The concept of entropy is a measure of disorder or randomness in mathematics. Entropy in physics and probability theory is a fundamental concept with applications ranging from statistical mechanics to information theory. The study of entropy in partial differential equations has a long history, dating back several decades. These methods have been used to derive solutions to diffusive equations, and to study the large-time asymptotic behavior of solutions. Key inequalities, such as the discrete and geometric Poincaré–Sobolev inequalities, are crucial in this context.

The purpose of this book is to provide an overview of these methods, which can be found in the literature, not stated in the widest generality. The intent is to give a sense that the functional inequalities are natural generalizations of the original stochastic view point of Markowich, Toscani, and Villani. A number of applications are given, based on the theory of large deviations and the analysis of reaction–diffusion equations, such as those arising in population dynamics and population genetics.

The book consists of three parts. Chapter 1 introduces the basic notions of entropy in physics and probability theory. Chapter 2 is devoted to entropy methods for partial differential equations, focusing on the study of the large-time behavior of solutions. Chapter 3 is concerned with the application of these methods to the study of reaction–diffusion equations, with a focus on the role of entropy in understanding the asymptotic behavior of solutions.
methods in an efficient, higher order equations.

Entropy methods are here rove the global existence of ess. These techniques were Di Francesco, Pietschmann, ms are rather technical since eak convergence arguments in the appendix.

ated by the aim of pre-the numerical level. Since approaches taken from the ns (recently investigated by Mielske; Fathi and Maas; and ns of Fokker–Planck equa-
hools in Vienna (Austria) in 2012, Kacov (Czech 015. Some material in this orates of Matthes and Evans, Burger, Gajewski, Mielske, corresponding sections. In exhaustive. I do not claim
the cooperation with my abetic order) J.A. Carrillo, P. Degond (London), N. Zamponi (Vienna), a), D. Bothe (Darmstadt), er (Berlin), J. Fuhrmann or fruitful discussions. Last
iting me to write this brief

ian Science Fund (FWF),

Ansgar Jüngel

Contents

1 Introduction ... 1
 1.1 Entropy Concepts in Physics 1
 1.2 Entropy Concepts in Mathematics 3
 1.3 Some Ideas of Entropy Methods 6
 1.4 Some Definitions 11
 References ... 15

2 Fokker–Planck Equations 19
 2.1 The PDE Viewpoint of the Bakry–Emery Approach .. 20
 2.2 Convex Sobolev Inequalities 24
 2.3 The Stochastic Viewpoint of the Bakry–Emery Approach .. 27
 2.4 Relaxation to Self-Similarity 30
 2.5 Nonlinear Fokker–Planck Equations 32
 2.6 Extensions ... 37
 References ... 42

3 Systematic Integration by Parts 45
 3.1 Motivation .. 45
 3.2 The One-Dimensional Case 46
 3.3 The Multi-dimensional Case 55
 3.4 The Bakry–Emery Approach Revisited 62
 References ... 67

4 Cross-Diffusion Systems 69
 4.1 Examples from Physics and Biology 69
 4.2 Derivation .. 74
 4.3 Entropy Structure 81
 4.4 Boundedness-by-Entropy Method 86
 4.5 Population Models 93
 4.6 Ion-Transport Models 98
 4.7 Uniqueness of Weak Solutions 101
 References ... 105
Chapter 5
Towards Discrete Entropy Methods

5.1 Time-Continuous Markov Chains and Entropy 109
5.2 A Discrete Bakry–Emery Approach .. 109
5.3 Entropy-Dissipating Time-Discrete Schemes 115
References .. 118

Appendix A: Technical Tools ... 131

Index ... 137

Abstract

The concept of entropy was introduced in the 1850s to describe the heat produced during irreversible processes. It was a significant step forward from the earlier notion of entropy, which was partially developed by Clausius in the 1840s. The word ‘tropo-’ from the Greek means ‘turning’ and was used by Clausius’ predecessor, Carnot, to describe the idea of an ensemble of microstates that correspond to a macrostate of the system and the macrostate energy increases when the system moves from one different microstate to another.

\[S = k_B \ln \Omega \]

where \(k_B \) is the Boltzmann constant and \(\Omega \) is the number of microstates per macrostate.

Keywords

asymptotics

1.1 Entropy

The concept of entropy was introduced in the 1850s to describe the heat produced during irreversible processes. It was a significant step forward from the earlier notion of entropy, which was partially developed by Clausius in the 1840s. The word ‘tropo-’ from the Greek means ‘turning’ and was used by Clausius’ predecessor, Carnot, to describe the idea of an ensemble of microstates that correspond to a macrostate of the system and the macrostate energy increases when the system moves from one different microstate to another.

\[S = k_B \ln \Omega \]

where \(k_B \) is the Boltzmann constant and \(\Omega \) is the number of microstates per macrostate.

© The Author(s), A. Jüngel, Entropy, SpringerBriefs in Mathematics, 2019.