ D t(re(k), 2ri(i) : II™

From 0. by Lemma 22

2. r (k) (IT™ V(i) : A™) D (=(?r1(8) : —r1(8) : A™) V t(re(k), 7 (2)) - TT™)

From 1. by prop. reasoning

3. (i) A™ D Py (d) s g (i) 1 AT Instance of j5
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4. =77 (8) :ori(3) : A™ D re(3) 1 AT From 3. by prop. reasoning
5. (2 ?r(i) (i) s A"V t(ro(k), ?r(2)) : II™) D
(ri(i) s A"V t(ri(k), ?r(d)) - II™) From 4. by prop. reasoning
6. r1(K) : (1T Vg (3): A™) S (ry (i) : ATV t(ra (k) 71 (5)) 17
From 2. and 5. by prop. reasoning

For s :=t(ry(k), ?r1(i)),
SEr(k): (T Vri(i): A™) D (r(s): A™ Vs IT™).

The index [ does not occur in either [A]; or II, since [II];, [4]; is properly an-
notated. Thus, r := (ry | II,[A];) U {l — s} is a realization on the conclusion
[IT];,[4];. For the identity substitution o and r, we have

5 ([, [Ali]x) " o O ({1, [A:)".

L', [A7], (2]
1y, [[47, 2]
(11, [Ai];, [EX]n and [H]g, [[A];, £]; be properly annotated versions of the premise
[, [Alilj, [X]n
[Tk, [[A)i; X
instance. Let 7 be a realization function on [I1,[A];];, [X],. The following is a
derivation in J5:

Case p = 5bl: Let be an arbitrary shallow instance of 5b“, let

and conclusion respectively. Then is an annotated version of this

0. =ry(i): A™ D ?ry(d) : —ry () : A™ Instance of j5
1. =779(8) : —r(3) : A™ D ==y (i) - A™ From 0. by prop. reasoning
2. =rp(i) : A™ Do (i) 1 AT Propositional tautology
3. 2 ?ri(d) s (1) s AT Do (i) AT From 1. and 2. by prop. reasoning
4. p:(=7r(d) :or(3) : A™ Drq(3) 1 A™) From 3. by Lemma 22
5. 22r() i or(2) AT D22y (4) i 0Py (4) g (i) - AT Instance of j5
6. 72r(0) 0 ?r(d) (i) AT D p T Try(d) sy (d) T AT

From 4. by app and MP
7. 2?r() o (3) A D p- P Prp(i) s e (3) L AT

From 5. and 6. by prop. reasoning
8 —wr(i): A" D™ V(i) : A™ D II™ Propositional tautology

9. ‘?Tl(l) : _|7'1( ) A D) T'1( ) (HTI \/7'1( ) : Arl) D tg(?f’l(’i),rl(j)) I
From 8. by Lemma 22

10. 71(f) : (™ V(i) : A™) D = 2r1(8) e (2) - A™ Vs (? r1(d), r1(5)) O™

From 9. by prop. reasoning

Let &' :=p-??r1(i) and s :=t3(?r1(i),r1(j)), then:

11 r(g) (T Vr(3) : A™) D s’ i (i) : A" Vs T

From 7. and 10. by prop. reasoning
12. 7"1( ) AT D (rq(3) : ATV X)) Propositional tautology
13. & :r1(d) : A™ D t1(8)) : (r1(2) : A™ v X)) From 12. by Lemma 22

14. 7“1( ) (T V(i) : A™) Dty (s') 1 (r(3) : AT vV X)) Vs I
From 11. and 13. by prop. reasoning
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15.
16. r
17.
18.

19.

XD (re(i) : AT v X)) Propositional tautology
1(h) : X" D ta(ri(h)) : (re(3) : A™ v X)) From 15. by Lemma 22
r1(f) (I Vr(3): A™)Vrp(h) : X D s ™ Vi (s') : (r(8) : A" v X7 v
to(ri(h)): (ri(d) : A™ v X From 14. and 16. by prop. reasoning
t1(s"): (r(2) : AV XY Vitg(re(h)) : (r1(d) : A™ v X)) D
(t1(8") + ta(r1(R))) : (r1(3) - A™ v X)) By sum and prop. reasoning
ri(3): (I V(@) : A™)Vory(h): XM D s IV
(') + ta(r1 (h))) : (ry(3) : A7 v )
From 17. and 18. by prop. reasoning

For t := (t1(s") 4+ ta(r1(h))), it follows from 19. that:

BBEr(): (T Vri(): A™)Vrg(h) : XM D s O™V E: (r(i) : A™ Vv X,

The indices k and ! do not occur in IT, [A]; or X since [II], [[4];, X]; is properly
annotated. Thus, r := (ry | I1,[A];, X) U{k — s,] — t} is a realization on the
conclusion [IT], [[A];, X];. For the identity substitution ¢ and r we have

5 1 ([, [Ai]y, [2]n)" o O ([, [[A]s; 210)"

This proves the remaining cases of Lemma 29. ad
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