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Abstract

We consider the motion of a flexible plate across a domain, bounded by two parallel lines. Kinematically prescribed velocities of the
plate, entering the domain and leaving it, may vary in space and time. The corresponding deformation of the plate is quasistatically
analyzed using the geometrically nonlinear model of a Kirchhoff shell with a mixed Eulerian-Lagrangian kinematic description. In
contrast to the formulations, available in the literature, both the in-plane and the out-of-plane deformations are unknown a priori and
may be arbitrarily large. The particles of the plate travel across a finite element mesh, which remains fixed in the axial direction. The
evident advantage of the approach is that the boundary conditions need to be applied at fixed edges of the finite elements. In the paper,
we present the mathematical formulation and demonstrate its consistency by comparing the solution of a benchmark problem against
results, obtained with conventional Lagrangian finite elements.
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1. Introduction

The problem of mathematical modeling of nonlinear defor-
mations of axially moving structures is both challenging and
practically important. Numerous papers deal with the transverse
vibrations of axially moving beams and strings, see a review pa-
per Ref. [1]. While an extension towards nonlinearly coupled
in-plane and out-of-plane vibrations of a moving plate is pre-
sented in Ref. [4], this model is incapable of representing arbi-
trarily deformed configurations of the plate. Moreover, the use of
Lagrange equations of motion to an open system with influx and
outflux of the mass is not justified in the latter reference.

Large axial deformation and bending of a beam, which can
move across a fixed domain, is treated by the authors of Ref. [5]
using a suitable change of variables. We apply a similar technique
for the quasistatic modeling of finite deformations of a plate mov-
ing across a given domain in the direction x. The velocities of the
plate are prescribed at two boundaries of the domain x = 0 and
x = L, see Fig. 1.
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Figure 1: Quasistatic deformation of a plate with prescribed ve-
locities at the boundaries

2. Mathematical model

In the present study we assume the velocity ventry, with
which the plate is entering the domain, to be constant. In the
future, arbitrary velocity profiles may be incorporated into the
model using the notion of intrinsic strains and the technique
of multiplicative decomposition of the deformation gradient,
Ref. [6]. The varying velocity profile vexit(y), with which the
material particles of the plate are leaving the domain at x = L,
leads to the time varying deformation of the plate. Searching for a
sequence of quasistatic equilibrium states of the elastic plate, we
need to minimize the total energy of the active region of the plate,
which is currently residing in the considered domain. Not going
into details concerning the time integration, which is intended to
be discussed in future publications, we focus on the kinematic
modeling of the deformation of the plate.
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Figure 2: Two-stage mapping from the reference configuration to
the actual one: the intermediate configuration is fixed in space
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The plane reference configuration 0 ≤ ◦y ≤ w is straight (w
is the undeformed width and ◦r = ◦xi + ◦yj is the position vec-
tor in the reference configuration), see Fig. 2. The present mixed
Eulerian-Lagrangian kinematic description makes use of a fixed
intermediate configuration with the position vector r̃ such, that
the mapping of the positions of particles from the reference con-
figuration to the actual one r = r(◦r) comprises two stages:

r = r̃ + uy(r̃)j + uz(r̃)k, r̃ = ◦r + ux(r̃)i. (1)

The simplicity of this description essentially distinguishes it from
the known Arbitrary Lagrangian-Eulerian formulation, Ref. [2].
All fields are functions of the place in the fixed intermediate con-
figuration, in which a finite element discretization is performed.

We apply the classical Kirchhoff shell model, see Refs. [3, 7].
The total gradient of deformation of the plate with the differential
operator of the intermediate configuration ∇̃ results in the form

F =
◦
∇rT = ∇̃rT · F̃, F̃ =

(
I2 − i∇̃ux

)−1
. (2)

Here I2 = ii + jj is the in-plane identity tensor, and the ex-
pression for the gradient of deformation from the reference to
the intermediate configuration F̃ follows from I2 =

◦
∇◦r =

F̃T · ∇̃(r̃ − uxi). The strain measures of a classical shell

E =
1
2

(
FT ·F− I2

)
, K = FT ·b ·F (3)

feature the actual second metric tensor b = −∇n, and after
mathematical transformations we express the tensor of bending
strains with the operator of the intermediate configuration:

K = F̃T · K̃ · F̃, K̃ = ∇̃∇̃r ·n. (4)

Now, the strain energy per unit area in the reference configuration
is computed as a quadratic form

U =
1
2

(
A1(trE)2 +A2E··E+D1(trK)2 +D2K··K

)
(5)

with known coefficients, Ref. [3, 7]. The total strain energy

UΣ =

L∫

0

w/2∫

−w/2

U(det F̃)−1dỹ dx (6)

is integrated in the intermediate configuration using the finite el-
ement discretization of displacements ux, uy , uz and minimized.

3. Numerical benchmark problem

Prior to modeling the axial motion, we test the formulation
by seeking the equilibrium of a trapezoidal plate of the width w
and side lengths L and L + ux0, see Fig. 3. The inclined edge
is rotated parallel to the right one by kinematically prescribed
displacements ux and uy such, that the actual configuration is
bounded by the lines x = 0 and x = L. The mapping Eq. (1)
is thus possible with the intermediate configuration 0 ≤ x ≤ L,
0 ≤ ỹ ≤ w, which is discretized using C1 continuous finite ele-
ment approximation of displacements, presented in Refs. [7, 8].

The compressed shell buckles out of plane, and the region
with uz < 0 is "shadowed" by the gray initial configuration
in Fig. 3. The transverse edges of the finite element mesh re-
main parallel in the deformed configuration. This corresponds to
Eq. (1), as the mapping r(r̃) includes only uy and uz .

The considered parameters of the model in SI system are
L = 1, w = 0.4, thickness of the plate 5 · 10−3, Young’s
modulus 2.1 · 1011 and Poisson’s ratio 0.3. In Table 1 we sum-
marized the maximum and minimum values of the out-of-plane
displacements, computed for various discretizations using the
present method and the conventional shell finite elements with
Lagrangian description, discussed in the above references. The
current implementation of the mixed Eulerian-Lagrangian finite

element formulation using Wolfram Mathematica is yet restricted
concerning the size of the mesh, but one can conclude that the
results converge to the same solution.

Figure 3: Deformation of a trapezoidal plate, seen from above
(together with the undeformed configuration) and from the side

Table 1: Mesh convergence and comparison of the mixed
Eulerian-Lagrangian and traditional Lagrangian frameworks

Discretization, Mixed E.-L. Lagrangian
nx × ny minuz maxuz minuz maxuz

4× 2 -0.07270 0.18577 -0.07322 0.18138
8× 4 -0.05846 0.18427 -0.05831 0.18256
16× 8 -0.05542 0.18319 -0.05527 0.18259
32× 16 — — -0.05490 0.18262
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