Separation of an incoming and reflecting impulse for determining angle-dependent acoustic properties in situ

Jochen Metzger, Stefan Tschallener and Manfred Kaltenbacher
TU Wien, 1060 Wien, Austria, Email: jochen.metzger@tuwien.ac.at

Introduction

For precisely obtaining an acoustic field close to reality, the acoustic wave equation with realistic boundary conditions has to be solved. Therefore, the knowledge of these acoustic boundary conditions is crucial. By applying the standardized measurement methods, only the absorption at random sound incidence [1] and perpendicular sound incidence [2] can be obtained. Furthermore, these methods need for a trimmed sample with special size and dimensions. However, no real sound excitation will be a perfect plane wave or a diffuse sound field and the cutting process (if it is possible at all) may change the acoustic behavior. To determine the acoustic properties at the location where the material is installed, in situ measurement techniques are beneficial. Several in situ approaches can be found in literature [3]. For the measurements presented in this paper, a subtraction method as described in [8] is used. Besides the method discussed in this paper, a variety of other approaches exist, e.g. a method which uses a spatial Fourier transformation for the determination of the sound pressure reflection coefficient [4] [5], a two microphone method, which determines the normal acoustic impedance at oblique angles of sound incidence [6] and a method to find out the sound pressure reflection coefficient with a simultaneous measurement of sound pressure and particle velocity at nearly the same place [7]. This paper presents a measurement method to obtain acoustic properties at oblique angles of sound incidence by means of a separation of the incoming and reflecting impulse by a subtraction technique. The theory of the method is given and the measurement set-up for the determination of the acoustic properties at oblique sound incidence is presented. Results at perpendicular sound incidence are shown in comparison to the acoustic properties obtained with impedance tube following ISO 10534-2. Furthermore, measurement results of the sound absorption coefficient at oblique angle of sound incidence compared to an analytic solution will be discussed.

Theory

The schematic of the subtraction method is shown in Fig. 1. A loudspeaker is positioned at a certain distance \(h_y \) in front of a sample under consideration. Moreover, a microphone is placed at \(r_y \), above the sample. The angle between the loudspeaker and the microphone in respective to the normal surface of the sample is \(\Theta \). Because the acoustic properties of the surface are different to the ones of the surrounding medium, there will be reflection at the surface. This is taken into account by introducing an image source. The impulse response of the measurement system can be identified by either using a Maximum Length Sequence (MLS) and performing a cross-correlation of the measured pressure and the excitation signal or using a sine sweep and performing a deconvolution. The cross-correlation can be carried out by using the Hadamard transform. The loudspeaker is excited by an input signal \(x_e(t) \) and the pressure at a distance of \(r_{dir} \) is recorded by means of a microphone. In a first step, a free field measurement (impulse response \(h_{ff} \)) is performed. The measured pressure

\[p_{ff}(t) = x_e(t) * h_{ff}(t) = p_{ff,s}(t) + p_{ff,p}(t) \] (1)

in a free field consists of a direct \(p_{ff,s} \) and a parasitic part \(p_{ff,p} \). Thereby, the symbol \(*\) denotes the convolution. The parasitic part represents reflections at objects and the walls of the room. Furthermore, the measurement is repeated with a sample placed as shown in Fig. 1. The measured pressure above the sample (impulse response \(h_m \))

\[p_m(t) = x_e(t) * h_m(t) = p_{m,s}(t) + p_{m,r}(t) + p_{m,p}(t) \] (2)

is a superposition of the direct, parasitic and the reflected component \(p_{m,r} \). The impulse responses of both measurement systems compute to

\[h_m(t) = p_m(t) * x_e(-t) \]

\[= (h_{m,s} + h_{m,r} + h_{m,p}) * \delta(t) \]

\[= C_{m,s}(t) * \delta(t - \tau_1) + C_{m,e}(t) * r(t) * \delta(t - \tau_2) \]

\[+ C_{m,p}(t) * f_p(t) * \delta(t - \tau_3) \] (3)

\[h_{ff}(t) = p_{ff}(t) * x_e(-t) \]

\[= (h_{ff,s} + h_{ff,p}) * \delta(t) \]

\[= C_{ff,s}(t) * \delta(t - \tau_1) + C_{ff,e}(t) * f_p(t) * \delta(t - \tau_3), \] (4)

Figure 1: Schematic of the measurement system.
where \(\delta \) is the dirac delta function, \(f_p \) is the par-
astic component of the impulse response, \(s \) is the
impulse response of the measurement system and \(r \)
the impulse response of the sample. The coefficients
\(C_{m,d}, C_{m,r}, C_{m,p}, C_{\text{ff},d} \) and \(C_{\text{ff},p} \) compensate the am-
pitude and \(\tau_{1,2,3} \) the time shift of a traveling spherical wave.
The impulse response of each measurement system is a
superposition of the direct (\(d \)), reflected (\(r \)) and parasitic
(\(p \)) part of the impulse response, which are excited at
different times \(\tau_1 < \tau_2 < \tau_3 \). The parasitic part can be
canceled out using a time window after the following
subtraction of both impulse responses. To separate the
reflected impulse response \(h_{m,r} \), the impulse responses
(3) and (4) are subtracted. With the assumption that
the direct impulse responses in both measurements are
equal \((h_{m,d} = h_{\text{ff},d}) \) and neglecting the parasitic parts,
the subtraction results in

\[
g(t) = h_m(t) - h_{\text{ff}}(t) = C_{m,r}s(t) \ast r(t) \ast \delta(t - \tau_2). \tag{5}
\]

To quantify the effectiveness of the subtraction result,
the reduction factor [9]

\[
RF = 10 \log \left(\frac{\int_{\tau_{1-\Delta t}}^{\tau_{1+\Delta t}} |h_m|^2 dt}{\int_{\tau_{1-\Delta t}}^{\tau_{1+\Delta t}} |g|^2 dt} \right) \tag{6}
\]

is used. In (6), the square of the impulse responses in case of the free field measurement and the subtraction result
from \(\Delta t \) before and \(\Delta t \) after the time of the direct sound
peak \(\tau_1 \) are compared. In case of a perfect subtraction,
the subtracted impulse response \(g \) is zero and \(RF \rightarrow \infty \).
In Fig. 2 a sketch of the subtraction is displayed including
the time windows for canceling the parasitic components
out of the impulse responses. Moreover, the influence of varying environmental conditions between the two me-
asurements resulting in a time (\(\Delta \tau \)) and amplitude (\(\Delta C \))
shift can be seen. In case of \(\Delta \tau = 0 \) and \(\Delta C = 0 \),
the subtraction result in (5) only consists of the reflected
green peak and the parasitic components. In frequency
domain, (5) and the time windowed impulse response (4)
compute to

\[
H(\omega) = C_{\text{ff},d}S(\omega)e^{-j\omega \tau_1}, \tag{7}
\]

\[
G(\omega) = C_{m,r}S(\omega)R(\omega)e^{-j\omega \tau_2}. \tag{8}
\]

Dividing (8) and (7), replacing the coefficients \(C_{\text{ff},d} = 1/r_{\text{dir}} \) and \(C_{m,r} = 1/r_{\text{ref}} \) and the time delays \(\tau_1 = r_{\text{dir}}/c \) and \(\tau_2 = r_{\text{ref}}/c \) (\(c \) is the speed of sound of the surrounding
medium), the sound pressure reflection coefficient computes to

\[
R(\omega) = \frac{G(\omega)}{H(\omega)} = \frac{r_{\text{ref}}}{r_{\text{dir}}} e^{jk(r_{\text{ref}}-r_{\text{dir}})}, \tag{9}
\]

where \(k \) is the wave number of the surrounding medium.
Thereby, the sound absorption coefficient

\[
\alpha = 1 - |R|^2 \tag{10}
\]

can be calculated by using (9).

Subtraction optimization

To improve the result, some corrections of the subtraction
method are done. First, we do not use the assumption
that the pressure amplitude of the loudspeaker decays
by inverse distance and therefore we replaced \(r_{\text{ref}}/r_{\text{dir}} \) in
(9) by a measured amplitude decay. Second, an over-
sampling similar to the one proposed in [9] is used to
find the most effective subtraction result using (6) and
\(\Delta t = 0.3 \text{ ms} \). Instead of iterative increasing the oversam-
pling factor, an oversampling with factor 10 is applied in
all measurements to improve the subtraction result. In
this oversampling optimization, a set of 10 impulse re-
sponses is available to apply (5), whereas the best result
in respect to (6) is used. This time signal of the impulse
response is furthermore being phase shifted in frequency
domain and transformed back in time domain. More-
over, the amplitudes are adjusted before subtracting to
get a better reduction factor and hence a better subtrac-
tion result. Variations in the environmental conditions
result in a time shift (\(\tau_1 \pm \Delta \tau \)) and a modification in
the amplitude (\(C_{\text{ff},d} = C_{m,d} \pm \Delta C \)) of the direct com-
ponent of the impulse responses, see Fig. 2. By using
the described subtraction optimization, the influences of
varying environmental conditions can be reduced.

Measurement set-up

The distance \(r_{\text{dir}} \) between loudspeaker and microphone is chosen to be 1 m and the microphone is placed at
\(r_y = 0.15 \text{ m} \). Therefore, in case of perpendicular sound
incidence, the direct and reflected peak in \(h_m \) will be at
\(\tau_1 \approx 2.92 \text{ ms} \) and \(\tau_2 \approx 3.79 \text{ ms} \). The distances are a trade-
off between the time, the impulse response of the sample
\(r \) can be evaluated before the first reflections are in \(g \) (the
evaluation time is between \(\tau_2 \) and \(\tau_3 \)) and the fact, that
there is no overlapping of the direct and reflected part
in this evaluated time slot. The measurements were per-
formed in a stairwell at the TU Wien. The distance to the
surrounding wall is 2 m, so the first parasitic parts in \(h_m \)

![Figure 2: Sketch of the subtraction in (5) including the in-
fluence of varying environmental conditions between the two
measurements and the time windows for canceling the par-
astic components out of the impulse responses.](image)
will be at $\tau_3 \approx 11.66$ ms. The sound pressure is recorded 20 s with 500,000 samples/s, where the excitation signal is a MLS. The used samples are rock wool plates with different thicknesses (40 mm, 50 mm, 60 mm and 100 mm). The total sample size is 4 m2. A typical measurement set-up can be seen in Fig. 3. Measurements with the here presented set-up can only be used for a maximum angle of 70°, because of the limited crossbar length.

Results and discussion

For canceling out the parasitic part of the impulse responses g and h_{ff}, a Blackman-Harris window with a length of 5 ms and a 3.5 ms Adrienne window is used. In Fig. 4 the sound absorption coefficient of a 40 mm rock wool sample with different time windows used for canceling of the parasitic part of the impulse response can be seen. The curve of the obtained sound absorption coefficient by using the Blackman-Harris window of course shows a different frequency resolution regarding the curve obtained by using the Adrienne window and looks more smooth. The Blackman-Harris window is a symmetric time window and its peak is placed at the point of the peak of the impulse response. The most important information of the sample’s impulse response is located in the peak of the impulse response and there are more and more disturbances like reflections at the time after this peak. Hence, in the following, all calculations are done by using the Blackman-Harris window. The determined sound absorption coefficient can be measured up to 16 kHz but it can be seen that the value is getting 1 for higher frequencies. Thus, the sound absorption coefficient is only shown up to 10 kHz. The lower frequency limit (200 Hz) of the measurement results is bounded by the length of the time window.

Absorption coefficient at perpendicular sound incidence ($\Theta = 0^\circ$)

The absorption coefficient at perpendicular sound incidence of rock wool samples with different thicknesses can be seen in Fig. 5. The result of the subtraction method is compared to the result of a measurement following ISO 10534-2 by using an impedance tube. It has to be mentioned that the impedance tube gives unreliable results for frequencies above 6.4 kHz, the frequency of the first transverse mode of the tube. Hence the impedance tube results are just shown up to 6.4 kHz. The result of the subtraction method shows good agreement with the sound absorption coefficient obtained with the standardized measurement procedure. The curves obtained by the ISO of the samples with 50 mm and 60 mm seem to be shifted in frequencies regarding the one, obtained with the subtraction technique. To measure the sound absorption coefficient using ISO, a sample of 29 mm diameter has to be cutted out of the rockwool plate. Unfortunately, this can not be done very easy since the samples are limply and therefore, the cutting process cannot be performed very accurate. Nevertheless, the results of both methods match quite well.

Acoustic properties at oblique sound incidence

By means of the method following ISO 10534-2, only the acoustic properties at perpendicular sound incidence can be investigated. For a further validation of the subtraction method, the sound absorption coefficient at oblique sound incidence will be compared to the sound absorption coefficient using the Komatsu model of fibrous materials [10]. As an input for the Komatsu model, the flow resistivity of the samples given by the manufacturer with 8 kPa s/m2 is used.
In Fig. 6, the measured sound absorption coefficient of the 40 mm rockwool sample at oblique angles of sound incidence in comparison to the calculated one using the Komatsu model can be seen. Moreover, the reduction factor of each measurement using (6) is shown. For measurements at the angle of sound incidence of 70°, the reduction factor decreases to about 17 dB, whereas the reduction factor at the remaining angles of sound incidence is at about 30 dB. According to [11], a reduction factor more than 10 dB is sufficient. The sound absorption coefficient increases with a rising angle of sound incidence up to an angle of 60° especially at low frequencies, because the wave has to cross more sound absorbing material at higher angles of sound incidence and thus more energy is absorbed. A drop in the sound absorption at 0°, 15° and 45° can be observed at about 6 kHz, probably caused by resonance effects in the plate. However, the measured values of the sound absorption coefficient match the theoretical values obtained by using the Komatsu model.

Conclusion

A fast and stable measurement method is presented to obtain acoustic properties at perpendicular as well as oblique sound incidence. In this method, only a sound source and one microphone is needed, which makes the method easy and cheap. No knowledge of the strength and directivity of the sound source is needed. Moreover, no special acoustic environment is needed, because the excitation with MLS is very robust. A full set of acoustic properties in a frequency range of 200 Hz to 16 kHz and sound incidence angles up to 70° can be achieved and used for a precise simulation of an acoustic field close to reality.

References